|
@@ -16,18 +16,18 @@ import numpy as np |
|
|
import networkx as nx |
|
|
import networkx as nx |
|
|
from control import dlyap |
|
|
from control import dlyap |
|
|
from gklearn.utils.parallel import parallel_gm, parallel_me |
|
|
from gklearn.utils.parallel import parallel_gm, parallel_me |
|
|
from gklearn.kernels import RandomWalk |
|
|
|
|
|
|
|
|
from gklearn.kernels import RandomWalkMeta |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class SylvesterEquation(RandomWalk): |
|
|
|
|
|
|
|
|
class SylvesterEquation(RandomWalkMeta): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def __init__(self, **kwargs): |
|
|
def __init__(self, **kwargs): |
|
|
RandomWalk.__init__(self, **kwargs) |
|
|
|
|
|
|
|
|
super().__init__(**kwargs) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _compute_gm_series(self): |
|
|
def _compute_gm_series(self): |
|
|
self._check_edge_weight(self._graphs) |
|
|
|
|
|
|
|
|
self._check_edge_weight(self._graphs, self._verbose) |
|
|
self._check_graphs(self._graphs) |
|
|
self._check_graphs(self._graphs) |
|
|
if self._verbose >= 2: |
|
|
if self._verbose >= 2: |
|
|
import warnings |
|
|
import warnings |
|
@@ -38,7 +38,7 @@ class SylvesterEquation(RandomWalk): |
|
|
# compute Gram matrix. |
|
|
# compute Gram matrix. |
|
|
gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) |
|
|
gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) |
|
|
|
|
|
|
|
|
if self._q == None: |
|
|
|
|
|
|
|
|
if self._q is None: |
|
|
# don't normalize adjacency matrices if q is a uniform vector. Note |
|
|
# don't normalize adjacency matrices if q is a uniform vector. Note |
|
|
# A_wave_list actually contains the transposes of the adjacency matrices. |
|
|
# A_wave_list actually contains the transposes of the adjacency matrices. |
|
|
if self._verbose >= 2: |
|
|
if self._verbose >= 2: |
|
@@ -54,16 +54,16 @@ class SylvesterEquation(RandomWalk): |
|
|
# norm[norm == 0] = 1 |
|
|
# norm[norm == 0] = 1 |
|
|
# A_wave_list.append(A_tilde / norm) |
|
|
# A_wave_list.append(A_tilde / norm) |
|
|
|
|
|
|
|
|
if self._p == None: # p is uniform distribution as default. |
|
|
|
|
|
|
|
|
if self._p is None: # p is uniform distribution as default. |
|
|
from itertools import combinations_with_replacement |
|
|
from itertools import combinations_with_replacement |
|
|
itr = combinations_with_replacement(range(0, len(self._graphs)), 2) |
|
|
itr = combinations_with_replacement(range(0, len(self._graphs)), 2) |
|
|
if self._verbose >= 2: |
|
|
if self._verbose >= 2: |
|
|
iterator = tqdm(itr, desc='calculating kernels', file=sys.stdout) |
|
|
|
|
|
|
|
|
iterator = tqdm(itr, desc='Computing kernels', file=sys.stdout) |
|
|
else: |
|
|
else: |
|
|
iterator = itr |
|
|
iterator = itr |
|
|
|
|
|
|
|
|
for i, j in iterator: |
|
|
for i, j in iterator: |
|
|
kernel = self.__kernel_do(A_wave_list[i], A_wave_list[j], lmda) |
|
|
|
|
|
|
|
|
kernel = self._kernel_do(A_wave_list[i], A_wave_list[j], lmda) |
|
|
gram_matrix[i][j] = kernel |
|
|
gram_matrix[i][j] = kernel |
|
|
gram_matrix[j][i] = kernel |
|
|
gram_matrix[j][i] = kernel |
|
|
|
|
|
|
|
@@ -76,7 +76,7 @@ class SylvesterEquation(RandomWalk): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _compute_gm_imap_unordered(self): |
|
|
def _compute_gm_imap_unordered(self): |
|
|
self._check_edge_weight(self._graphs) |
|
|
|
|
|
|
|
|
self._check_edge_weight(self._graphs, self._verbose) |
|
|
self._check_graphs(self._graphs) |
|
|
self._check_graphs(self._graphs) |
|
|
if self._verbose >= 2: |
|
|
if self._verbose >= 2: |
|
|
import warnings |
|
|
import warnings |
|
@@ -85,7 +85,7 @@ class SylvesterEquation(RandomWalk): |
|
|
# compute Gram matrix. |
|
|
# compute Gram matrix. |
|
|
gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) |
|
|
gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) |
|
|
|
|
|
|
|
|
if self._q == None: |
|
|
|
|
|
|
|
|
if self._q is None: |
|
|
# don't normalize adjacency matrices if q is a uniform vector. Note |
|
|
# don't normalize adjacency matrices if q is a uniform vector. Note |
|
|
# A_wave_list actually contains the transposes of the adjacency matrices. |
|
|
# A_wave_list actually contains the transposes of the adjacency matrices. |
|
|
if self._verbose >= 2: |
|
|
if self._verbose >= 2: |
|
@@ -94,7 +94,7 @@ class SylvesterEquation(RandomWalk): |
|
|
iterator = self._graphs |
|
|
iterator = self._graphs |
|
|
A_wave_list = [nx.adjacency_matrix(G, self._edge_weight).todense().transpose() for G in iterator] # @todo: parallel? |
|
|
A_wave_list = [nx.adjacency_matrix(G, self._edge_weight).todense().transpose() for G in iterator] # @todo: parallel? |
|
|
|
|
|
|
|
|
if self._p == None: # p is uniform distribution as default. |
|
|
|
|
|
|
|
|
if self._p is None: # p is uniform distribution as default. |
|
|
def init_worker(A_wave_list_toshare): |
|
|
def init_worker(A_wave_list_toshare): |
|
|
global G_A_wave_list |
|
|
global G_A_wave_list |
|
|
G_A_wave_list = A_wave_list_toshare |
|
|
G_A_wave_list = A_wave_list_toshare |
|
@@ -113,7 +113,7 @@ class SylvesterEquation(RandomWalk): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _compute_kernel_list_series(self, g1, g_list): |
|
|
def _compute_kernel_list_series(self, g1, g_list): |
|
|
self._check_edge_weight(g_list + [g1]) |
|
|
|
|
|
|
|
|
self._check_edge_weight(g_list + [g1], self._verbose) |
|
|
self._check_graphs(g_list + [g1]) |
|
|
self._check_graphs(g_list + [g1]) |
|
|
if self._verbose >= 2: |
|
|
if self._verbose >= 2: |
|
|
import warnings |
|
|
import warnings |
|
@@ -124,24 +124,24 @@ class SylvesterEquation(RandomWalk): |
|
|
# compute kernel list. |
|
|
# compute kernel list. |
|
|
kernel_list = [None] * len(g_list) |
|
|
kernel_list = [None] * len(g_list) |
|
|
|
|
|
|
|
|
if self._q == None: |
|
|
|
|
|
|
|
|
if self._q is None: |
|
|
# don't normalize adjacency matrices if q is a uniform vector. Note |
|
|
# don't normalize adjacency matrices if q is a uniform vector. Note |
|
|
# A_wave_list actually contains the transposes of the adjacency matrices. |
|
|
# A_wave_list actually contains the transposes of the adjacency matrices. |
|
|
A_wave_1 = nx.adjacency_matrix(g1, self._edge_weight).todense().transpose() |
|
|
A_wave_1 = nx.adjacency_matrix(g1, self._edge_weight).todense().transpose() |
|
|
if self._verbose >= 2: |
|
|
if self._verbose >= 2: |
|
|
iterator = tqdm(range(len(g_list)), desc='compute adjacency matrices', file=sys.stdout) |
|
|
|
|
|
|
|
|
iterator = tqdm(g_list, desc='compute adjacency matrices', file=sys.stdout) |
|
|
else: |
|
|
else: |
|
|
iterator = range(len(g_list)) |
|
|
|
|
|
|
|
|
iterator = g_list |
|
|
A_wave_list = [nx.adjacency_matrix(G, self._edge_weight).todense().transpose() for G in iterator] |
|
|
A_wave_list = [nx.adjacency_matrix(G, self._edge_weight).todense().transpose() for G in iterator] |
|
|
|
|
|
|
|
|
if self._p == None: # p is uniform distribution as default. |
|
|
|
|
|
|
|
|
if self._p is None: # p is uniform distribution as default. |
|
|
if self._verbose >= 2: |
|
|
if self._verbose >= 2: |
|
|
iterator = tqdm(range(len(g_list)), desc='calculating kernels', file=sys.stdout) |
|
|
|
|
|
|
|
|
iterator = tqdm(range(len(g_list)), desc='Computing kernels', file=sys.stdout) |
|
|
else: |
|
|
else: |
|
|
iterator = range(len(g_list)) |
|
|
iterator = range(len(g_list)) |
|
|
|
|
|
|
|
|
for i in iterator: |
|
|
for i in iterator: |
|
|
kernel = self.__kernel_do(A_wave_1, A_wave_list[i], lmda) |
|
|
|
|
|
|
|
|
kernel = self._kernel_do(A_wave_1, A_wave_list[i], lmda) |
|
|
kernel_list[i] = kernel |
|
|
kernel_list[i] = kernel |
|
|
|
|
|
|
|
|
else: # @todo |
|
|
else: # @todo |
|
@@ -153,7 +153,7 @@ class SylvesterEquation(RandomWalk): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _compute_kernel_list_imap_unordered(self, g1, g_list): |
|
|
def _compute_kernel_list_imap_unordered(self, g1, g_list): |
|
|
self._check_edge_weight(g_list + [g1]) |
|
|
|
|
|
|
|
|
self._check_edge_weight(g_list + [g1], self._verbose) |
|
|
self._check_graphs(g_list + [g1]) |
|
|
self._check_graphs(g_list + [g1]) |
|
|
if self._verbose >= 2: |
|
|
if self._verbose >= 2: |
|
|
import warnings |
|
|
import warnings |
|
@@ -162,17 +162,17 @@ class SylvesterEquation(RandomWalk): |
|
|
# compute kernel list. |
|
|
# compute kernel list. |
|
|
kernel_list = [None] * len(g_list) |
|
|
kernel_list = [None] * len(g_list) |
|
|
|
|
|
|
|
|
if self._q == None: |
|
|
|
|
|
|
|
|
if self._q is None: |
|
|
# don't normalize adjacency matrices if q is a uniform vector. Note |
|
|
# don't normalize adjacency matrices if q is a uniform vector. Note |
|
|
# A_wave_list actually contains the transposes of the adjacency matrices. |
|
|
# A_wave_list actually contains the transposes of the adjacency matrices. |
|
|
A_wave_1 = nx.adjacency_matrix(g1, self._edge_weight).todense().transpose() |
|
|
A_wave_1 = nx.adjacency_matrix(g1, self._edge_weight).todense().transpose() |
|
|
if self._verbose >= 2: |
|
|
if self._verbose >= 2: |
|
|
iterator = tqdm(range(len(g_list)), desc='compute adjacency matrices', file=sys.stdout) |
|
|
|
|
|
|
|
|
iterator = tqdm(g_list, desc='compute adjacency matrices', file=sys.stdout) |
|
|
else: |
|
|
else: |
|
|
iterator = range(len(g_list)) |
|
|
|
|
|
|
|
|
iterator = g_list |
|
|
A_wave_list = [nx.adjacency_matrix(G, self._edge_weight).todense().transpose() for G in iterator] # @todo: parallel? |
|
|
A_wave_list = [nx.adjacency_matrix(G, self._edge_weight).todense().transpose() for G in iterator] # @todo: parallel? |
|
|
|
|
|
|
|
|
if self._p == None: # p is uniform distribution as default. |
|
|
|
|
|
|
|
|
if self._p is None: # p is uniform distribution as default. |
|
|
def init_worker(A_wave_1_toshare, A_wave_list_toshare): |
|
|
def init_worker(A_wave_1_toshare, A_wave_list_toshare): |
|
|
global G_A_wave_1, G_A_wave_list |
|
|
global G_A_wave_1, G_A_wave_list |
|
|
G_A_wave_1 = A_wave_1_toshare |
|
|
G_A_wave_1 = A_wave_1_toshare |
|
@@ -186,7 +186,7 @@ class SylvesterEquation(RandomWalk): |
|
|
len_itr = len(g_list) |
|
|
len_itr = len(g_list) |
|
|
parallel_me(do_fun, func_assign, kernel_list, itr, len_itr=len_itr, |
|
|
parallel_me(do_fun, func_assign, kernel_list, itr, len_itr=len_itr, |
|
|
init_worker=init_worker, glbv=(A_wave_1, A_wave_list), method='imap_unordered', |
|
|
init_worker=init_worker, glbv=(A_wave_1, A_wave_list), method='imap_unordered', |
|
|
n_jobs=self._n_jobs, itr_desc='calculating kernels', verbose=self._verbose) |
|
|
|
|
|
|
|
|
n_jobs=self._n_jobs, itr_desc='Computing kernels', verbose=self._verbose) |
|
|
|
|
|
|
|
|
else: # @todo |
|
|
else: # @todo |
|
|
pass |
|
|
pass |
|
@@ -201,7 +201,7 @@ class SylvesterEquation(RandomWalk): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _compute_single_kernel_series(self, g1, g2): |
|
|
def _compute_single_kernel_series(self, g1, g2): |
|
|
self._check_edge_weight([g1] + [g2]) |
|
|
|
|
|
|
|
|
self._check_edge_weight([g1] + [g2], self._verbose) |
|
|
self._check_graphs([g1] + [g2]) |
|
|
self._check_graphs([g1] + [g2]) |
|
|
if self._verbose >= 2: |
|
|
if self._verbose >= 2: |
|
|
import warnings |
|
|
import warnings |
|
@@ -209,13 +209,13 @@ class SylvesterEquation(RandomWalk): |
|
|
|
|
|
|
|
|
lmda = self._weight |
|
|
lmda = self._weight |
|
|
|
|
|
|
|
|
if self._q == None: |
|
|
|
|
|
|
|
|
if self._q is None: |
|
|
# don't normalize adjacency matrices if q is a uniform vector. Note |
|
|
# don't normalize adjacency matrices if q is a uniform vector. Note |
|
|
# A_wave_list actually contains the transposes of the adjacency matrices. |
|
|
# A_wave_list actually contains the transposes of the adjacency matrices. |
|
|
A_wave_1 = nx.adjacency_matrix(g1, self._edge_weight).todense().transpose() |
|
|
A_wave_1 = nx.adjacency_matrix(g1, self._edge_weight).todense().transpose() |
|
|
A_wave_2 = nx.adjacency_matrix(g2, self._edge_weight).todense().transpose() |
|
|
A_wave_2 = nx.adjacency_matrix(g2, self._edge_weight).todense().transpose() |
|
|
if self._p == None: # p is uniform distribution as default. |
|
|
|
|
|
kernel = self.__kernel_do(A_wave_1, A_wave_2, lmda) |
|
|
|
|
|
|
|
|
if self._p is None: # p is uniform distribution as default. |
|
|
|
|
|
kernel = self._kernel_do(A_wave_1, A_wave_2, lmda) |
|
|
else: # @todo |
|
|
else: # @todo |
|
|
pass |
|
|
pass |
|
|
else: # @todo |
|
|
else: # @todo |
|
@@ -224,7 +224,7 @@ class SylvesterEquation(RandomWalk): |
|
|
return kernel |
|
|
return kernel |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def __kernel_do(self, A_wave1, A_wave2, lmda): |
|
|
|
|
|
|
|
|
def _kernel_do(self, A_wave1, A_wave2, lmda): |
|
|
|
|
|
|
|
|
S = lmda * A_wave2 |
|
|
S = lmda * A_wave2 |
|
|
T_t = A_wave1 |
|
|
T_t = A_wave1 |
|
@@ -242,4 +242,4 @@ class SylvesterEquation(RandomWalk): |
|
|
def _wrapper_kernel_do(self, itr): |
|
|
def _wrapper_kernel_do(self, itr): |
|
|
i = itr[0] |
|
|
i = itr[0] |
|
|
j = itr[1] |
|
|
j = itr[1] |
|
|
return i, j, self.__kernel_do(G_A_wave_list[i], G_A_wave_list[j], self._weight) |
|
|
|
|
|
|
|
|
return i, j, self._kernel_do(G_A_wave_list[i], G_A_wave_list[j], self._weight) |