|
|
@@ -146,9 +146,12 @@ def xp_random_preimage_generation(kernel_name): |
|
|
|
__draw_graph(rpg.best_from_dataset, fn_best_dataset) |
|
|
|
__draw_graph(rpg.preimage, fn_preimage) |
|
|
|
|
|
|
|
# save distances. |
|
|
|
np.savez(dir_save + 'distances.' + ds_name + '.' + kernel_options['name'], k_dis_datasets=k_dis_datasets, k_dis_preimages=k_dis_preimages) |
|
|
|
|
|
|
|
# plot results figure. |
|
|
|
__plot_results(alpha1_list, k_dis_datasets, k_dis_preimages, dir_save) |
|
|
|
|
|
|
|
|
|
|
|
print('\ncomplete.\n') |
|
|
|
|
|
|
|
return k_dis_datasets, k_dis_preimages, bests_from_dataset, preimages |
|
|
@@ -174,7 +177,7 @@ def __plot_results(alpha1_list, k_dis_datasets, k_dis_preimages, dir_save): |
|
|
|
ind = np.arange(len(alpha1_list)) # the x locations for the groups |
|
|
|
width = 0.35 # the width of the bars: can also be len(x) sequence |
|
|
|
|
|
|
|
p1 = ax.bar(ind, k_dis_preimages, width, label='Reconstructed pre-image', zorder=3, color='#133AAC') |
|
|
|
ax.bar(ind, k_dis_preimages, width, label='Reconstructed pre-image', zorder=3, color='#133AAC') |
|
|
|
|
|
|
|
ax.set_xlabel(r'$\alpha \in [0,1]$') |
|
|
|
ax.set_ylabel(r'$d(g_i,g^\star(\alpha))$') |
|
|
@@ -189,7 +192,7 @@ def __plot_results(alpha1_list, k_dis_datasets, k_dis_preimages, dir_save): |
|
|
|
ax.spines['right'].set_visible(False) |
|
|
|
ax.xaxis.set_ticks_position('none') |
|
|
|
|
|
|
|
p2 = ax.plot(ind, k_dis_datasets, 'b.-', label=r'Nearest neighbor in $D_N$', color='orange', zorder=4) |
|
|
|
ax.plot(ind, k_dis_datasets, 'b.-', label=r'Nearest neighbor in $D_N$', color='orange', zorder=4) |
|
|
|
ax.yaxis.set_ticks_position('none') |
|
|
|
|
|
|
|
fig.subplots_adjust(bottom=.2) |
|
|
|