@@ -1,6 +1,6 @@ | |||||
# About graph kenrels. | # About graph kenrels. | ||||
## (Random walk) Sylvester equation kernel. | |||||
## (Random walk) Sylvester equation kernel. | |||||
### ImportError: cannot import name 'frange' from 'matplotlib.mlab' | ### ImportError: cannot import name 'frange' from 'matplotlib.mlab' | ||||
@@ -10,7 +10,7 @@ Update your `control` package. | |||||
### Intel MKL FATAL ERROR: Cannot load libmkl_avx2.so or libmkl_def.so. | ### Intel MKL FATAL ERROR: Cannot load libmkl_avx2.so or libmkl_def.so. | ||||
The Intel Math Kernel Library (MKL) is missing or not properly set. I assume the MKL is required by `control` module. | |||||
The Intel Math Kernel Library (MKL) is missing or not properly set. I assume MKL is required by the `control` module. | |||||
Install MKL. Then add the following to your path: | Install MKL. Then add the following to your path: | ||||
@@ -18,4 +18,6 @@ Install MKL. Then add the following to your path: | |||||
export PATH=/opt/intel/bin:$PATH | export PATH=/opt/intel/bin:$PATH | ||||
export LD_LIBRARY_PATH=/opt/intel/lib/intel64:/opt/intel/mkl/lib/intel64:$LD_LIBRARY_PATH | export LD_LIBRARY_PATH=/opt/intel/lib/intel64:/opt/intel/mkl/lib/intel64:$LD_LIBRARY_PATH | ||||
export LD_PRELOAD=/opt/intel/mkl/lib/intel64/libmkl_def.so:/opt/intel/mkl/lib/intel64/libmkl_avx2.so:/opt/intel/mkl/lib/intel64/libmkl_core.so:/opt/intel/mkl/lib/intel64/libmkl_intel_lp64.so:/opt/intel/mkl/lib/intel64/libmkl_intel_thread.so:/opt/intel/lib/intel64_lin/libiomp5.so | |||||
``` | ``` |
@@ -60,7 +60,7 @@ Check [`notebooks`](https://github.com/jajupmochi/graphkit-learn/tree/master/not | |||||
The docs of the library can be found [here](https://graphkit-learn.readthedocs.io/en/master/?badge=master). | The docs of the library can be found [here](https://graphkit-learn.readthedocs.io/en/master/?badge=master). | ||||
## Main contents | |||||
## Main contents | |||||
### 1 List of graph kernels | ### 1 List of graph kernels | ||||
@@ -131,6 +131,20 @@ A comparison of performances of graph kernels on benchmark datasets can be found | |||||
Fork the library and open a pull request! Make your own contribute to the community! | Fork the library and open a pull request! Make your own contribute to the community! | ||||
## Authors | |||||
* [Linlin Jia](https://jajupmochi.github.io/), LITIS, INSA Rouen Normandie | |||||
* [Benoit Gaüzère](http://pagesperso.litislab.fr/~bgauzere/#contact_en), LITIS, INSA Rouen Normandie | |||||
* [Paul Honeine](http://honeine.fr/paul/Welcome.html), LITIS, Université de Rouen Normandie | |||||
## Citation | |||||
Still waiting... | |||||
## Acknowledgments | |||||
This research was supported by CSC (China Scholarship Council) and the French national research agency (ANR) under the grant APi (ANR-18-CE23-0014). The authors would like to thank the CRIANN (Le Centre Régional Informatique et d’Applications Numériques de Normandie) for providing computational resources. | |||||
## References | ## References | ||||
[1] Thomas Gärtner, Peter Flach, and Stefan Wrobel. On graph kernels: Hardness results and efficient alternatives. Learning Theory and Kernel Machines, pages 129–143, 2003. | [1] Thomas Gärtner, Peter Flach, and Stefan Wrobel. On graph kernels: Hardness results and efficient alternatives. Learning Theory and Kernel Machines, pages 129–143, 2003. | ||||
@@ -153,17 +167,3 @@ Fork the library and open a pull request! Make your own contribute to the commun | |||||
[10] Gaüzere, B., Brun, L., Villemin, D., 2012. Two new graphs kernels in chemoinformatics. Pattern Recognition Letters 33, 2038–2047. | [10] Gaüzere, B., Brun, L., Villemin, D., 2012. Two new graphs kernels in chemoinformatics. Pattern Recognition Letters 33, 2038–2047. | ||||
[11] Shervashidze, N., Schweitzer, P., Leeuwen, E.J.v., Mehlhorn, K., Borgwardt, K.M., 2011. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research 12, 2539–2561. | [11] Shervashidze, N., Schweitzer, P., Leeuwen, E.J.v., Mehlhorn, K., Borgwardt, K.M., 2011. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research 12, 2539–2561. | ||||
## Authors | |||||
* [Linlin Jia](https://jajupmochi.github.io/), LITIS, INSA Rouen Normandie | |||||
* [Benoit Gaüzère](http://pagesperso.litislab.fr/~bgauzere/#contact_en), LITIS, INSA Rouen Normandie | |||||
* [Paul Honeine](http://honeine.fr/paul/Welcome.html), LITIS, Université de Rouen Normandie | |||||
## Citation | |||||
Still waiting... | |||||
## Acknowledgments | |||||
This research was supported by CSC (China Scholarship Council) and the French national research agency (ANR) under the grant APi (ANR-18-CE23-0014). The authors would like to thank the CRIANN (Le Centre Régional Informatique et d’Applications Numériques de Normandie) for providing computational resources. |
@@ -10,19 +10,12 @@ from gklearn.utils.graphdataset import load_predefined_dataset | |||||
import logging | import logging | ||||
# def get_graphs(ds_name): | |||||
# from gklearn.utils.graph_synthesizer import GraphSynthesizer | |||||
# gsyzer = GraphSynthesizer() | |||||
# graphs = gsyzer.unified_graphs(num_graphs=100, num_nodes=num_nodes, num_edges=int(num_nodes*2), num_node_labels=0, num_edge_labels=0, seed=None, directed=False) | |||||
# return graphs | |||||
def xp_runtimes_of_all_7cores(): | |||||
def xp_runtimes_of_all_28cores(): | |||||
# Run and save. | # Run and save. | ||||
import pickle | import pickle | ||||
import os | import os | ||||
save_dir = 'outputs/runtimes_of_all_7cores/' | |||||
save_dir = 'outputs/runtimes_of_all_28cores/' | |||||
if not os.path.exists(save_dir): | if not os.path.exists(save_dir): | ||||
os.makedirs(save_dir) | os.makedirs(save_dir) | ||||
@@ -41,16 +34,16 @@ def xp_runtimes_of_all_7cores(): | |||||
graphs, _ = load_predefined_dataset(ds_name) | graphs, _ = load_predefined_dataset(ds_name) | ||||
# Compute Gram matrix. | # Compute Gram matrix. | ||||
run_time = 'error' | |||||
try: | try: | ||||
gram_matrix, run_time = compute_graph_kernel(graphs, kernel_name, n_jobs=28) | gram_matrix, run_time = compute_graph_kernel(graphs, kernel_name, n_jobs=28) | ||||
run_times[kernel_name].append(run_time) | |||||
except Exception as exp: | except Exception as exp: | ||||
run_times[kernel_name].append('error') | |||||
print('An exception occured when running this experiment:') | print('An exception occured when running this experiment:') | ||||
LOG_FILENAME = save_dir + 'error.txt' | LOG_FILENAME = save_dir + 'error.txt' | ||||
logging.basicConfig(filename=LOG_FILENAME, level=logging.DEBUG) | logging.basicConfig(filename=LOG_FILENAME, level=logging.DEBUG) | ||||
logging.exception('') | logging.exception('') | ||||
print(repr(exp)) | print(repr(exp)) | ||||
run_times[kernel_name].append(run_time) | |||||
pickle.dump(run_time, open(save_dir + 'run_time.' + kernel_name + '.' + ds_name + '.pkl', 'wb')) | pickle.dump(run_time, open(save_dir + 'run_time.' + kernel_name + '.' + ds_name + '.pkl', 'wb')) | ||||
@@ -61,4 +54,4 @@ def xp_runtimes_of_all_7cores(): | |||||
if __name__ == '__main__': | if __name__ == '__main__': | ||||
xp_runtimes_of_all_7cores() | |||||
xp_runtimes_of_all_28cores() |
@@ -0,0 +1,62 @@ | |||||
#!/usr/bin/env python3 | |||||
# -*- coding: utf-8 -*- | |||||
""" | |||||
Created on Mon Sep 21 10:34:26 2020 | |||||
@author: ljia | |||||
""" | |||||
from utils import Graph_Kernel_List, Dataset_List, compute_graph_kernel | |||||
from gklearn.utils.graphdataset import load_predefined_dataset | |||||
import logging | |||||
def xp_runtimes_diff_chunksizes(): | |||||
# Run and save. | |||||
import pickle | |||||
import os | |||||
save_dir = 'outputs/runtimes_diff_chunksizes/' | |||||
if not os.path.exists(save_dir): | |||||
os.makedirs(save_dir) | |||||
run_times = {} | |||||
for kernel_name in Graph_Kernel_List: | |||||
print() | |||||
print('Kernel:', kernel_name) | |||||
run_times[kernel_name] = [] | |||||
for ds_name in Dataset_List: | |||||
print() | |||||
print('Dataset:', ds_name) | |||||
run_times[kernel_name].append([]) | |||||
for chunksize in [1, 5, 10, 50, 100, 500, 1000, 5000, 10000, 50000, 100000]: | |||||
print() | |||||
print('Chunksize:', chunksize) | |||||
# get graphs. | |||||
graphs, _ = load_predefined_dataset(ds_name) | |||||
# Compute Gram matrix. | |||||
run_time = 'error' | |||||
try: | |||||
gram_matrix, run_time = compute_graph_kernel(graphs, kernel_name, chunksize=chunksize) | |||||
except Exception as exp: | |||||
print('An exception occured when running this experiment:') | |||||
LOG_FILENAME = save_dir + 'error.txt' | |||||
logging.basicConfig(filename=LOG_FILENAME, level=logging.DEBUG) | |||||
logging.exception('') | |||||
print(repr(exp)) | |||||
run_times[kernel_name][-1].append(run_time) | |||||
pickle.dump(run_time, open(save_dir + 'run_time.' + kernel_name + '.' + ds_name + '.' + str(chunksize) + '.pkl', 'wb')) | |||||
# Save all. | |||||
pickle.dump(run_times, open(save_dir + 'run_times.pkl', 'wb')) | |||||
return | |||||
if __name__ == '__main__': | |||||
xp_runtimes_diff_chunksizes() |
@@ -41,16 +41,16 @@ def xp_synthesied_graphs_dataset_size(): | |||||
sub_graphs = [g.copy() for g in graphs[0:num_graphs]] | sub_graphs = [g.copy() for g in graphs[0:num_graphs]] | ||||
run_time = 'error' | |||||
try: | try: | ||||
gram_matrix, run_time = compute_graph_kernel(sub_graphs, kernel_name, n_jobs=1) | gram_matrix, run_time = compute_graph_kernel(sub_graphs, kernel_name, n_jobs=1) | ||||
run_times[kernel_name].append(run_time) | |||||
except Exception as exp: | except Exception as exp: | ||||
run_times[kernel_name].append('error') | |||||
print('An exception occured when running this experiment:') | print('An exception occured when running this experiment:') | ||||
LOG_FILENAME = save_dir + 'error.txt' | LOG_FILENAME = save_dir + 'error.txt' | ||||
logging.basicConfig(filename=LOG_FILENAME, level=logging.DEBUG) | logging.basicConfig(filename=LOG_FILENAME, level=logging.DEBUG) | ||||
logging.exception('') | logging.exception('') | ||||
print(repr(exp)) | print(repr(exp)) | ||||
run_times[kernel_name].append(run_time) | |||||
pickle.dump(run_time, open(save_dir + 'run_time.' + kernel_name + '.' + str(num_graphs) + '.pkl', 'wb')) | pickle.dump(run_time, open(save_dir + 'run_time.' + kernel_name + '.' + str(num_graphs) + '.pkl', 'wb')) | ||||
@@ -40,16 +40,16 @@ def xp_synthesied_graphs_degrees(): | |||||
graphs = generate_graphs(degree) | graphs = generate_graphs(degree) | ||||
# Compute Gram matrix. | # Compute Gram matrix. | ||||
run_time = 'error' | |||||
try: | try: | ||||
gram_matrix, run_time = compute_graph_kernel(graphs, kernel_name, n_jobs=1) | gram_matrix, run_time = compute_graph_kernel(graphs, kernel_name, n_jobs=1) | ||||
run_times[kernel_name].append(run_time) | |||||
except Exception as exp: | except Exception as exp: | ||||
run_times[kernel_name].append('error') | |||||
print('An exception occured when running this experiment:') | print('An exception occured when running this experiment:') | ||||
LOG_FILENAME = save_dir + 'error.txt' | LOG_FILENAME = save_dir + 'error.txt' | ||||
logging.basicConfig(filename=LOG_FILENAME, level=logging.DEBUG) | logging.basicConfig(filename=LOG_FILENAME, level=logging.DEBUG) | ||||
logging.exception('') | logging.exception('') | ||||
print(repr(exp)) | print(repr(exp)) | ||||
run_times[kernel_name].append(run_time) | |||||
pickle.dump(run_time, open(save_dir + 'run_time.' + kernel_name + '.' + str(degree) + '.pkl', 'wb')) | pickle.dump(run_time, open(save_dir + 'run_time.' + kernel_name + '.' + str(degree) + '.pkl', 'wb')) | ||||
@@ -40,16 +40,16 @@ def xp_synthesied_graphs_num_edge_label_alphabet(): | |||||
graphs = generate_graphs(num_el_alp) | graphs = generate_graphs(num_el_alp) | ||||
# Compute Gram matrix. | # Compute Gram matrix. | ||||
run_time = 'error' | |||||
try: | try: | ||||
gram_matrix, run_time = compute_graph_kernel(graphs, kernel_name, n_jobs=1) | gram_matrix, run_time = compute_graph_kernel(graphs, kernel_name, n_jobs=1) | ||||
run_times[kernel_name].append(run_time) | |||||
except Exception as exp: | except Exception as exp: | ||||
run_times[kernel_name].append('error') | |||||
print('An exception occured when running this experiment:') | print('An exception occured when running this experiment:') | ||||
LOG_FILENAME = save_dir + 'error.txt' | LOG_FILENAME = save_dir + 'error.txt' | ||||
logging.basicConfig(filename=LOG_FILENAME, level=logging.DEBUG) | logging.basicConfig(filename=LOG_FILENAME, level=logging.DEBUG) | ||||
logging.exception('') | logging.exception('') | ||||
print(repr(exp)) | print(repr(exp)) | ||||
run_times[kernel_name].append(run_time) | |||||
pickle.dump(run_time, open(save_dir + 'run_time.' + kernel_name + '.' + str(num_el_alp) + '.pkl', 'wb')) | pickle.dump(run_time, open(save_dir + 'run_time.' + kernel_name + '.' + str(num_el_alp) + '.pkl', 'wb')) | ||||
@@ -40,9 +40,9 @@ def xp_synthesied_graphs_num_node_label_alphabet(): | |||||
graphs = generate_graphs(num_nl_alp) | graphs = generate_graphs(num_nl_alp) | ||||
# Compute Gram matrix. | # Compute Gram matrix. | ||||
run_time = 'error' | |||||
try: | try: | ||||
gram_matrix, run_time = compute_graph_kernel(graphs, kernel_name, n_jobs=1) | gram_matrix, run_time = compute_graph_kernel(graphs, kernel_name, n_jobs=1) | ||||
run_times[kernel_name].append(run_time) | |||||
except Exception as exp: | except Exception as exp: | ||||
run_times[kernel_name].append('error') | run_times[kernel_name].append('error') | ||||
print('An exception occured when running this experiment:') | print('An exception occured when running this experiment:') | ||||
@@ -50,6 +50,7 @@ def xp_synthesied_graphs_num_node_label_alphabet(): | |||||
logging.basicConfig(filename=LOG_FILENAME, level=logging.DEBUG) | logging.basicConfig(filename=LOG_FILENAME, level=logging.DEBUG) | ||||
logging.exception('') | logging.exception('') | ||||
print(repr(exp)) | print(repr(exp)) | ||||
run_times[kernel_name].append(run_time) | |||||
pickle.dump(run_time, open(save_dir + 'run_time.' + kernel_name + '.' + str(num_nl_alp) + '.pkl', 'wb')) | pickle.dump(run_time, open(save_dir + 'run_time.' + kernel_name + '.' + str(num_nl_alp) + '.pkl', 'wb')) | ||||
@@ -40,9 +40,9 @@ def xp_synthesied_graphs_num_nodes(): | |||||
graphs = generate_graphs(num_nodes) | graphs = generate_graphs(num_nodes) | ||||
# Compute Gram matrix. | # Compute Gram matrix. | ||||
run_time = 'error' | |||||
try: | try: | ||||
gram_matrix, run_time = compute_graph_kernel(graphs, kernel_name, n_jobs=1) | gram_matrix, run_time = compute_graph_kernel(graphs, kernel_name, n_jobs=1) | ||||
run_times[kernel_name].append(run_time) | |||||
except Exception as exp: | except Exception as exp: | ||||
run_times[kernel_name].append('error') | run_times[kernel_name].append('error') | ||||
print('An exception occured when running this experiment:') | print('An exception occured when running this experiment:') | ||||
@@ -50,6 +50,7 @@ def xp_synthesied_graphs_num_nodes(): | |||||
logging.basicConfig(filename=LOG_FILENAME, level=logging.DEBUG) | logging.basicConfig(filename=LOG_FILENAME, level=logging.DEBUG) | ||||
logging.exception('') | logging.exception('') | ||||
print(repr(exp)) | print(repr(exp)) | ||||
run_times[kernel_name].append(run_time) | |||||
pickle.dump(run_time, open(save_dir + 'run_time.' + kernel_name + '.' + str(num_nodes) + '.pkl', 'wb')) | pickle.dump(run_time, open(save_dir + 'run_time.' + kernel_name + '.' + str(num_nodes) + '.pkl', 'wb')) | ||||
@@ -27,7 +27,7 @@ Graph_Kernel_List_ECon = ['ConjugateGradient', 'FixedPoint', 'StructuralSP'] | |||||
Dataset_List = ['Alkane', 'Acyclic', 'MAO', 'PAH', 'MUTAG', 'Letter-med', 'ENZYMES', 'AIDS', 'NCI1', 'NCI109', 'DD'] | Dataset_List = ['Alkane', 'Acyclic', 'MAO', 'PAH', 'MUTAG', 'Letter-med', 'ENZYMES', 'AIDS', 'NCI1', 'NCI109', 'DD'] | ||||
def compute_graph_kernel(graphs, kernel_name, n_jobs=multiprocessing.cpu_count()): | |||||
def compute_graph_kernel(graphs, kernel_name, n_jobs=multiprocessing.cpu_count(), chunksize=None): | |||||
if kernel_name == 'CommonWalk': | if kernel_name == 'CommonWalk': | ||||
from gklearn.kernels.commonWalkKernel import commonwalkkernel | from gklearn.kernels.commonWalkKernel import commonwalkkernel | ||||
@@ -105,6 +105,7 @@ def compute_graph_kernel(graphs, kernel_name, n_jobs=multiprocessing.cpu_count() | |||||
# params['parallel'] = None | # params['parallel'] = None | ||||
params['n_jobs'] = n_jobs | params['n_jobs'] = n_jobs | ||||
params['chunksize'] = chunksize | |||||
params['verbose'] = True | params['verbose'] = True | ||||
results = estimator(graphs, **params) | results = estimator(graphs, **params) | ||||
@@ -3,9 +3,9 @@ | |||||
@references: | @references: | ||||
[1] Thomas Gärtner, Peter Flach, and Stefan Wrobel. On graph kernels: | |||||
Hardness results and efficient alternatives. Learning Theory and Kernel | |||||
Machines, pages 129–143, 2003. | |||||
[1] Thomas Gärtner, Peter Flach, and Stefan Wrobel. On graph kernels: | |||||
Hardness results and efficient alternatives. Learning Theory and Kernel | |||||
Machines, pages 129–143, 2003. | |||||
""" | """ | ||||
import sys | import sys | ||||
@@ -22,428 +22,429 @@ from gklearn.utils.parallel import parallel_gm | |||||
def commonwalkkernel(*args, | def commonwalkkernel(*args, | ||||
node_label='atom', | |||||
edge_label='bond_type', | |||||
# n=None, | |||||
weight=1, | |||||
compute_method=None, | |||||
n_jobs=None, | |||||
verbose=True): | |||||
"""Calculate common walk graph kernels between graphs. | |||||
Parameters | |||||
---------- | |||||
Gn : List of NetworkX graph | |||||
List of graphs between which the kernels are calculated. | |||||
G1, G2 : NetworkX graphs | |||||
Two graphs between which the kernel is calculated. | |||||
node_label : string | |||||
Node attribute used as symbolic label. The default node label is 'atom'. | |||||
edge_label : string | |||||
Edge attribute used as symbolic label. The default edge label is 'bond_type'. | |||||
weight: integer | |||||
Weight coefficient of different lengths of walks, which represents beta | |||||
in 'exp' method and gamma in 'geo'. | |||||
compute_method : string | |||||
Method used to compute walk kernel. The Following choices are | |||||
available: | |||||
'exp': method based on exponential serials applied on the direct | |||||
product graph, as shown in reference [1]. The time complexity is O(n^6) | |||||
for graphs with n vertices. | |||||
'geo': method based on geometric serials applied on the direct product | |||||
graph, as shown in reference [1]. The time complexity is O(n^6) for | |||||
graphs with n vertices. | |||||
n_jobs : int | |||||
Number of jobs for parallelization. | |||||
Return | |||||
------ | |||||
Kmatrix : Numpy matrix | |||||
Kernel matrix, each element of which is a common walk kernel between 2 | |||||
graphs. | |||||
""" | |||||
# n : integer | |||||
# Longest length of walks. Only useful when applying the 'brute' method. | |||||
# 'brute': brute force, simply search for all walks and compare them. | |||||
compute_method = compute_method.lower() | |||||
# arrange all graphs in a list | |||||
Gn = args[0] if len(args) == 1 else [args[0], args[1]] | |||||
# remove graphs with only 1 node, as they do not have adjacency matrices | |||||
len_gn = len(Gn) | |||||
Gn = [(idx, G) for idx, G in enumerate(Gn) if nx.number_of_nodes(G) != 1] | |||||
idx = [G[0] for G in Gn] | |||||
Gn = [G[1] for G in Gn] | |||||
if len(Gn) != len_gn: | |||||
if verbose: | |||||
print('\n %d graphs are removed as they have only 1 node.\n' % | |||||
(len_gn - len(Gn))) | |||||
ds_attrs = get_dataset_attributes( | |||||
Gn, | |||||
attr_names=['node_labeled', 'edge_labeled', 'is_directed'], | |||||
node_label=node_label, edge_label=edge_label) | |||||
if not ds_attrs['node_labeled']: | |||||
for G in Gn: | |||||
nx.set_node_attributes(G, '0', 'atom') | |||||
if not ds_attrs['edge_labeled']: | |||||
for G in Gn: | |||||
nx.set_edge_attributes(G, '0', 'bond_type') | |||||
if not ds_attrs['is_directed']: # convert | |||||
Gn = [G.to_directed() for G in Gn] | |||||
start_time = time.time() | |||||
Kmatrix = np.zeros((len(Gn), len(Gn))) | |||||
# ---- use pool.imap_unordered to parallel and track progress. ---- | |||||
def init_worker(gn_toshare): | |||||
global G_gn | |||||
G_gn = gn_toshare | |||||
# direct product graph method - exponential | |||||
if compute_method == 'exp': | |||||
do_partial = partial(wrapper_cw_exp, node_label, edge_label, weight) | |||||
# direct product graph method - geometric | |||||
elif compute_method == 'geo': | |||||
do_partial = partial(wrapper_cw_geo, node_label, edge_label, weight) | |||||
parallel_gm(do_partial, Kmatrix, Gn, init_worker=init_worker, | |||||
glbv=(Gn,), n_jobs=n_jobs, verbose=verbose) | |||||
# pool = Pool(n_jobs) | |||||
# itr = zip(combinations_with_replacement(Gn, 2), | |||||
# combinations_with_replacement(range(0, len(Gn)), 2)) | |||||
# len_itr = int(len(Gn) * (len(Gn) + 1) / 2) | |||||
# if len_itr < 1000 * n_jobs: | |||||
# chunksize = int(len_itr / n_jobs) + 1 | |||||
# else: | |||||
# chunksize = 1000 | |||||
node_label='atom', | |||||
edge_label='bond_type', | |||||
# n=None, | |||||
weight=1, | |||||
compute_method=None, | |||||
n_jobs=None, | |||||
chunksize=None, | |||||
verbose=True): | |||||
"""Calculate common walk graph kernels between graphs. | |||||
Parameters | |||||
---------- | |||||
Gn : List of NetworkX graph | |||||
List of graphs between which the kernels are calculated. | |||||
G1, G2 : NetworkX graphs | |||||
Two graphs between which the kernel is calculated. | |||||
node_label : string | |||||
Node attribute used as symbolic label. The default node label is 'atom'. | |||||
edge_label : string | |||||
Edge attribute used as symbolic label. The default edge label is 'bond_type'. | |||||
weight: integer | |||||
Weight coefficient of different lengths of walks, which represents beta | |||||
in 'exp' method and gamma in 'geo'. | |||||
compute_method : string | |||||
Method used to compute walk kernel. The Following choices are | |||||
available: | |||||
'exp': method based on exponential serials applied on the direct | |||||
product graph, as shown in reference [1]. The time complexity is O(n^6) | |||||
for graphs with n vertices. | |||||
'geo': method based on geometric serials applied on the direct product | |||||
graph, as shown in reference [1]. The time complexity is O(n^6) for | |||||
graphs with n vertices. | |||||
n_jobs : int | |||||
Number of jobs for parallelization. | |||||
Return | |||||
------ | |||||
Kmatrix : Numpy matrix | |||||
Kernel matrix, each element of which is a common walk kernel between 2 | |||||
graphs. | |||||
""" | |||||
# n : integer | |||||
# Longest length of walks. Only useful when applying the 'brute' method. | |||||
# 'brute': brute force, simply search for all walks and compare them. | |||||
compute_method = compute_method.lower() | |||||
# arrange all graphs in a list | |||||
Gn = args[0] if len(args) == 1 else [args[0], args[1]] | |||||
# remove graphs with only 1 node, as they do not have adjacency matrices | |||||
len_gn = len(Gn) | |||||
Gn = [(idx, G) for idx, G in enumerate(Gn) if nx.number_of_nodes(G) != 1] | |||||
idx = [G[0] for G in Gn] | |||||
Gn = [G[1] for G in Gn] | |||||
if len(Gn) != len_gn: | |||||
if verbose: | |||||
print('\n %d graphs are removed as they have only 1 node.\n' % | |||||
(len_gn - len(Gn))) | |||||
ds_attrs = get_dataset_attributes( | |||||
Gn, | |||||
attr_names=['node_labeled', 'edge_labeled', 'is_directed'], | |||||
node_label=node_label, edge_label=edge_label) | |||||
if not ds_attrs['node_labeled']: | |||||
for G in Gn: | |||||
nx.set_node_attributes(G, '0', 'atom') | |||||
if not ds_attrs['edge_labeled']: | |||||
for G in Gn: | |||||
nx.set_edge_attributes(G, '0', 'bond_type') | |||||
if not ds_attrs['is_directed']: # convert | |||||
Gn = [G.to_directed() for G in Gn] | |||||
start_time = time.time() | |||||
Kmatrix = np.zeros((len(Gn), len(Gn))) | |||||
# ---- use pool.imap_unordered to parallel and track progress. ---- | |||||
def init_worker(gn_toshare): | |||||
global G_gn | |||||
G_gn = gn_toshare | |||||
# direct product graph method - exponential | |||||
if compute_method == 'exp': | |||||
do_partial = partial(wrapper_cw_exp, node_label, edge_label, weight) | |||||
# direct product graph method - geometric | |||||
elif compute_method == 'geo': | |||||
do_partial = partial(wrapper_cw_geo, node_label, edge_label, weight) | |||||
parallel_gm(do_partial, Kmatrix, Gn, init_worker=init_worker, | |||||
glbv=(Gn,), n_jobs=n_jobs, chunksize=chunksize, verbose=verbose) | |||||
# pool = Pool(n_jobs) | |||||
# itr = zip(combinations_with_replacement(Gn, 2), | |||||
# combinations_with_replacement(range(0, len(Gn)), 2)) | |||||
# len_itr = int(len(Gn) * (len(Gn) + 1) / 2) | |||||
# if len_itr < 1000 * n_jobs: | |||||
# chunksize = int(len_itr / n_jobs) + 1 | |||||
# else: | |||||
# chunksize = 1000 | |||||
# | # | ||||
# # direct product graph method - exponential | |||||
# if compute_method == 'exp': | |||||
# do_partial = partial(wrapper_cw_exp, node_label, edge_label, weight) | |||||
# # direct product graph method - geometric | |||||
# elif compute_method == 'geo': | |||||
# do_partial = partial(wrapper_cw_geo, node_label, edge_label, weight) | |||||
# # direct product graph method - exponential | |||||
# if compute_method == 'exp': | |||||
# do_partial = partial(wrapper_cw_exp, node_label, edge_label, weight) | |||||
# # direct product graph method - geometric | |||||
# elif compute_method == 'geo': | |||||
# do_partial = partial(wrapper_cw_geo, node_label, edge_label, weight) | |||||
# | # | ||||
# for i, j, kernel in tqdm( | |||||
# pool.imap_unordered(do_partial, itr, chunksize), | |||||
# desc='calculating kernels', | |||||
# file=sys.stdout): | |||||
# Kmatrix[i][j] = kernel | |||||
# Kmatrix[j][i] = kernel | |||||
# pool.close() | |||||
# pool.join() | |||||
# # ---- direct running, normally use single CPU core. ---- | |||||
# # direct product graph method - exponential | |||||
# itr = combinations_with_replacement(range(0, len(Gn)), 2) | |||||
# if compute_method == 'exp': | |||||
# for i, j in tqdm(itr, desc='calculating kernels', file=sys.stdout): | |||||
# Kmatrix[i][j] = _commonwalkkernel_exp(Gn[i], Gn[j], node_label, | |||||
# edge_label, weight) | |||||
# Kmatrix[j][i] = Kmatrix[i][j] | |||||
# for i, j, kernel in tqdm( | |||||
# pool.imap_unordered(do_partial, itr, chunksize), | |||||
# desc='calculating kernels', | |||||
# file=sys.stdout): | |||||
# Kmatrix[i][j] = kernel | |||||
# Kmatrix[j][i] = kernel | |||||
# pool.close() | |||||
# pool.join() | |||||
# # ---- direct running, normally use single CPU core. ---- | |||||
# # direct product graph method - exponential | |||||
# itr = combinations_with_replacement(range(0, len(Gn)), 2) | |||||
# if compute_method == 'exp': | |||||
# for i, j in tqdm(itr, desc='calculating kernels', file=sys.stdout): | |||||
# Kmatrix[i][j] = _commonwalkkernel_exp(Gn[i], Gn[j], node_label, | |||||
# edge_label, weight) | |||||
# Kmatrix[j][i] = Kmatrix[i][j] | |||||
# | # | ||||
# # direct product graph method - geometric | |||||
# elif compute_method == 'geo': | |||||
# for i, j in tqdm(itr, desc='calculating kernels', file=sys.stdout): | |||||
# Kmatrix[i][j] = _commonwalkkernel_geo(Gn[i], Gn[j], node_label, | |||||
# edge_label, weight) | |||||
# Kmatrix[j][i] = Kmatrix[i][j] | |||||
# # search all paths use brute force. | |||||
# elif compute_method == 'brute': | |||||
# n = int(n) | |||||
# # get all paths of all graphs before calculating kernels to save time, but this may cost a lot of memory for large dataset. | |||||
# all_walks = [ | |||||
# find_all_walks_until_length(Gn[i], n, node_label, edge_label) | |||||
# for i in range(0, len(Gn)) | |||||
# ] | |||||
# # direct product graph method - geometric | |||||
# elif compute_method == 'geo': | |||||
# for i, j in tqdm(itr, desc='calculating kernels', file=sys.stdout): | |||||
# Kmatrix[i][j] = _commonwalkkernel_geo(Gn[i], Gn[j], node_label, | |||||
# edge_label, weight) | |||||
# Kmatrix[j][i] = Kmatrix[i][j] | |||||
# # search all paths use brute force. | |||||
# elif compute_method == 'brute': | |||||
# n = int(n) | |||||
# # get all paths of all graphs before calculating kernels to save time, but this may cost a lot of memory for large dataset. | |||||
# all_walks = [ | |||||
# find_all_walks_until_length(Gn[i], n, node_label, edge_label) | |||||
# for i in range(0, len(Gn)) | |||||
# ] | |||||
# | # | ||||
# for i in range(0, len(Gn)): | |||||
# for j in range(i, len(Gn)): | |||||
# Kmatrix[i][j] = _commonwalkkernel_brute( | |||||
# all_walks[i], | |||||
# all_walks[j], | |||||
# node_label=node_label, | |||||
# edge_label=edge_label) | |||||
# Kmatrix[j][i] = Kmatrix[i][j] | |||||
# for i in range(0, len(Gn)): | |||||
# for j in range(i, len(Gn)): | |||||
# Kmatrix[i][j] = _commonwalkkernel_brute( | |||||
# all_walks[i], | |||||
# all_walks[j], | |||||
# node_label=node_label, | |||||
# edge_label=edge_label) | |||||
# Kmatrix[j][i] = Kmatrix[i][j] | |||||
run_time = time.time() - start_time | |||||
if verbose: | |||||
print("\n --- kernel matrix of common walk kernel of size %d built in %s seconds ---" | |||||
% (len(Gn), run_time)) | |||||
run_time = time.time() - start_time | |||||
if verbose: | |||||
print("\n --- kernel matrix of common walk kernel of size %d built in %s seconds ---" | |||||
% (len(Gn), run_time)) | |||||
return Kmatrix, run_time, idx | |||||
return Kmatrix, run_time, idx | |||||
def _commonwalkkernel_exp(g1, g2, node_label, edge_label, beta): | def _commonwalkkernel_exp(g1, g2, node_label, edge_label, beta): | ||||
"""Calculate walk graph kernels up to n between 2 graphs using exponential | |||||
series. | |||||
Parameters | |||||
---------- | |||||
Gn : List of NetworkX graph | |||||
List of graphs between which the kernels are calculated. | |||||
node_label : string | |||||
Node attribute used as label. | |||||
edge_label : string | |||||
Edge attribute used as label. | |||||
beta : integer | |||||
Weight. | |||||
ij : tuple of integer | |||||
Index of graphs between which the kernel is computed. | |||||
Return | |||||
------ | |||||
kernel : float | |||||
The common walk Kernel between 2 graphs. | |||||
""" | |||||
# get tensor product / direct product | |||||
gp = direct_product(g1, g2, node_label, edge_label) | |||||
# return 0 if the direct product graph have no more than 1 node. | |||||
if nx.number_of_nodes(gp) < 2: | |||||
return 0 | |||||
A = nx.adjacency_matrix(gp).todense() | |||||
# print(A) | |||||
# from matplotlib import pyplot as plt | |||||
# nx.draw_networkx(G1) | |||||
# plt.show() | |||||
# nx.draw_networkx(G2) | |||||
# plt.show() | |||||
# nx.draw_networkx(gp) | |||||
# plt.show() | |||||
# print(G1.nodes(data=True)) | |||||
# print(G2.nodes(data=True)) | |||||
# print(gp.nodes(data=True)) | |||||
# print(gp.edges(data=True)) | |||||
ew, ev = np.linalg.eig(A) | |||||
# print('ew: ', ew) | |||||
# print(ev) | |||||
# T = np.matrix(ev) | |||||
# print('T: ', T) | |||||
# T = ev.I | |||||
D = np.zeros((len(ew), len(ew))) | |||||
for i in range(len(ew)): | |||||
D[i][i] = np.exp(beta * ew[i]) | |||||
# print('D: ', D) | |||||
# print('hshs: ', T.I * D * T) | |||||
# print(np.exp(-2)) | |||||
# print(D) | |||||
# print(np.exp(weight * D)) | |||||
# print(ev) | |||||
# print(np.linalg.inv(ev)) | |||||
exp_D = ev * D * ev.T | |||||
# print(exp_D) | |||||
# print(np.exp(weight * A)) | |||||
# print('-------') | |||||
return exp_D.sum() | |||||
"""Calculate walk graph kernels up to n between 2 graphs using exponential | |||||
series. | |||||
Parameters | |||||
---------- | |||||
Gn : List of NetworkX graph | |||||
List of graphs between which the kernels are calculated. | |||||
node_label : string | |||||
Node attribute used as label. | |||||
edge_label : string | |||||
Edge attribute used as label. | |||||
beta : integer | |||||
Weight. | |||||
ij : tuple of integer | |||||
Index of graphs between which the kernel is computed. | |||||
Return | |||||
------ | |||||
kernel : float | |||||
The common walk Kernel between 2 graphs. | |||||
""" | |||||
# get tensor product / direct product | |||||
gp = direct_product(g1, g2, node_label, edge_label) | |||||
# return 0 if the direct product graph have no more than 1 node. | |||||
if nx.number_of_nodes(gp) < 2: | |||||
return 0 | |||||
A = nx.adjacency_matrix(gp).todense() | |||||
# print(A) | |||||
# from matplotlib import pyplot as plt | |||||
# nx.draw_networkx(G1) | |||||
# plt.show() | |||||
# nx.draw_networkx(G2) | |||||
# plt.show() | |||||
# nx.draw_networkx(gp) | |||||
# plt.show() | |||||
# print(G1.nodes(data=True)) | |||||
# print(G2.nodes(data=True)) | |||||
# print(gp.nodes(data=True)) | |||||
# print(gp.edges(data=True)) | |||||
ew, ev = np.linalg.eig(A) | |||||
# print('ew: ', ew) | |||||
# print(ev) | |||||
# T = np.matrix(ev) | |||||
# print('T: ', T) | |||||
# T = ev.I | |||||
D = np.zeros((len(ew), len(ew))) | |||||
for i in range(len(ew)): | |||||
D[i][i] = np.exp(beta * ew[i]) | |||||
# print('D: ', D) | |||||
# print('hshs: ', T.I * D * T) | |||||
# print(np.exp(-2)) | |||||
# print(D) | |||||
# print(np.exp(weight * D)) | |||||
# print(ev) | |||||
# print(np.linalg.inv(ev)) | |||||
exp_D = ev * D * ev.T | |||||
# print(exp_D) | |||||
# print(np.exp(weight * A)) | |||||
# print('-------') | |||||
return exp_D.sum() | |||||
def wrapper_cw_exp(node_label, edge_label, beta, itr): | def wrapper_cw_exp(node_label, edge_label, beta, itr): | ||||
i = itr[0] | |||||
j = itr[1] | |||||
return i, j, _commonwalkkernel_exp(G_gn[i], G_gn[j], node_label, edge_label, beta) | |||||
i = itr[0] | |||||
j = itr[1] | |||||
return i, j, _commonwalkkernel_exp(G_gn[i], G_gn[j], node_label, edge_label, beta) | |||||
def _commonwalkkernel_geo(g1, g2, node_label, edge_label, gamma): | def _commonwalkkernel_geo(g1, g2, node_label, edge_label, gamma): | ||||
"""Calculate common walk graph kernels up to n between 2 graphs using | |||||
geometric series. | |||||
Parameters | |||||
---------- | |||||
Gn : List of NetworkX graph | |||||
List of graphs between which the kernels are calculated. | |||||
node_label : string | |||||
Node attribute used as label. | |||||
edge_label : string | |||||
Edge attribute used as label. | |||||
gamma: integer | |||||
Weight. | |||||
ij : tuple of integer | |||||
Index of graphs between which the kernel is computed. | |||||
Return | |||||
------ | |||||
kernel : float | |||||
The common walk Kernel between 2 graphs. | |||||
""" | |||||
# get tensor product / direct product | |||||
gp = direct_product(g1, g2, node_label, edge_label) | |||||
# return 0 if the direct product graph have no more than 1 node. | |||||
if nx.number_of_nodes(gp) < 2: | |||||
return 0 | |||||
A = nx.adjacency_matrix(gp).todense() | |||||
mat = np.identity(len(A)) - gamma * A | |||||
# try: | |||||
return mat.I.sum() | |||||
# except np.linalg.LinAlgError: | |||||
# return np.nan | |||||
"""Calculate common walk graph kernels up to n between 2 graphs using | |||||
geometric series. | |||||
Parameters | |||||
---------- | |||||
Gn : List of NetworkX graph | |||||
List of graphs between which the kernels are calculated. | |||||
node_label : string | |||||
Node attribute used as label. | |||||
edge_label : string | |||||
Edge attribute used as label. | |||||
gamma: integer | |||||
Weight. | |||||
ij : tuple of integer | |||||
Index of graphs between which the kernel is computed. | |||||
Return | |||||
------ | |||||
kernel : float | |||||
The common walk Kernel between 2 graphs. | |||||
""" | |||||
# get tensor product / direct product | |||||
gp = direct_product(g1, g2, node_label, edge_label) | |||||
# return 0 if the direct product graph have no more than 1 node. | |||||
if nx.number_of_nodes(gp) < 2: | |||||
return 0 | |||||
A = nx.adjacency_matrix(gp).todense() | |||||
mat = np.identity(len(A)) - gamma * A | |||||
# try: | |||||
return mat.I.sum() | |||||
# except np.linalg.LinAlgError: | |||||
# return np.nan | |||||
def wrapper_cw_geo(node_label, edge_label, gama, itr): | def wrapper_cw_geo(node_label, edge_label, gama, itr): | ||||
i = itr[0] | |||||
j = itr[1] | |||||
return i, j, _commonwalkkernel_geo(G_gn[i], G_gn[j], node_label, edge_label, gama) | |||||
i = itr[0] | |||||
j = itr[1] | |||||
return i, j, _commonwalkkernel_geo(G_gn[i], G_gn[j], node_label, edge_label, gama) | |||||
def _commonwalkkernel_brute(walks1, | def _commonwalkkernel_brute(walks1, | ||||
walks2, | |||||
node_label='atom', | |||||
edge_label='bond_type', | |||||
labeled=True): | |||||
"""Calculate walk graph kernels up to n between 2 graphs. | |||||
Parameters | |||||
---------- | |||||
walks1, walks2 : list | |||||
List of walks in 2 graphs, where for unlabeled graphs, each walk is | |||||
represented by a list of nodes; while for labeled graphs, each walk is | |||||
represented by a string consists of labels of nodes and edges on that | |||||
walk. | |||||
node_label : string | |||||
node attribute used as label. The default node label is atom. | |||||
edge_label : string | |||||
edge attribute used as label. The default edge label is bond_type. | |||||
labeled : boolean | |||||
Whether the graphs are labeled. The default is True. | |||||
Return | |||||
------ | |||||
kernel : float | |||||
Treelet Kernel between 2 graphs. | |||||
""" | |||||
counts_walks1 = dict(Counter(walks1)) | |||||
counts_walks2 = dict(Counter(walks2)) | |||||
all_walks = list(set(walks1 + walks2)) | |||||
vector1 = [(counts_walks1[walk] if walk in walks1 else 0) | |||||
for walk in all_walks] | |||||
vector2 = [(counts_walks2[walk] if walk in walks2 else 0) | |||||
for walk in all_walks] | |||||
kernel = np.dot(vector1, vector2) | |||||
return kernel | |||||
walks2, | |||||
node_label='atom', | |||||
edge_label='bond_type', | |||||
labeled=True): | |||||
"""Calculate walk graph kernels up to n between 2 graphs. | |||||
Parameters | |||||
---------- | |||||
walks1, walks2 : list | |||||
List of walks in 2 graphs, where for unlabeled graphs, each walk is | |||||
represented by a list of nodes; while for labeled graphs, each walk is | |||||
represented by a string consists of labels of nodes and edges on that | |||||
walk. | |||||
node_label : string | |||||
node attribute used as label. The default node label is atom. | |||||
edge_label : string | |||||
edge attribute used as label. The default edge label is bond_type. | |||||
labeled : boolean | |||||
Whether the graphs are labeled. The default is True. | |||||
Return | |||||
------ | |||||
kernel : float | |||||
Treelet Kernel between 2 graphs. | |||||
""" | |||||
counts_walks1 = dict(Counter(walks1)) | |||||
counts_walks2 = dict(Counter(walks2)) | |||||
all_walks = list(set(walks1 + walks2)) | |||||
vector1 = [(counts_walks1[walk] if walk in walks1 else 0) | |||||
for walk in all_walks] | |||||
vector2 = [(counts_walks2[walk] if walk in walks2 else 0) | |||||
for walk in all_walks] | |||||
kernel = np.dot(vector1, vector2) | |||||
return kernel | |||||
# this method find walks repetively, it could be faster. | # this method find walks repetively, it could be faster. | ||||
def find_all_walks_until_length(G, | def find_all_walks_until_length(G, | ||||
length, | |||||
node_label='atom', | |||||
edge_label='bond_type', | |||||
labeled=True): | |||||
"""Find all walks with a certain maximum length in a graph. | |||||
A recursive depth first search is applied. | |||||
Parameters | |||||
---------- | |||||
G : NetworkX graphs | |||||
The graph in which walks are searched. | |||||
length : integer | |||||
The maximum length of walks. | |||||
node_label : string | |||||
node attribute used as label. The default node label is atom. | |||||
edge_label : string | |||||
edge attribute used as label. The default edge label is bond_type. | |||||
labeled : boolean | |||||
Whether the graphs are labeled. The default is True. | |||||
Return | |||||
------ | |||||
walk : list | |||||
List of walks retrieved, where for unlabeled graphs, each walk is | |||||
represented by a list of nodes; while for labeled graphs, each walk | |||||
is represented by a string consists of labels of nodes and edges on | |||||
that walk. | |||||
""" | |||||
all_walks = [] | |||||
# @todo: in this way, the time complexity is close to N(d^n+d^(n+1)+...+1), which could be optimized to O(Nd^n) | |||||
for i in range(0, length + 1): | |||||
new_walks = find_all_walks(G, i) | |||||
if new_walks == []: | |||||
break | |||||
all_walks.extend(new_walks) | |||||
if labeled == True: # convert paths to strings | |||||
walk_strs = [] | |||||
for walk in all_walks: | |||||
strlist = [ | |||||
G.node[node][node_label] + | |||||
G[node][walk[walk.index(node) + 1]][edge_label] | |||||
for node in walk[:-1] | |||||
] | |||||
walk_strs.append(''.join(strlist) + G.node[walk[-1]][node_label]) | |||||
return walk_strs | |||||
return all_walks | |||||
length, | |||||
node_label='atom', | |||||
edge_label='bond_type', | |||||
labeled=True): | |||||
"""Find all walks with a certain maximum length in a graph. | |||||
A recursive depth first search is applied. | |||||
Parameters | |||||
---------- | |||||
G : NetworkX graphs | |||||
The graph in which walks are searched. | |||||
length : integer | |||||
The maximum length of walks. | |||||
node_label : string | |||||
node attribute used as label. The default node label is atom. | |||||
edge_label : string | |||||
edge attribute used as label. The default edge label is bond_type. | |||||
labeled : boolean | |||||
Whether the graphs are labeled. The default is True. | |||||
Return | |||||
------ | |||||
walk : list | |||||
List of walks retrieved, where for unlabeled graphs, each walk is | |||||
represented by a list of nodes; while for labeled graphs, each walk | |||||
is represented by a string consists of labels of nodes and edges on | |||||
that walk. | |||||
""" | |||||
all_walks = [] | |||||
# @todo: in this way, the time complexity is close to N(d^n+d^(n+1)+...+1), which could be optimized to O(Nd^n) | |||||
for i in range(0, length + 1): | |||||
new_walks = find_all_walks(G, i) | |||||
if new_walks == []: | |||||
break | |||||
all_walks.extend(new_walks) | |||||
if labeled == True: # convert paths to strings | |||||
walk_strs = [] | |||||
for walk in all_walks: | |||||
strlist = [ | |||||
G.node[node][node_label] + | |||||
G[node][walk[walk.index(node) + 1]][edge_label] | |||||
for node in walk[:-1] | |||||
] | |||||
walk_strs.append(''.join(strlist) + G.node[walk[-1]][node_label]) | |||||
return walk_strs | |||||
return all_walks | |||||
def find_walks(G, source_node, length): | def find_walks(G, source_node, length): | ||||
"""Find all walks with a certain length those start from a source node. A | |||||
recursive depth first search is applied. | |||||
Parameters | |||||
---------- | |||||
G : NetworkX graphs | |||||
The graph in which walks are searched. | |||||
source_node : integer | |||||
The number of the node from where all walks start. | |||||
length : integer | |||||
The length of walks. | |||||
Return | |||||
------ | |||||
walk : list of list | |||||
List of walks retrieved, where each walk is represented by a list of | |||||
nodes. | |||||
""" | |||||
return [[source_node]] if length == 0 else \ | |||||
[[source_node] + walk for neighbor in G[source_node] | |||||
for walk in find_walks(G, neighbor, length - 1)] | |||||
"""Find all walks with a certain length those start from a source node. A | |||||
recursive depth first search is applied. | |||||
Parameters | |||||
---------- | |||||
G : NetworkX graphs | |||||
The graph in which walks are searched. | |||||
source_node : integer | |||||
The number of the node from where all walks start. | |||||
length : integer | |||||
The length of walks. | |||||
Return | |||||
------ | |||||
walk : list of list | |||||
List of walks retrieved, where each walk is represented by a list of | |||||
nodes. | |||||
""" | |||||
return [[source_node]] if length == 0 else \ | |||||
[[source_node] + walk for neighbor in G[source_node] | |||||
for walk in find_walks(G, neighbor, length - 1)] | |||||
def find_all_walks(G, length): | def find_all_walks(G, length): | ||||
"""Find all walks with a certain length in a graph. A recursive depth first | |||||
search is applied. | |||||
Parameters | |||||
---------- | |||||
G : NetworkX graphs | |||||
The graph in which walks are searched. | |||||
length : integer | |||||
The length of walks. | |||||
Return | |||||
------ | |||||
walk : list of list | |||||
List of walks retrieved, where each walk is represented by a list of | |||||
nodes. | |||||
""" | |||||
all_walks = [] | |||||
for node in G: | |||||
all_walks.extend(find_walks(G, node, length)) | |||||
# The following process is not carried out according to the original article | |||||
# all_paths_r = [ path[::-1] for path in all_paths ] | |||||
# # For each path, two presentation are retrieved from its two extremities. Remove one of them. | |||||
# for idx, path in enumerate(all_paths[:-1]): | |||||
# for path2 in all_paths_r[idx+1::]: | |||||
# if path == path2: | |||||
# all_paths[idx] = [] | |||||
# break | |||||
# return list(filter(lambda a: a != [], all_paths)) | |||||
return all_walks | |||||
"""Find all walks with a certain length in a graph. A recursive depth first | |||||
search is applied. | |||||
Parameters | |||||
---------- | |||||
G : NetworkX graphs | |||||
The graph in which walks are searched. | |||||
length : integer | |||||
The length of walks. | |||||
Return | |||||
------ | |||||
walk : list of list | |||||
List of walks retrieved, where each walk is represented by a list of | |||||
nodes. | |||||
""" | |||||
all_walks = [] | |||||
for node in G: | |||||
all_walks.extend(find_walks(G, node, length)) | |||||
# The following process is not carried out according to the original article | |||||
# all_paths_r = [ path[::-1] for path in all_paths ] | |||||
# # For each path, two presentation are retrieved from its two extremities. Remove one of them. | |||||
# for idx, path in enumerate(all_paths[:-1]): | |||||
# for path2 in all_paths_r[idx+1::]: | |||||
# if path == path2: | |||||
# all_paths[idx] = [] | |||||
# break | |||||
# return list(filter(lambda a: a != [], all_paths)) | |||||
return all_walks |
@@ -0,0 +1,245 @@ | |||||
#!/usr/bin/env python3 | |||||
# -*- coding: utf-8 -*- | |||||
""" | |||||
Created on Thu Aug 20 16:09:51 2020 | |||||
@author: ljia | |||||
@references: | |||||
[1] S Vichy N Vishwanathan, Nicol N Schraudolph, Risi Kondor, and Karsten M Borgwardt. Graph kernels. Journal of Machine Learning Research, 11(Apr):1201–1242, 2010. | |||||
""" | |||||
import sys | |||||
from tqdm import tqdm | |||||
import numpy as np | |||||
import networkx as nx | |||||
from control import dlyap | |||||
from gklearn.utils.parallel import parallel_gm, parallel_me | |||||
from gklearn.kernels import RandomWalk | |||||
class FixedPoint(RandomWalk): | |||||
def __init__(self, **kwargs): | |||||
RandomWalk.__init__(self, **kwargs) | |||||
def _compute_gm_series(self): | |||||
self._check_edge_weight(self._graphs) | |||||
self._check_graphs(self._graphs) | |||||
if self._verbose >= 2: | |||||
import warnings | |||||
warnings.warn('All labels are ignored.') | |||||
lmda = self._weight | |||||
# compute Gram matrix. | |||||
gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||||
if self._q == None: | |||||
# don't normalize adjacency matrices if q is a uniform vector. Note | |||||
# A_wave_list actually contains the transposes of the adjacency matrices. | |||||
if self._verbose >= 2: | |||||
iterator = tqdm(self._graphs, desc='compute adjacency matrices', file=sys.stdout) | |||||
else: | |||||
iterator = self._graphs | |||||
A_wave_list = [nx.adjacency_matrix(G, self._edge_weight).todense().transpose() for G in iterator] | |||||
# # normalized adjacency matrices | |||||
# A_wave_list = [] | |||||
# for G in tqdm(Gn, desc='compute adjacency matrices', file=sys.stdout): | |||||
# A_tilde = nx.adjacency_matrix(G, eweight).todense().transpose() | |||||
# norm = A_tilde.sum(axis=0) | |||||
# norm[norm == 0] = 1 | |||||
# A_wave_list.append(A_tilde / norm) | |||||
if self._p == None: # p is uniform distribution as default. | |||||
from itertools import combinations_with_replacement | |||||
itr = combinations_with_replacement(range(0, len(self._graphs)), 2) | |||||
if self._verbose >= 2: | |||||
iterator = tqdm(itr, desc='calculating kernels', file=sys.stdout) | |||||
else: | |||||
iterator = itr | |||||
for i, j in iterator: | |||||
kernel = self.__kernel_do(A_wave_list[i], A_wave_list[j], lmda) | |||||
gram_matrix[i][j] = kernel | |||||
gram_matrix[j][i] = kernel | |||||
else: # @todo | |||||
pass | |||||
else: # @todo | |||||
pass | |||||
return gram_matrix | |||||
def _compute_gm_imap_unordered(self): | |||||
self._check_edge_weight(self._graphs) | |||||
self._check_graphs(self._graphs) | |||||
if self._verbose >= 2: | |||||
import warnings | |||||
warnings.warn('All labels are ignored.') | |||||
# compute Gram matrix. | |||||
gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||||
if self._q == None: | |||||
# don't normalize adjacency matrices if q is a uniform vector. Note | |||||
# A_wave_list actually contains the transposes of the adjacency matrices. | |||||
if self._verbose >= 2: | |||||
iterator = tqdm(self._graphs, desc='compute adjacency matrices', file=sys.stdout) | |||||
else: | |||||
iterator = self._graphs | |||||
A_wave_list = [nx.adjacency_matrix(G, self._edge_weight).todense().transpose() for G in iterator] # @todo: parallel? | |||||
if self._p == None: # p is uniform distribution as default. | |||||
def init_worker(A_wave_list_toshare): | |||||
global G_A_wave_list | |||||
G_A_wave_list = A_wave_list_toshare | |||||
do_fun = self._wrapper_kernel_do | |||||
parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=init_worker, | |||||
glbv=(A_wave_list,), n_jobs=self._n_jobs, verbose=self._verbose) | |||||
else: # @todo | |||||
pass | |||||
else: # @todo | |||||
pass | |||||
return gram_matrix | |||||
def _compute_kernel_list_series(self, g1, g_list): | |||||
self._check_edge_weight(g_list + [g1]) | |||||
self._check_graphs(g_list + [g1]) | |||||
if self._verbose >= 2: | |||||
import warnings | |||||
warnings.warn('All labels are ignored.') | |||||
lmda = self._weight | |||||
# compute kernel list. | |||||
kernel_list = [None] * len(g_list) | |||||
if self._q == None: | |||||
# don't normalize adjacency matrices if q is a uniform vector. Note | |||||
# A_wave_list actually contains the transposes of the adjacency matrices. | |||||
A_wave_1 = nx.adjacency_matrix(g1, self._edge_weight).todense().transpose() | |||||
if self._verbose >= 2: | |||||
iterator = tqdm(range(len(g_list)), desc='compute adjacency matrices', file=sys.stdout) | |||||
else: | |||||
iterator = range(len(g_list)) | |||||
A_wave_list = [nx.adjacency_matrix(G, self._edge_weight).todense().transpose() for G in iterator] | |||||
if self._p == None: # p is uniform distribution as default. | |||||
if self._verbose >= 2: | |||||
iterator = tqdm(range(len(g_list)), desc='calculating kernels', file=sys.stdout) | |||||
else: | |||||
iterator = range(len(g_list)) | |||||
for i in iterator: | |||||
kernel = self.__kernel_do(A_wave_1, A_wave_list[i], lmda) | |||||
kernel_list[i] = kernel | |||||
else: # @todo | |||||
pass | |||||
else: # @todo | |||||
pass | |||||
return kernel_list | |||||
def _compute_kernel_list_imap_unordered(self, g1, g_list): | |||||
self._check_edge_weight(g_list + [g1]) | |||||
self._check_graphs(g_list + [g1]) | |||||
if self._verbose >= 2: | |||||
import warnings | |||||
warnings.warn('All labels are ignored.') | |||||
# compute kernel list. | |||||
kernel_list = [None] * len(g_list) | |||||
if self._q == None: | |||||
# don't normalize adjacency matrices if q is a uniform vector. Note | |||||
# A_wave_list actually contains the transposes of the adjacency matrices. | |||||
A_wave_1 = nx.adjacency_matrix(g1, self._edge_weight).todense().transpose() | |||||
if self._verbose >= 2: | |||||
iterator = tqdm(range(len(g_list)), desc='compute adjacency matrices', file=sys.stdout) | |||||
else: | |||||
iterator = range(len(g_list)) | |||||
A_wave_list = [nx.adjacency_matrix(G, self._edge_weight).todense().transpose() for G in iterator] # @todo: parallel? | |||||
if self._p == None: # p is uniform distribution as default. | |||||
def init_worker(A_wave_1_toshare, A_wave_list_toshare): | |||||
global G_A_wave_1, G_A_wave_list | |||||
G_A_wave_1 = A_wave_1_toshare | |||||
G_A_wave_list = A_wave_list_toshare | |||||
do_fun = self._wrapper_kernel_list_do | |||||
def func_assign(result, var_to_assign): | |||||
var_to_assign[result[0]] = result[1] | |||||
itr = range(len(g_list)) | |||||
len_itr = len(g_list) | |||||
parallel_me(do_fun, func_assign, kernel_list, itr, len_itr=len_itr, | |||||
init_worker=init_worker, glbv=(A_wave_1, A_wave_list), method='imap_unordered', | |||||
n_jobs=self._n_jobs, itr_desc='calculating kernels', verbose=self._verbose) | |||||
else: # @todo | |||||
pass | |||||
else: # @todo | |||||
pass | |||||
return kernel_list | |||||
def _wrapper_kernel_list_do(self, itr): | |||||
return itr, self._kernel_do(G_A_wave_1, G_A_wave_list[itr], self._weight) | |||||
def _compute_single_kernel_series(self, g1, g2): | |||||
self._check_edge_weight([g1] + [g2]) | |||||
self._check_graphs([g1] + [g2]) | |||||
if self._verbose >= 2: | |||||
import warnings | |||||
warnings.warn('All labels are ignored.') | |||||
lmda = self._weight | |||||
if self._q == None: | |||||
# don't normalize adjacency matrices if q is a uniform vector. Note | |||||
# A_wave_list actually contains the transposes of the adjacency matrices. | |||||
A_wave_1 = nx.adjacency_matrix(g1, self._edge_weight).todense().transpose() | |||||
A_wave_2 = nx.adjacency_matrix(g2, self._edge_weight).todense().transpose() | |||||
if self._p == None: # p is uniform distribution as default. | |||||
kernel = self.__kernel_do(A_wave_1, A_wave_2, lmda) | |||||
else: # @todo | |||||
pass | |||||
else: # @todo | |||||
pass | |||||
return kernel | |||||
def __kernel_do(self, A_wave1, A_wave2, lmda): | |||||
S = lmda * A_wave2 | |||||
T_t = A_wave1 | |||||
# use uniform distribution if there is no prior knowledge. | |||||
nb_pd = len(A_wave1) * len(A_wave2) | |||||
p_times_uni = 1 / nb_pd | |||||
M0 = np.full((len(A_wave2), len(A_wave1)), p_times_uni) | |||||
X = dlyap(S, T_t, M0) | |||||
X = np.reshape(X, (-1, 1), order='F') | |||||
# use uniform distribution if there is no prior knowledge. | |||||
q_times = np.full((1, nb_pd), p_times_uni) | |||||
return np.dot(q_times, X) | |||||
def _wrapper_kernel_do(self, itr): | |||||
i = itr[0] | |||||
j = itr[1] | |||||
return i, j, self.__kernel_do(G_A_wave_list[i], G_A_wave_list[j], self._weight) |
@@ -3,14 +3,14 @@ | |||||
@references: | @references: | ||||
[1] H. Kashima, K. Tsuda, and A. Inokuchi. Marginalized kernels between | |||||
labeled graphs. In Proceedings of the 20th International Conference on | |||||
Machine Learning, Washington, DC, United States, 2003. | |||||
[2] Pierre Mahé, Nobuhisa Ueda, Tatsuya Akutsu, Jean-Luc Perret, and | |||||
Jean-Philippe Vert. Extensions of marginalized graph kernels. In | |||||
Proceedings of the twenty-first international conference on Machine | |||||
learning, page 70. ACM, 2004. | |||||
[1] H. Kashima, K. Tsuda, and A. Inokuchi. Marginalized kernels between | |||||
labeled graphs. In Proceedings of the 20th International Conference on | |||||
Machine Learning, Washington, DC, United States, 2003. | |||||
[2] Pierre Mahé, Nobuhisa Ueda, Tatsuya Akutsu, Jean-Luc Perret, and | |||||
Jean-Philippe Vert. Extensions of marginalized graph kernels. In | |||||
Proceedings of the twenty-first international conference on Machine | |||||
learning, page 70. ACM, 2004. | |||||
""" | """ | ||||
import sys | import sys | ||||
@@ -31,275 +31,277 @@ from gklearn.utils.parallel import parallel_gm | |||||
def marginalizedkernel(*args, | def marginalizedkernel(*args, | ||||
node_label='atom', | |||||
edge_label='bond_type', | |||||
p_quit=0.5, | |||||
n_iteration=20, | |||||
remove_totters=False, | |||||
n_jobs=None, | |||||
verbose=True): | |||||
"""Calculate marginalized graph kernels between graphs. | |||||
Parameters | |||||
---------- | |||||
Gn : List of NetworkX graph | |||||
List of graphs between which the kernels are calculated. | |||||
G1, G2 : NetworkX graphs | |||||
Two graphs between which the kernel is calculated. | |||||
node_label : string | |||||
Node attribute used as symbolic label. The default node label is 'atom'. | |||||
edge_label : string | |||||
Edge attribute used as symbolic label. The default edge label is 'bond_type'. | |||||
p_quit : integer | |||||
The termination probability in the random walks generating step. | |||||
n_iteration : integer | |||||
Time of iterations to calculate R_inf. | |||||
remove_totters : boolean | |||||
Whether to remove totterings by method introduced in [2]. The default | |||||
value is False. | |||||
n_jobs : int | |||||
Number of jobs for parallelization. | |||||
Return | |||||
------ | |||||
Kmatrix : Numpy matrix | |||||
Kernel matrix, each element of which is the marginalized kernel between | |||||
2 praphs. | |||||
""" | |||||
# pre-process | |||||
n_iteration = int(n_iteration) | |||||
Gn = args[0][:] if len(args) == 1 else [args[0].copy(), args[1].copy()] | |||||
Gn = [g.copy() for g in Gn] | |||||
ds_attrs = get_dataset_attributes( | |||||
Gn, | |||||
attr_names=['node_labeled', 'edge_labeled', 'is_directed'], | |||||
node_label=node_label, edge_label=edge_label) | |||||
if not ds_attrs['node_labeled'] or node_label == None: | |||||
node_label = 'atom' | |||||
for G in Gn: | |||||
nx.set_node_attributes(G, '0', 'atom') | |||||
if not ds_attrs['edge_labeled'] or edge_label == None: | |||||
edge_label = 'bond_type' | |||||
for G in Gn: | |||||
nx.set_edge_attributes(G, '0', 'bond_type') | |||||
start_time = time.time() | |||||
if remove_totters: | |||||
# ---- use pool.imap_unordered to parallel and track progress. ---- | |||||
pool = Pool(n_jobs) | |||||
untotter_partial = partial(wrapper_untotter, Gn, node_label, edge_label) | |||||
if len(Gn) < 100 * n_jobs: | |||||
chunksize = int(len(Gn) / n_jobs) + 1 | |||||
else: | |||||
chunksize = 100 | |||||
for i, g in tqdm( | |||||
pool.imap_unordered( | |||||
untotter_partial, range(0, len(Gn)), chunksize), | |||||
desc='removing tottering', | |||||
file=sys.stdout): | |||||
Gn[i] = g | |||||
pool.close() | |||||
pool.join() | |||||
# # ---- direct running, normally use single CPU core. ---- | |||||
# Gn = [ | |||||
# untotterTransformation(G, node_label, edge_label) | |||||
# for G in tqdm(Gn, desc='removing tottering', file=sys.stdout) | |||||
# ] | |||||
Kmatrix = np.zeros((len(Gn), len(Gn))) | |||||
# ---- use pool.imap_unordered to parallel and track progress. ---- | |||||
def init_worker(gn_toshare): | |||||
global G_gn | |||||
G_gn = gn_toshare | |||||
do_partial = partial(wrapper_marg_do, node_label, edge_label, | |||||
p_quit, n_iteration) | |||||
parallel_gm(do_partial, Kmatrix, Gn, init_worker=init_worker, | |||||
glbv=(Gn,), n_jobs=n_jobs, verbose=verbose) | |||||
# # ---- direct running, normally use single CPU core. ---- | |||||
## pbar = tqdm( | |||||
## total=(1 + len(Gn)) * len(Gn) / 2, | |||||
## desc='calculating kernels', | |||||
## file=sys.stdout) | |||||
# for i in range(0, len(Gn)): | |||||
# for j in range(i, len(Gn)): | |||||
## print(i, j) | |||||
# Kmatrix[i][j] = _marginalizedkernel_do(Gn[i], Gn[j], node_label, | |||||
# edge_label, p_quit, n_iteration) | |||||
# Kmatrix[j][i] = Kmatrix[i][j] | |||||
## pbar.update(1) | |||||
run_time = time.time() - start_time | |||||
if verbose: | |||||
print("\n --- marginalized kernel matrix of size %d built in %s seconds ---" | |||||
% (len(Gn), run_time)) | |||||
return Kmatrix, run_time | |||||
node_label='atom', | |||||
edge_label='bond_type', | |||||
p_quit=0.5, | |||||
n_iteration=20, | |||||
remove_totters=False, | |||||
n_jobs=None, | |||||
chunksize=None, | |||||
verbose=True): | |||||
"""Calculate marginalized graph kernels between graphs. | |||||
Parameters | |||||
---------- | |||||
Gn : List of NetworkX graph | |||||
List of graphs between which the kernels are calculated. | |||||
G1, G2 : NetworkX graphs | |||||
Two graphs between which the kernel is calculated. | |||||
node_label : string | |||||
Node attribute used as symbolic label. The default node label is 'atom'. | |||||
edge_label : string | |||||
Edge attribute used as symbolic label. The default edge label is 'bond_type'. | |||||
p_quit : integer | |||||
The termination probability in the random walks generating step. | |||||
n_iteration : integer | |||||
Time of iterations to calculate R_inf. | |||||
remove_totters : boolean | |||||
Whether to remove totterings by method introduced in [2]. The default | |||||
value is False. | |||||
n_jobs : int | |||||
Number of jobs for parallelization. | |||||
Return | |||||
------ | |||||
Kmatrix : Numpy matrix | |||||
Kernel matrix, each element of which is the marginalized kernel between | |||||
2 praphs. | |||||
""" | |||||
# pre-process | |||||
n_iteration = int(n_iteration) | |||||
Gn = args[0][:] if len(args) == 1 else [args[0].copy(), args[1].copy()] | |||||
Gn = [g.copy() for g in Gn] | |||||
ds_attrs = get_dataset_attributes( | |||||
Gn, | |||||
attr_names=['node_labeled', 'edge_labeled', 'is_directed'], | |||||
node_label=node_label, edge_label=edge_label) | |||||
if not ds_attrs['node_labeled'] or node_label == None: | |||||
node_label = 'atom' | |||||
for G in Gn: | |||||
nx.set_node_attributes(G, '0', 'atom') | |||||
if not ds_attrs['edge_labeled'] or edge_label == None: | |||||
edge_label = 'bond_type' | |||||
for G in Gn: | |||||
nx.set_edge_attributes(G, '0', 'bond_type') | |||||
start_time = time.time() | |||||
if remove_totters: | |||||
# ---- use pool.imap_unordered to parallel and track progress. ---- | |||||
pool = Pool(n_jobs) | |||||
untotter_partial = partial(wrapper_untotter, Gn, node_label, edge_label) | |||||
if chunksize is None: | |||||
if len(Gn) < 100 * n_jobs: | |||||
chunksize = int(len(Gn) / n_jobs) + 1 | |||||
else: | |||||
chunksize = 100 | |||||
for i, g in tqdm( | |||||
pool.imap_unordered( | |||||
untotter_partial, range(0, len(Gn)), chunksize), | |||||
desc='removing tottering', | |||||
file=sys.stdout): | |||||
Gn[i] = g | |||||
pool.close() | |||||
pool.join() | |||||
# # ---- direct running, normally use single CPU core. ---- | |||||
# Gn = [ | |||||
# untotterTransformation(G, node_label, edge_label) | |||||
# for G in tqdm(Gn, desc='removing tottering', file=sys.stdout) | |||||
# ] | |||||
Kmatrix = np.zeros((len(Gn), len(Gn))) | |||||
# ---- use pool.imap_unordered to parallel and track progress. ---- | |||||
def init_worker(gn_toshare): | |||||
global G_gn | |||||
G_gn = gn_toshare | |||||
do_partial = partial(wrapper_marg_do, node_label, edge_label, | |||||
p_quit, n_iteration) | |||||
parallel_gm(do_partial, Kmatrix, Gn, init_worker=init_worker, | |||||
glbv=(Gn,), n_jobs=n_jobs, chunksize=chunksize, verbose=verbose) | |||||
# # ---- direct running, normally use single CPU core. ---- | |||||
## pbar = tqdm( | |||||
## total=(1 + len(Gn)) * len(Gn) / 2, | |||||
## desc='calculating kernels', | |||||
## file=sys.stdout) | |||||
# for i in range(0, len(Gn)): | |||||
# for j in range(i, len(Gn)): | |||||
## print(i, j) | |||||
# Kmatrix[i][j] = _marginalizedkernel_do(Gn[i], Gn[j], node_label, | |||||
# edge_label, p_quit, n_iteration) | |||||
# Kmatrix[j][i] = Kmatrix[i][j] | |||||
## pbar.update(1) | |||||
run_time = time.time() - start_time | |||||
if verbose: | |||||
print("\n --- marginalized kernel matrix of size %d built in %s seconds ---" | |||||
% (len(Gn), run_time)) | |||||
return Kmatrix, run_time | |||||
def _marginalizedkernel_do(g1, g2, node_label, edge_label, p_quit, n_iteration): | def _marginalizedkernel_do(g1, g2, node_label, edge_label, p_quit, n_iteration): | ||||
"""Calculate marginalized graph kernel between 2 graphs. | |||||
Parameters | |||||
---------- | |||||
G1, G2 : NetworkX graphs | |||||
2 graphs between which the kernel is calculated. | |||||
node_label : string | |||||
node attribute used as label. | |||||
edge_label : string | |||||
edge attribute used as label. | |||||
p_quit : integer | |||||
the termination probability in the random walks generating step. | |||||
n_iteration : integer | |||||
time of iterations to calculate R_inf. | |||||
Return | |||||
------ | |||||
kernel : float | |||||
Marginalized Kernel between 2 graphs. | |||||
""" | |||||
# init parameters | |||||
kernel = 0 | |||||
num_nodes_G1 = nx.number_of_nodes(g1) | |||||
num_nodes_G2 = nx.number_of_nodes(g2) | |||||
# the initial probability distribution in the random walks generating step | |||||
# (uniform distribution over |G|) | |||||
p_init_G1 = 1 / num_nodes_G1 | |||||
p_init_G2 = 1 / num_nodes_G2 | |||||
q = p_quit * p_quit | |||||
r1 = q | |||||
# # initial R_inf | |||||
# # matrix to save all the R_inf for all pairs of nodes | |||||
# R_inf = np.zeros([num_nodes_G1, num_nodes_G2]) | |||||
"""Calculate marginalized graph kernel between 2 graphs. | |||||
Parameters | |||||
---------- | |||||
G1, G2 : NetworkX graphs | |||||
2 graphs between which the kernel is calculated. | |||||
node_label : string | |||||
node attribute used as label. | |||||
edge_label : string | |||||
edge attribute used as label. | |||||
p_quit : integer | |||||
the termination probability in the random walks generating step. | |||||
n_iteration : integer | |||||
time of iterations to calculate R_inf. | |||||
Return | |||||
------ | |||||
kernel : float | |||||
Marginalized Kernel between 2 graphs. | |||||
""" | |||||
# init parameters | |||||
kernel = 0 | |||||
num_nodes_G1 = nx.number_of_nodes(g1) | |||||
num_nodes_G2 = nx.number_of_nodes(g2) | |||||
# the initial probability distribution in the random walks generating step | |||||
# (uniform distribution over |G|) | |||||
p_init_G1 = 1 / num_nodes_G1 | |||||
p_init_G2 = 1 / num_nodes_G2 | |||||
q = p_quit * p_quit | |||||
r1 = q | |||||
# # initial R_inf | |||||
# # matrix to save all the R_inf for all pairs of nodes | |||||
# R_inf = np.zeros([num_nodes_G1, num_nodes_G2]) | |||||
# | # | ||||
# # calculate R_inf with a simple interative method | |||||
# for i in range(1, n_iteration): | |||||
# R_inf_new = np.zeros([num_nodes_G1, num_nodes_G2]) | |||||
# R_inf_new.fill(r1) | |||||
# # calculate R_inf with a simple interative method | |||||
# for i in range(1, n_iteration): | |||||
# R_inf_new = np.zeros([num_nodes_G1, num_nodes_G2]) | |||||
# R_inf_new.fill(r1) | |||||
# | # | ||||
# # calculate R_inf for each pair of nodes | |||||
# for node1 in g1.nodes(data=True): | |||||
# neighbor_n1 = g1[node1[0]] | |||||
# # the transition probability distribution in the random walks | |||||
# # generating step (uniform distribution over the vertices adjacent | |||||
# # to the current vertex) | |||||
# if len(neighbor_n1) > 0: | |||||
# p_trans_n1 = (1 - p_quit) / len(neighbor_n1) | |||||
# for node2 in g2.nodes(data=True): | |||||
# neighbor_n2 = g2[node2[0]] | |||||
# if len(neighbor_n2) > 0: | |||||
# p_trans_n2 = (1 - p_quit) / len(neighbor_n2) | |||||
# | |||||
# for neighbor1 in neighbor_n1: | |||||
# for neighbor2 in neighbor_n2: | |||||
# t = p_trans_n1 * p_trans_n2 * \ | |||||
# deltakernel(g1.node[neighbor1][node_label], | |||||
# g2.node[neighbor2][node_label]) * \ | |||||
# deltakernel( | |||||
# neighbor_n1[neighbor1][edge_label], | |||||
# neighbor_n2[neighbor2][edge_label]) | |||||
# | |||||
# R_inf_new[node1[0]][node2[0]] += t * R_inf[neighbor1][ | |||||
# neighbor2] # ref [1] equation (8) | |||||
# R_inf[:] = R_inf_new | |||||
# # calculate R_inf for each pair of nodes | |||||
# for node1 in g1.nodes(data=True): | |||||
# neighbor_n1 = g1[node1[0]] | |||||
# # the transition probability distribution in the random walks | |||||
# # generating step (uniform distribution over the vertices adjacent | |||||
# # to the current vertex) | |||||
# if len(neighbor_n1) > 0: | |||||
# p_trans_n1 = (1 - p_quit) / len(neighbor_n1) | |||||
# for node2 in g2.nodes(data=True): | |||||
# neighbor_n2 = g2[node2[0]] | |||||
# if len(neighbor_n2) > 0: | |||||
# p_trans_n2 = (1 - p_quit) / len(neighbor_n2) | |||||
# | |||||
# for neighbor1 in neighbor_n1: | |||||
# for neighbor2 in neighbor_n2: | |||||
# t = p_trans_n1 * p_trans_n2 * \ | |||||
# deltakernel(g1.node[neighbor1][node_label], | |||||
# g2.node[neighbor2][node_label]) * \ | |||||
# deltakernel( | |||||
# neighbor_n1[neighbor1][edge_label], | |||||
# neighbor_n2[neighbor2][edge_label]) | |||||
# | |||||
# R_inf_new[node1[0]][node2[0]] += t * R_inf[neighbor1][ | |||||
# neighbor2] # ref [1] equation (8) | |||||
# R_inf[:] = R_inf_new | |||||
# | # | ||||
# # add elements of R_inf up and calculate kernel | |||||
# for node1 in g1.nodes(data=True): | |||||
# for node2 in g2.nodes(data=True): | |||||
# s = p_init_G1 * p_init_G2 * deltakernel( | |||||
# node1[1][node_label], node2[1][node_label]) | |||||
# kernel += s * R_inf[node1[0]][node2[0]] # ref [1] equation (6) | |||||
R_inf = {} # dict to save all the R_inf for all pairs of nodes | |||||
# initial R_inf, the 1st iteration. | |||||
for node1 in g1.nodes(): | |||||
for node2 in g2.nodes(): | |||||
# R_inf[(node1[0], node2[0])] = r1 | |||||
if len(g1[node1]) > 0: | |||||
if len(g2[node2]) > 0: | |||||
R_inf[(node1, node2)] = r1 | |||||
else: | |||||
R_inf[(node1, node2)] = p_quit | |||||
else: | |||||
if len(g2[node2]) > 0: | |||||
R_inf[(node1, node2)] = p_quit | |||||
else: | |||||
R_inf[(node1, node2)] = 1 | |||||
# compute all transition probability first. | |||||
t_dict = {} | |||||
if n_iteration > 1: | |||||
for node1 in g1.nodes(): | |||||
neighbor_n1 = g1[node1] | |||||
# the transition probability distribution in the random walks | |||||
# generating step (uniform distribution over the vertices adjacent | |||||
# to the current vertex) | |||||
if len(neighbor_n1) > 0: | |||||
p_trans_n1 = (1 - p_quit) / len(neighbor_n1) | |||||
for node2 in g2.nodes(): | |||||
neighbor_n2 = g2[node2] | |||||
if len(neighbor_n2) > 0: | |||||
p_trans_n2 = (1 - p_quit) / len(neighbor_n2) | |||||
for neighbor1 in neighbor_n1: | |||||
for neighbor2 in neighbor_n2: | |||||
t_dict[(node1, node2, neighbor1, neighbor2)] = \ | |||||
p_trans_n1 * p_trans_n2 * \ | |||||
deltakernel(g1.nodes[neighbor1][node_label], | |||||
g2.nodes[neighbor2][node_label]) * \ | |||||
deltakernel( | |||||
neighbor_n1[neighbor1][edge_label], | |||||
neighbor_n2[neighbor2][edge_label]) | |||||
# calculate R_inf with a simple interative method | |||||
for i in range(2, n_iteration + 1): | |||||
R_inf_old = R_inf.copy() | |||||
# calculate R_inf for each pair of nodes | |||||
for node1 in g1.nodes(): | |||||
neighbor_n1 = g1[node1] | |||||
# the transition probability distribution in the random walks | |||||
# generating step (uniform distribution over the vertices adjacent | |||||
# to the current vertex) | |||||
if len(neighbor_n1) > 0: | |||||
for node2 in g2.nodes(): | |||||
neighbor_n2 = g2[node2] | |||||
if len(neighbor_n2) > 0: | |||||
R_inf[(node1, node2)] = r1 | |||||
for neighbor1 in neighbor_n1: | |||||
for neighbor2 in neighbor_n2: | |||||
R_inf[(node1, node2)] += \ | |||||
(t_dict[(node1, node2, neighbor1, neighbor2)] * \ | |||||
R_inf_old[(neighbor1, neighbor2)]) # ref [1] equation (8) | |||||
# add elements of R_inf up and calculate kernel | |||||
for (n1, n2), value in R_inf.items(): | |||||
s = p_init_G1 * p_init_G2 * deltakernel( | |||||
g1.nodes[n1][node_label], g2.nodes[n2][node_label]) | |||||
kernel += s * value # ref [1] equation (6) | |||||
return kernel | |||||
# # add elements of R_inf up and calculate kernel | |||||
# for node1 in g1.nodes(data=True): | |||||
# for node2 in g2.nodes(data=True): | |||||
# s = p_init_G1 * p_init_G2 * deltakernel( | |||||
# node1[1][node_label], node2[1][node_label]) | |||||
# kernel += s * R_inf[node1[0]][node2[0]] # ref [1] equation (6) | |||||
R_inf = {} # dict to save all the R_inf for all pairs of nodes | |||||
# initial R_inf, the 1st iteration. | |||||
for node1 in g1.nodes(): | |||||
for node2 in g2.nodes(): | |||||
# R_inf[(node1[0], node2[0])] = r1 | |||||
if len(g1[node1]) > 0: | |||||
if len(g2[node2]) > 0: | |||||
R_inf[(node1, node2)] = r1 | |||||
else: | |||||
R_inf[(node1, node2)] = p_quit | |||||
else: | |||||
if len(g2[node2]) > 0: | |||||
R_inf[(node1, node2)] = p_quit | |||||
else: | |||||
R_inf[(node1, node2)] = 1 | |||||
# compute all transition probability first. | |||||
t_dict = {} | |||||
if n_iteration > 1: | |||||
for node1 in g1.nodes(): | |||||
neighbor_n1 = g1[node1] | |||||
# the transition probability distribution in the random walks | |||||
# generating step (uniform distribution over the vertices adjacent | |||||
# to the current vertex) | |||||
if len(neighbor_n1) > 0: | |||||
p_trans_n1 = (1 - p_quit) / len(neighbor_n1) | |||||
for node2 in g2.nodes(): | |||||
neighbor_n2 = g2[node2] | |||||
if len(neighbor_n2) > 0: | |||||
p_trans_n2 = (1 - p_quit) / len(neighbor_n2) | |||||
for neighbor1 in neighbor_n1: | |||||
for neighbor2 in neighbor_n2: | |||||
t_dict[(node1, node2, neighbor1, neighbor2)] = \ | |||||
p_trans_n1 * p_trans_n2 * \ | |||||
deltakernel(g1.nodes[neighbor1][node_label], | |||||
g2.nodes[neighbor2][node_label]) * \ | |||||
deltakernel( | |||||
neighbor_n1[neighbor1][edge_label], | |||||
neighbor_n2[neighbor2][edge_label]) | |||||
# calculate R_inf with a simple interative method | |||||
for i in range(2, n_iteration + 1): | |||||
R_inf_old = R_inf.copy() | |||||
# calculate R_inf for each pair of nodes | |||||
for node1 in g1.nodes(): | |||||
neighbor_n1 = g1[node1] | |||||
# the transition probability distribution in the random walks | |||||
# generating step (uniform distribution over the vertices adjacent | |||||
# to the current vertex) | |||||
if len(neighbor_n1) > 0: | |||||
for node2 in g2.nodes(): | |||||
neighbor_n2 = g2[node2] | |||||
if len(neighbor_n2) > 0: | |||||
R_inf[(node1, node2)] = r1 | |||||
for neighbor1 in neighbor_n1: | |||||
for neighbor2 in neighbor_n2: | |||||
R_inf[(node1, node2)] += \ | |||||
(t_dict[(node1, node2, neighbor1, neighbor2)] * \ | |||||
R_inf_old[(neighbor1, neighbor2)]) # ref [1] equation (8) | |||||
# add elements of R_inf up and calculate kernel | |||||
for (n1, n2), value in R_inf.items(): | |||||
s = p_init_G1 * p_init_G2 * deltakernel( | |||||
g1.nodes[n1][node_label], g2.nodes[n2][node_label]) | |||||
kernel += s * value # ref [1] equation (6) | |||||
return kernel | |||||
def wrapper_marg_do(node_label, edge_label, p_quit, n_iteration, itr): | def wrapper_marg_do(node_label, edge_label, p_quit, n_iteration, itr): | ||||
i= itr[0] | |||||
j = itr[1] | |||||
return i, j, _marginalizedkernel_do(G_gn[i], G_gn[j], node_label, edge_label, p_quit, n_iteration) | |||||
i= itr[0] | |||||
j = itr[1] | |||||
return i, j, _marginalizedkernel_do(G_gn[i], G_gn[j], node_label, edge_label, p_quit, n_iteration) | |||||
def wrapper_untotter(Gn, node_label, edge_label, i): | def wrapper_untotter(Gn, node_label, edge_label, i): | ||||
return i, untotterTransformation(Gn[i], node_label, edge_label) | |||||
return i, untotterTransformation(Gn[i], node_label, edge_label) |
@@ -373,8 +373,18 @@ class PathUpToH(GraphKernel): # @todo: add function for k_func == None | |||||
for key in all_paths] | for key in all_paths] | ||||
kernel = np.sum(np.minimum(vector1, vector2)) / \ | kernel = np.sum(np.minimum(vector1, vector2)) / \ | ||||
np.sum(np.maximum(vector1, vector2)) | np.sum(np.maximum(vector1, vector2)) | ||||
elif self.__k_func is None: # no sub-kernel used; compare paths directly. | |||||
path_count1 = Counter(paths1) | |||||
path_count2 = Counter(paths2) | |||||
vector1 = [(path_count1[key] if (key in path_count1.keys()) else 0) | |||||
for key in all_paths] | |||||
vector2 = [(path_count2[key] if (key in path_count2.keys()) else 0) | |||||
for key in all_paths] | |||||
kernel = np.dot(vector1, vector2) | |||||
else: | else: | ||||
raise Exception('The given "k_func" cannot be recognized. Possible choices include: "tanimoto", "MinMax".') | |||||
raise Exception('The given "k_func" cannot be recognized. Possible choices include: "tanimoto", "MinMax" and None.') | |||||
return kernel | return kernel | ||||
@@ -2,9 +2,9 @@ | |||||
@author: linlin | @author: linlin | ||||
@references: | @references: | ||||
[1] Borgwardt KM, Kriegel HP. Shortest-path kernels on graphs. InData | |||||
Mining, Fifth IEEE International Conference on 2005 Nov 27 (pp. 8-pp). IEEE. | |||||
[1] Borgwardt KM, Kriegel HP. Shortest-path kernels on graphs. InData | |||||
Mining, Fifth IEEE International Conference on 2005 Nov 27 (pp. 8-pp). IEEE. | |||||
""" | """ | ||||
import sys | import sys | ||||
@@ -22,303 +22,305 @@ from gklearn.utils.graphdataset import get_dataset_attributes | |||||
from gklearn.utils.parallel import parallel_gm | from gklearn.utils.parallel import parallel_gm | ||||
def spkernel(*args, | def spkernel(*args, | ||||
node_label='atom', | |||||
edge_weight=None, | |||||
node_kernels=None, | |||||
parallel='imap_unordered', | |||||
n_jobs=None, | |||||
verbose=True): | |||||
"""Calculate shortest-path kernels between graphs. | |||||
Parameters | |||||
---------- | |||||
Gn : List of NetworkX graph | |||||
List of graphs between which the kernels are calculated. | |||||
G1, G2 : NetworkX graphs | |||||
Two graphs between which the kernel is calculated. | |||||
node_label : string | |||||
Node attribute used as label. The default node label is atom. | |||||
edge_weight : string | |||||
Edge attribute name corresponding to the edge weight. | |||||
node_kernels : dict | |||||
A dictionary of kernel functions for nodes, including 3 items: 'symb' | |||||
for symbolic node labels, 'nsymb' for non-symbolic node labels, 'mix' | |||||
for both labels. The first 2 functions take two node labels as | |||||
parameters, and the 'mix' function takes 4 parameters, a symbolic and a | |||||
non-symbolic label for each the two nodes. Each label is in form of 2-D | |||||
dimension array (n_samples, n_features). Each function returns an | |||||
number as the kernel value. Ignored when nodes are unlabeled. | |||||
n_jobs : int | |||||
Number of jobs for parallelization. | |||||
Return | |||||
------ | |||||
Kmatrix : Numpy matrix | |||||
Kernel matrix, each element of which is the sp kernel between 2 praphs. | |||||
""" | |||||
# pre-process | |||||
Gn = args[0] if len(args) == 1 else [args[0], args[1]] | |||||
Gn = [g.copy() for g in Gn] | |||||
weight = None | |||||
if edge_weight is None: | |||||
if verbose: | |||||
print('\n None edge weight specified. Set all weight to 1.\n') | |||||
else: | |||||
try: | |||||
some_weight = list( | |||||
nx.get_edge_attributes(Gn[0], edge_weight).values())[0] | |||||
if isinstance(some_weight, (float, int)): | |||||
weight = edge_weight | |||||
else: | |||||
if verbose: | |||||
print( | |||||
'\n Edge weight with name %s is not float or integer. Set all weight to 1.\n' | |||||
% edge_weight) | |||||
except: | |||||
if verbose: | |||||
print( | |||||
'\n Edge weight with name "%s" is not found in the edge attributes. Set all weight to 1.\n' | |||||
% edge_weight) | |||||
ds_attrs = get_dataset_attributes( | |||||
Gn, | |||||
attr_names=['node_labeled', 'node_attr_dim', 'is_directed'], | |||||
node_label=node_label) | |||||
# remove graphs with no edges, as no sp can be found in their structures, | |||||
# so the kernel between such a graph and itself will be zero. | |||||
len_gn = len(Gn) | |||||
Gn = [(idx, G) for idx, G in enumerate(Gn) if nx.number_of_edges(G) != 0] | |||||
idx = [G[0] for G in Gn] | |||||
Gn = [G[1] for G in Gn] | |||||
if len(Gn) != len_gn: | |||||
if verbose: | |||||
print('\n %d graphs are removed as they don\'t contain edges.\n' % | |||||
(len_gn - len(Gn))) | |||||
start_time = time.time() | |||||
if parallel == 'imap_unordered': | |||||
pool = Pool(n_jobs) | |||||
# get shortest path graphs of Gn | |||||
getsp_partial = partial(wrapper_getSPGraph, weight) | |||||
itr = zip(Gn, range(0, len(Gn))) | |||||
if len(Gn) < 100 * n_jobs: | |||||
# # use default chunksize as pool.map when iterable is less than 100 | |||||
# chunksize, extra = divmod(len(Gn), n_jobs * 4) | |||||
# if extra: | |||||
# chunksize += 1 | |||||
chunksize = int(len(Gn) / n_jobs) + 1 | |||||
else: | |||||
chunksize = 100 | |||||
if verbose: | |||||
iterator = tqdm(pool.imap_unordered(getsp_partial, itr, chunksize), | |||||
desc='getting sp graphs', file=sys.stdout) | |||||
else: | |||||
iterator = pool.imap_unordered(getsp_partial, itr, chunksize) | |||||
for i, g in iterator: | |||||
Gn[i] = g | |||||
pool.close() | |||||
pool.join() | |||||
elif parallel is None: | |||||
pass | |||||
# # ---- direct running, normally use single CPU core. ---- | |||||
# for i in tqdm(range(len(Gn)), desc='getting sp graphs', file=sys.stdout): | |||||
# i, Gn[i] = wrapper_getSPGraph(weight, (Gn[i], i)) | |||||
# # ---- use pool.map to parallel ---- | |||||
# result_sp = pool.map(getsp_partial, range(0, len(Gn))) | |||||
# for i in result_sp: | |||||
# Gn[i[0]] = i[1] | |||||
# or | |||||
# getsp_partial = partial(wrap_getSPGraph, Gn, weight) | |||||
# for i, g in tqdm( | |||||
# pool.map(getsp_partial, range(0, len(Gn))), | |||||
# desc='getting sp graphs', | |||||
# file=sys.stdout): | |||||
# Gn[i] = g | |||||
# # ---- only for the Fast Computation of Shortest Path Kernel (FCSP) | |||||
# sp_ml = [0] * len(Gn) # shortest path matrices | |||||
# for i in result_sp: | |||||
# sp_ml[i[0]] = i[1] | |||||
# edge_x_g = [[] for i in range(len(sp_ml))] | |||||
# edge_y_g = [[] for i in range(len(sp_ml))] | |||||
# edge_w_g = [[] for i in range(len(sp_ml))] | |||||
# for idx, item in enumerate(sp_ml): | |||||
# for i1 in range(len(item)): | |||||
# for i2 in range(i1 + 1, len(item)): | |||||
# if item[i1, i2] != np.inf: | |||||
# edge_x_g[idx].append(i1) | |||||
# edge_y_g[idx].append(i2) | |||||
# edge_w_g[idx].append(item[i1, i2]) | |||||
# print(len(edge_x_g[0])) | |||||
# print(len(edge_y_g[0])) | |||||
# print(len(edge_w_g[0])) | |||||
Kmatrix = np.zeros((len(Gn), len(Gn))) | |||||
# ---- use pool.imap_unordered to parallel and track progress. ---- | |||||
def init_worker(gn_toshare): | |||||
global G_gn | |||||
G_gn = gn_toshare | |||||
do_partial = partial(wrapper_sp_do, ds_attrs, node_label, node_kernels) | |||||
parallel_gm(do_partial, Kmatrix, Gn, init_worker=init_worker, | |||||
glbv=(Gn,), n_jobs=n_jobs, verbose=verbose) | |||||
# # ---- use pool.map to parallel. ---- | |||||
# # result_perf = pool.map(do_partial, itr) | |||||
# do_partial = partial(spkernel_do, Gn, ds_attrs, node_label, node_kernels) | |||||
# itr = combinations_with_replacement(range(0, len(Gn)), 2) | |||||
# for i, j, kernel in tqdm( | |||||
# pool.map(do_partial, itr), desc='calculating kernels', | |||||
# file=sys.stdout): | |||||
# Kmatrix[i][j] = kernel | |||||
# Kmatrix[j][i] = kernel | |||||
# pool.close() | |||||
# pool.join() | |||||
# # ---- use joblib.Parallel to parallel and track progress. ---- | |||||
# result_perf = Parallel( | |||||
# n_jobs=n_jobs, verbose=10)( | |||||
# delayed(do_partial)(ij) | |||||
# for ij in combinations_with_replacement(range(0, len(Gn)), 2)) | |||||
# result_perf = [ | |||||
# do_partial(ij) | |||||
# for ij in combinations_with_replacement(range(0, len(Gn)), 2) | |||||
# ] | |||||
# for i in result_perf: | |||||
# Kmatrix[i[0]][i[1]] = i[2] | |||||
# Kmatrix[i[1]][i[0]] = i[2] | |||||
# # ---- direct running, normally use single CPU core. ---- | |||||
# from itertools import combinations_with_replacement | |||||
# itr = combinations_with_replacement(range(0, len(Gn)), 2) | |||||
# for i, j in tqdm(itr, desc='calculating kernels', file=sys.stdout): | |||||
# kernel = spkernel_do(Gn[i], Gn[j], ds_attrs, node_label, node_kernels) | |||||
# Kmatrix[i][j] = kernel | |||||
# Kmatrix[j][i] = kernel | |||||
run_time = time.time() - start_time | |||||
if verbose: | |||||
print( | |||||
"\n --- shortest path kernel matrix of size %d built in %s seconds ---" | |||||
% (len(Gn), run_time)) | |||||
return Kmatrix, run_time, idx | |||||
node_label='atom', | |||||
edge_weight=None, | |||||
node_kernels=None, | |||||
parallel='imap_unordered', | |||||
n_jobs=None, | |||||
chunksize=None, | |||||
verbose=True): | |||||
"""Calculate shortest-path kernels between graphs. | |||||
Parameters | |||||
---------- | |||||
Gn : List of NetworkX graph | |||||
List of graphs between which the kernels are calculated. | |||||
G1, G2 : NetworkX graphs | |||||
Two graphs between which the kernel is calculated. | |||||
node_label : string | |||||
Node attribute used as label. The default node label is atom. | |||||
edge_weight : string | |||||
Edge attribute name corresponding to the edge weight. | |||||
node_kernels : dict | |||||
A dictionary of kernel functions for nodes, including 3 items: 'symb' | |||||
for symbolic node labels, 'nsymb' for non-symbolic node labels, 'mix' | |||||
for both labels. The first 2 functions take two node labels as | |||||
parameters, and the 'mix' function takes 4 parameters, a symbolic and a | |||||
non-symbolic label for each the two nodes. Each label is in form of 2-D | |||||
dimension array (n_samples, n_features). Each function returns an | |||||
number as the kernel value. Ignored when nodes are unlabeled. | |||||
n_jobs : int | |||||
Number of jobs for parallelization. | |||||
Return | |||||
------ | |||||
Kmatrix : Numpy matrix | |||||
Kernel matrix, each element of which is the sp kernel between 2 praphs. | |||||
""" | |||||
# pre-process | |||||
Gn = args[0] if len(args) == 1 else [args[0], args[1]] | |||||
Gn = [g.copy() for g in Gn] | |||||
weight = None | |||||
if edge_weight is None: | |||||
if verbose: | |||||
print('\n None edge weight specified. Set all weight to 1.\n') | |||||
else: | |||||
try: | |||||
some_weight = list( | |||||
nx.get_edge_attributes(Gn[0], edge_weight).values())[0] | |||||
if isinstance(some_weight, (float, int)): | |||||
weight = edge_weight | |||||
else: | |||||
if verbose: | |||||
print( | |||||
'\n Edge weight with name %s is not float or integer. Set all weight to 1.\n' | |||||
% edge_weight) | |||||
except: | |||||
if verbose: | |||||
print( | |||||
'\n Edge weight with name "%s" is not found in the edge attributes. Set all weight to 1.\n' | |||||
% edge_weight) | |||||
ds_attrs = get_dataset_attributes( | |||||
Gn, | |||||
attr_names=['node_labeled', 'node_attr_dim', 'is_directed'], | |||||
node_label=node_label) | |||||
# remove graphs with no edges, as no sp can be found in their structures, | |||||
# so the kernel between such a graph and itself will be zero. | |||||
len_gn = len(Gn) | |||||
Gn = [(idx, G) for idx, G in enumerate(Gn) if nx.number_of_edges(G) != 0] | |||||
idx = [G[0] for G in Gn] | |||||
Gn = [G[1] for G in Gn] | |||||
if len(Gn) != len_gn: | |||||
if verbose: | |||||
print('\n %d graphs are removed as they don\'t contain edges.\n' % | |||||
(len_gn - len(Gn))) | |||||
start_time = time.time() | |||||
if parallel == 'imap_unordered': | |||||
pool = Pool(n_jobs) | |||||
# get shortest path graphs of Gn | |||||
getsp_partial = partial(wrapper_getSPGraph, weight) | |||||
itr = zip(Gn, range(0, len(Gn))) | |||||
if chunksize is None: | |||||
if len(Gn) < 100 * n_jobs: | |||||
# # use default chunksize as pool.map when iterable is less than 100 | |||||
# chunksize, extra = divmod(len(Gn), n_jobs * 4) | |||||
# if extra: | |||||
# chunksize += 1 | |||||
chunksize = int(len(Gn) / n_jobs) + 1 | |||||
else: | |||||
chunksize = 100 | |||||
if verbose: | |||||
iterator = tqdm(pool.imap_unordered(getsp_partial, itr, chunksize), | |||||
desc='getting sp graphs', file=sys.stdout) | |||||
else: | |||||
iterator = pool.imap_unordered(getsp_partial, itr, chunksize) | |||||
for i, g in iterator: | |||||
Gn[i] = g | |||||
pool.close() | |||||
pool.join() | |||||
elif parallel is None: | |||||
pass | |||||
# # ---- direct running, normally use single CPU core. ---- | |||||
# for i in tqdm(range(len(Gn)), desc='getting sp graphs', file=sys.stdout): | |||||
# i, Gn[i] = wrapper_getSPGraph(weight, (Gn[i], i)) | |||||
# # ---- use pool.map to parallel ---- | |||||
# result_sp = pool.map(getsp_partial, range(0, len(Gn))) | |||||
# for i in result_sp: | |||||
# Gn[i[0]] = i[1] | |||||
# or | |||||
# getsp_partial = partial(wrap_getSPGraph, Gn, weight) | |||||
# for i, g in tqdm( | |||||
# pool.map(getsp_partial, range(0, len(Gn))), | |||||
# desc='getting sp graphs', | |||||
# file=sys.stdout): | |||||
# Gn[i] = g | |||||
# # ---- only for the Fast Computation of Shortest Path Kernel (FCSP) | |||||
# sp_ml = [0] * len(Gn) # shortest path matrices | |||||
# for i in result_sp: | |||||
# sp_ml[i[0]] = i[1] | |||||
# edge_x_g = [[] for i in range(len(sp_ml))] | |||||
# edge_y_g = [[] for i in range(len(sp_ml))] | |||||
# edge_w_g = [[] for i in range(len(sp_ml))] | |||||
# for idx, item in enumerate(sp_ml): | |||||
# for i1 in range(len(item)): | |||||
# for i2 in range(i1 + 1, len(item)): | |||||
# if item[i1, i2] != np.inf: | |||||
# edge_x_g[idx].append(i1) | |||||
# edge_y_g[idx].append(i2) | |||||
# edge_w_g[idx].append(item[i1, i2]) | |||||
# print(len(edge_x_g[0])) | |||||
# print(len(edge_y_g[0])) | |||||
# print(len(edge_w_g[0])) | |||||
Kmatrix = np.zeros((len(Gn), len(Gn))) | |||||
# ---- use pool.imap_unordered to parallel and track progress. ---- | |||||
def init_worker(gn_toshare): | |||||
global G_gn | |||||
G_gn = gn_toshare | |||||
do_partial = partial(wrapper_sp_do, ds_attrs, node_label, node_kernels) | |||||
parallel_gm(do_partial, Kmatrix, Gn, init_worker=init_worker, | |||||
glbv=(Gn,), n_jobs=n_jobs, chunksize=chunksize, verbose=verbose) | |||||
# # ---- use pool.map to parallel. ---- | |||||
# # result_perf = pool.map(do_partial, itr) | |||||
# do_partial = partial(spkernel_do, Gn, ds_attrs, node_label, node_kernels) | |||||
# itr = combinations_with_replacement(range(0, len(Gn)), 2) | |||||
# for i, j, kernel in tqdm( | |||||
# pool.map(do_partial, itr), desc='calculating kernels', | |||||
# file=sys.stdout): | |||||
# Kmatrix[i][j] = kernel | |||||
# Kmatrix[j][i] = kernel | |||||
# pool.close() | |||||
# pool.join() | |||||
# # ---- use joblib.Parallel to parallel and track progress. ---- | |||||
# result_perf = Parallel( | |||||
# n_jobs=n_jobs, verbose=10)( | |||||
# delayed(do_partial)(ij) | |||||
# for ij in combinations_with_replacement(range(0, len(Gn)), 2)) | |||||
# result_perf = [ | |||||
# do_partial(ij) | |||||
# for ij in combinations_with_replacement(range(0, len(Gn)), 2) | |||||
# ] | |||||
# for i in result_perf: | |||||
# Kmatrix[i[0]][i[1]] = i[2] | |||||
# Kmatrix[i[1]][i[0]] = i[2] | |||||
# # ---- direct running, normally use single CPU core. ---- | |||||
# from itertools import combinations_with_replacement | |||||
# itr = combinations_with_replacement(range(0, len(Gn)), 2) | |||||
# for i, j in tqdm(itr, desc='calculating kernels', file=sys.stdout): | |||||
# kernel = spkernel_do(Gn[i], Gn[j], ds_attrs, node_label, node_kernels) | |||||
# Kmatrix[i][j] = kernel | |||||
# Kmatrix[j][i] = kernel | |||||
run_time = time.time() - start_time | |||||
if verbose: | |||||
print( | |||||
"\n --- shortest path kernel matrix of size %d built in %s seconds ---" | |||||
% (len(Gn), run_time)) | |||||
return Kmatrix, run_time, idx | |||||
def spkernel_do(g1, g2, ds_attrs, node_label, node_kernels): | def spkernel_do(g1, g2, ds_attrs, node_label, node_kernels): | ||||
kernel = 0 | |||||
# compute shortest path matrices first, method borrowed from FCSP. | |||||
vk_dict = {} # shortest path matrices dict | |||||
if ds_attrs['node_labeled']: | |||||
# node symb and non-synb labeled | |||||
if ds_attrs['node_attr_dim'] > 0: | |||||
kn = node_kernels['mix'] | |||||
for n1, n2 in product( | |||||
g1.nodes(data=True), g2.nodes(data=True)): | |||||
vk_dict[(n1[0], n2[0])] = kn( | |||||
n1[1][node_label], n2[1][node_label], | |||||
n1[1]['attributes'], n2[1]['attributes']) | |||||
# node symb labeled | |||||
else: | |||||
kn = node_kernels['symb'] | |||||
for n1 in g1.nodes(data=True): | |||||
for n2 in g2.nodes(data=True): | |||||
vk_dict[(n1[0], n2[0])] = kn(n1[1][node_label], | |||||
n2[1][node_label]) | |||||
else: | |||||
# node non-synb labeled | |||||
if ds_attrs['node_attr_dim'] > 0: | |||||
kn = node_kernels['nsymb'] | |||||
for n1 in g1.nodes(data=True): | |||||
for n2 in g2.nodes(data=True): | |||||
vk_dict[(n1[0], n2[0])] = kn(n1[1]['attributes'], | |||||
n2[1]['attributes']) | |||||
# node unlabeled | |||||
else: | |||||
for e1, e2 in product( | |||||
g1.edges(data=True), g2.edges(data=True)): | |||||
if e1[2]['cost'] == e2[2]['cost']: | |||||
kernel += 1 | |||||
return kernel | |||||
# compute graph kernels | |||||
if ds_attrs['is_directed']: | |||||
for e1, e2 in product(g1.edges(data=True), g2.edges(data=True)): | |||||
if e1[2]['cost'] == e2[2]['cost']: | |||||
nk11, nk22 = vk_dict[(e1[0], e2[0])], vk_dict[(e1[1], | |||||
e2[1])] | |||||
kn1 = nk11 * nk22 | |||||
kernel += kn1 | |||||
else: | |||||
for e1, e2 in product(g1.edges(data=True), g2.edges(data=True)): | |||||
if e1[2]['cost'] == e2[2]['cost']: | |||||
# each edge walk is counted twice, starting from both its extreme nodes. | |||||
nk11, nk12, nk21, nk22 = vk_dict[(e1[0], e2[0])], vk_dict[( | |||||
e1[0], e2[1])], vk_dict[(e1[1], | |||||
e2[0])], vk_dict[(e1[1], | |||||
e2[1])] | |||||
kn1 = nk11 * nk22 | |||||
kn2 = nk12 * nk21 | |||||
kernel += kn1 + kn2 | |||||
# # ---- exact implementation of the Fast Computation of Shortest Path Kernel (FCSP), reference [2], sadly it is slower than the current implementation | |||||
# # compute vertex kernels | |||||
# try: | |||||
# vk_mat = np.zeros((nx.number_of_nodes(g1), | |||||
# nx.number_of_nodes(g2))) | |||||
# g1nl = enumerate(g1.nodes(data=True)) | |||||
# g2nl = enumerate(g2.nodes(data=True)) | |||||
# for i1, n1 in g1nl: | |||||
# for i2, n2 in g2nl: | |||||
# vk_mat[i1][i2] = kn( | |||||
# n1[1][node_label], n2[1][node_label], | |||||
# [n1[1]['attributes']], [n2[1]['attributes']]) | |||||
# range1 = range(0, len(edge_w_g[i])) | |||||
# range2 = range(0, len(edge_w_g[j])) | |||||
# for i1 in range1: | |||||
# x1 = edge_x_g[i][i1] | |||||
# y1 = edge_y_g[i][i1] | |||||
# w1 = edge_w_g[i][i1] | |||||
# for i2 in range2: | |||||
# x2 = edge_x_g[j][i2] | |||||
# y2 = edge_y_g[j][i2] | |||||
# w2 = edge_w_g[j][i2] | |||||
# ke = (w1 == w2) | |||||
# if ke > 0: | |||||
# kn1 = vk_mat[x1][x2] * vk_mat[y1][y2] | |||||
# kn2 = vk_mat[x1][y2] * vk_mat[y1][x2] | |||||
# kernel += kn1 + kn2 | |||||
return kernel | |||||
kernel = 0 | |||||
# compute shortest path matrices first, method borrowed from FCSP. | |||||
vk_dict = {} # shortest path matrices dict | |||||
if ds_attrs['node_labeled']: | |||||
# node symb and non-synb labeled | |||||
if ds_attrs['node_attr_dim'] > 0: | |||||
kn = node_kernels['mix'] | |||||
for n1, n2 in product( | |||||
g1.nodes(data=True), g2.nodes(data=True)): | |||||
vk_dict[(n1[0], n2[0])] = kn( | |||||
n1[1][node_label], n2[1][node_label], | |||||
n1[1]['attributes'], n2[1]['attributes']) | |||||
# node symb labeled | |||||
else: | |||||
kn = node_kernels['symb'] | |||||
for n1 in g1.nodes(data=True): | |||||
for n2 in g2.nodes(data=True): | |||||
vk_dict[(n1[0], n2[0])] = kn(n1[1][node_label], | |||||
n2[1][node_label]) | |||||
else: | |||||
# node non-synb labeled | |||||
if ds_attrs['node_attr_dim'] > 0: | |||||
kn = node_kernels['nsymb'] | |||||
for n1 in g1.nodes(data=True): | |||||
for n2 in g2.nodes(data=True): | |||||
vk_dict[(n1[0], n2[0])] = kn(n1[1]['attributes'], | |||||
n2[1]['attributes']) | |||||
# node unlabeled | |||||
else: | |||||
for e1, e2 in product( | |||||
g1.edges(data=True), g2.edges(data=True)): | |||||
if e1[2]['cost'] == e2[2]['cost']: | |||||
kernel += 1 | |||||
return kernel | |||||
# compute graph kernels | |||||
if ds_attrs['is_directed']: | |||||
for e1, e2 in product(g1.edges(data=True), g2.edges(data=True)): | |||||
if e1[2]['cost'] == e2[2]['cost']: | |||||
nk11, nk22 = vk_dict[(e1[0], e2[0])], vk_dict[(e1[1], | |||||
e2[1])] | |||||
kn1 = nk11 * nk22 | |||||
kernel += kn1 | |||||
else: | |||||
for e1, e2 in product(g1.edges(data=True), g2.edges(data=True)): | |||||
if e1[2]['cost'] == e2[2]['cost']: | |||||
# each edge walk is counted twice, starting from both its extreme nodes. | |||||
nk11, nk12, nk21, nk22 = vk_dict[(e1[0], e2[0])], vk_dict[( | |||||
e1[0], e2[1])], vk_dict[(e1[1], | |||||
e2[0])], vk_dict[(e1[1], | |||||
e2[1])] | |||||
kn1 = nk11 * nk22 | |||||
kn2 = nk12 * nk21 | |||||
kernel += kn1 + kn2 | |||||
# # ---- exact implementation of the Fast Computation of Shortest Path Kernel (FCSP), reference [2], sadly it is slower than the current implementation | |||||
# # compute vertex kernels | |||||
# try: | |||||
# vk_mat = np.zeros((nx.number_of_nodes(g1), | |||||
# nx.number_of_nodes(g2))) | |||||
# g1nl = enumerate(g1.nodes(data=True)) | |||||
# g2nl = enumerate(g2.nodes(data=True)) | |||||
# for i1, n1 in g1nl: | |||||
# for i2, n2 in g2nl: | |||||
# vk_mat[i1][i2] = kn( | |||||
# n1[1][node_label], n2[1][node_label], | |||||
# [n1[1]['attributes']], [n2[1]['attributes']]) | |||||
# range1 = range(0, len(edge_w_g[i])) | |||||
# range2 = range(0, len(edge_w_g[j])) | |||||
# for i1 in range1: | |||||
# x1 = edge_x_g[i][i1] | |||||
# y1 = edge_y_g[i][i1] | |||||
# w1 = edge_w_g[i][i1] | |||||
# for i2 in range2: | |||||
# x2 = edge_x_g[j][i2] | |||||
# y2 = edge_y_g[j][i2] | |||||
# w2 = edge_w_g[j][i2] | |||||
# ke = (w1 == w2) | |||||
# if ke > 0: | |||||
# kn1 = vk_mat[x1][x2] * vk_mat[y1][y2] | |||||
# kn2 = vk_mat[x1][y2] * vk_mat[y1][x2] | |||||
# kernel += kn1 + kn2 | |||||
return kernel | |||||
def wrapper_sp_do(ds_attrs, node_label, node_kernels, itr): | def wrapper_sp_do(ds_attrs, node_label, node_kernels, itr): | ||||
i = itr[0] | |||||
j = itr[1] | |||||
return i, j, spkernel_do(G_gn[i], G_gn[j], ds_attrs, node_label, node_kernels) | |||||
i = itr[0] | |||||
j = itr[1] | |||||
return i, j, spkernel_do(G_gn[i], G_gn[j], ds_attrs, node_label, node_kernels) | |||||
#def wrapper_sp_do(ds_attrs, node_label, node_kernels, itr_item): | #def wrapper_sp_do(ds_attrs, node_label, node_kernels, itr_item): | ||||
# g1 = itr_item[0][0] | |||||
# g2 = itr_item[0][1] | |||||
# i = itr_item[1][0] | |||||
# j = itr_item[1][1] | |||||
# return i, j, spkernel_do(g1, g2, ds_attrs, node_label, node_kernels) | |||||
# g1 = itr_item[0][0] | |||||
# g2 = itr_item[0][1] | |||||
# i = itr_item[1][0] | |||||
# j = itr_item[1][1] | |||||
# return i, j, spkernel_do(g1, g2, ds_attrs, node_label, node_kernels) | |||||
def wrapper_getSPGraph(weight, itr_item): | def wrapper_getSPGraph(weight, itr_item): | ||||
g = itr_item[0] | |||||
i = itr_item[1] | |||||
return i, getSPGraph(g, edge_weight=weight) | |||||
# return i, nx.floyd_warshall_numpy(g, weight=weight) | |||||
g = itr_item[0] | |||||
i = itr_item[1] | |||||
return i, getSPGraph(g, edge_weight=weight) | |||||
# return i, nx.floyd_warshall_numpy(g, weight=weight) |
@@ -27,6 +27,7 @@ def treeletkernel(*args, | |||||
edge_label='bond_type', | edge_label='bond_type', | ||||
parallel='imap_unordered', | parallel='imap_unordered', | ||||
n_jobs=None, | n_jobs=None, | ||||
chunksize=None, | |||||
verbose=True): | verbose=True): | ||||
"""Calculate treelet graph kernels between graphs. | """Calculate treelet graph kernels between graphs. | ||||
@@ -92,10 +93,11 @@ def treeletkernel(*args, | |||||
# time, but this may cost a lot of memory for large dataset. | # time, but this may cost a lot of memory for large dataset. | ||||
pool = Pool(n_jobs) | pool = Pool(n_jobs) | ||||
itr = zip(Gn, range(0, len(Gn))) | itr = zip(Gn, range(0, len(Gn))) | ||||
if len(Gn) < 100 * n_jobs: | |||||
chunksize = int(len(Gn) / n_jobs) + 1 | |||||
else: | |||||
chunksize = 100 | |||||
if chunksize is None: | |||||
if len(Gn) < 100 * n_jobs: | |||||
chunksize = int(len(Gn) / n_jobs) + 1 | |||||
else: | |||||
chunksize = 100 | |||||
canonkeys = [[] for _ in range(len(Gn))] | canonkeys = [[] for _ in range(len(Gn))] | ||||
get_partial = partial(wrapper_get_canonkeys, node_label, edge_label, | get_partial = partial(wrapper_get_canonkeys, node_label, edge_label, | ||||
labeled, ds_attrs['is_directed']) | labeled, ds_attrs['is_directed']) | ||||
@@ -115,7 +117,7 @@ def treeletkernel(*args, | |||||
G_canonkeys = canonkeys_toshare | G_canonkeys = canonkeys_toshare | ||||
do_partial = partial(wrapper_treeletkernel_do, sub_kernel) | do_partial = partial(wrapper_treeletkernel_do, sub_kernel) | ||||
parallel_gm(do_partial, Kmatrix, Gn, init_worker=init_worker, | parallel_gm(do_partial, Kmatrix, Gn, init_worker=init_worker, | ||||
glbv=(canonkeys,), n_jobs=n_jobs, verbose=verbose) | |||||
glbv=(canonkeys,), n_jobs=n_jobs, chunksize=chunksize, verbose=verbose) | |||||
# ---- do not use parallelization. ---- | # ---- do not use parallelization. ---- | ||||
elif parallel == None: | elif parallel == None: | ||||
@@ -30,6 +30,7 @@ def weisfeilerlehmankernel(*args, | |||||
base_kernel='subtree', | base_kernel='subtree', | ||||
parallel=None, | parallel=None, | ||||
n_jobs=None, | n_jobs=None, | ||||
chunksize=None, | |||||
verbose=True): | verbose=True): | ||||
"""Calculate Weisfeiler-Lehman kernels between graphs. | """Calculate Weisfeiler-Lehman kernels between graphs. | ||||
@@ -91,7 +92,7 @@ def weisfeilerlehmankernel(*args, | |||||
# for WL subtree kernel | # for WL subtree kernel | ||||
if base_kernel == 'subtree': | if base_kernel == 'subtree': | ||||
Kmatrix = _wl_kernel_do(Gn, node_label, edge_label, height, parallel, n_jobs, verbose) | |||||
Kmatrix = _wl_kernel_do(Gn, node_label, edge_label, height, parallel, n_jobs, chunksize, verbose) | |||||
# for WL shortest path kernel | # for WL shortest path kernel | ||||
elif base_kernel == 'sp': | elif base_kernel == 'sp': | ||||
@@ -113,7 +114,7 @@ def weisfeilerlehmankernel(*args, | |||||
return Kmatrix, run_time | return Kmatrix, run_time | ||||
def _wl_kernel_do(Gn, node_label, edge_label, height, parallel, n_jobs, verbose): | |||||
def _wl_kernel_do(Gn, node_label, edge_label, height, parallel, n_jobs, chunksize, verbose): | |||||
"""Calculate Weisfeiler-Lehman kernels between graphs. | """Calculate Weisfeiler-Lehman kernels between graphs. | ||||
Parameters | Parameters | ||||
@@ -146,7 +147,7 @@ def _wl_kernel_do(Gn, node_label, edge_label, height, parallel, n_jobs, verbose) | |||||
all_num_of_each_label.append(dict(Counter(labels_ori))) | all_num_of_each_label.append(dict(Counter(labels_ori))) | ||||
# calculate subtree kernel with the 0th iteration and add it to the final kernel | # calculate subtree kernel with the 0th iteration and add it to the final kernel | ||||
compute_kernel_matrix(Kmatrix, all_num_of_each_label, Gn, parallel, n_jobs, False) | |||||
compute_kernel_matrix(Kmatrix, all_num_of_each_label, Gn, parallel, n_jobs, chunksize, False) | |||||
# iterate each height | # iterate each height | ||||
for h in range(1, height + 1): | for h in range(1, height + 1): | ||||
@@ -304,7 +305,7 @@ def wrapper_wl_iteration(node_label, itr_item): | |||||
return i, all_multisets | return i, all_multisets | ||||
def compute_kernel_matrix(Kmatrix, all_num_of_each_label, Gn, parallel, n_jobs, verbose): | |||||
def compute_kernel_matrix(Kmatrix, all_num_of_each_label, Gn, parallel, n_jobs, chunksize, verbose): | |||||
"""Compute kernel matrix using the base kernel. | """Compute kernel matrix using the base kernel. | ||||
""" | """ | ||||
if parallel == 'imap_unordered': | if parallel == 'imap_unordered': | ||||
@@ -314,7 +315,7 @@ def compute_kernel_matrix(Kmatrix, all_num_of_each_label, Gn, parallel, n_jobs, | |||||
G_alllabels = alllabels_toshare | G_alllabels = alllabels_toshare | ||||
do_partial = partial(wrapper_compute_subtree_kernel, Kmatrix) | do_partial = partial(wrapper_compute_subtree_kernel, Kmatrix) | ||||
parallel_gm(do_partial, Kmatrix, Gn, init_worker=init_worker, | parallel_gm(do_partial, Kmatrix, Gn, init_worker=init_worker, | ||||
glbv=(all_num_of_each_label,), n_jobs=n_jobs, verbose=verbose) | |||||
glbv=(all_num_of_each_label,), n_jobs=n_jobs, chunksize=chunksize, verbose=verbose) | |||||
elif parallel == None: | elif parallel == None: | ||||
for i in range(len(Kmatrix)): | for i in range(len(Kmatrix)): | ||||
for j in range(i, len(Kmatrix)): | for j in range(i, len(Kmatrix)): | ||||
@@ -24,7 +24,7 @@ def parallel_me(func, func_assign, var_to_assign, itr, len_itr=None, init_worker | |||||
n_jobs = multiprocessing.cpu_count() | n_jobs = multiprocessing.cpu_count() | ||||
with Pool(processes=n_jobs, initializer=init_worker, | with Pool(processes=n_jobs, initializer=init_worker, | ||||
initargs=glbv) as pool: | initargs=glbv) as pool: | ||||
if chunksize == None: | |||||
if chunksize is None: | |||||
if len_itr < 100 * n_jobs: | if len_itr < 100 * n_jobs: | ||||
chunksize = int(len_itr / n_jobs) + 1 | chunksize = int(len_itr / n_jobs) + 1 | ||||
else: | else: | ||||
@@ -39,7 +39,7 @@ def parallel_me(func, func_assign, var_to_assign, itr, len_itr=None, init_worker | |||||
if n_jobs == None: | if n_jobs == None: | ||||
n_jobs = multiprocessing.cpu_count() | n_jobs = multiprocessing.cpu_count() | ||||
with Pool(processes=n_jobs) as pool: | with Pool(processes=n_jobs) as pool: | ||||
if chunksize == None: | |||||
if chunksize is None: | |||||
if len_itr < 100 * n_jobs: | if len_itr < 100 * n_jobs: | ||||
chunksize = int(len_itr / n_jobs) + 1 | chunksize = int(len_itr / n_jobs) + 1 | ||||
else: | else: | ||||
@@ -8,7 +8,7 @@ with open('requirements_pypi.txt') as fp: | |||||
setuptools.setup( | setuptools.setup( | ||||
name="graphkit-learn", | name="graphkit-learn", | ||||
version="0.2b4", | |||||
version="0.2.0", | |||||
author="Linlin Jia", | author="Linlin Jia", | ||||
author_email="linlin.jia@insa-rouen.fr", | author_email="linlin.jia@insa-rouen.fr", | ||||
description="A Python library for graph kernels, graph edit distances, and graph pre-images", | description="A Python library for graph kernels, graph edit distances, and graph pre-images", | ||||