|
@@ -0,0 +1,863 @@ |
|
|
|
|
|
#!/usr/bin/env python3 |
|
|
|
|
|
# -*- coding: utf-8 -*- |
|
|
|
|
|
""" |
|
|
|
|
|
Created on Thu Sep 27 10:56:23 2018 |
|
|
|
|
|
|
|
|
|
|
|
@author: linlin |
|
|
|
|
|
|
|
|
|
|
|
@references: |
|
|
|
|
|
|
|
|
|
|
|
[1] Suard F, Rakotomamonjy A, Bensrhair A. Kernel on Bag of Paths For |
|
|
|
|
|
Measuring Similarity of Shapes. InESANN 2007 Apr 25 (pp. 355-360). |
|
|
|
|
|
""" |
|
|
|
|
|
|
|
|
|
|
|
import sys |
|
|
|
|
|
import time |
|
|
|
|
|
from itertools import combinations, product |
|
|
|
|
|
from functools import partial |
|
|
|
|
|
from multiprocessing import Pool |
|
|
|
|
|
from tqdm import tqdm |
|
|
|
|
|
|
|
|
|
|
|
import networkx as nx |
|
|
|
|
|
import numpy as np |
|
|
|
|
|
|
|
|
|
|
|
from gklearn.utils.graphdataset import get_dataset_attributes |
|
|
|
|
|
from gklearn.utils.parallel import parallel_gm |
|
|
|
|
|
from gklearn.utils.trie import Trie |
|
|
|
|
|
|
|
|
|
|
|
def structuralspkernel(*args, |
|
|
|
|
|
node_label='atom', |
|
|
|
|
|
edge_weight=None, |
|
|
|
|
|
edge_label='bond_type', |
|
|
|
|
|
node_kernels=None, |
|
|
|
|
|
edge_kernels=None, |
|
|
|
|
|
compute_method='naive', |
|
|
|
|
|
parallel='imap_unordered', |
|
|
|
|
|
# parallel=None, |
|
|
|
|
|
n_jobs=None, |
|
|
|
|
|
chunksize=None, |
|
|
|
|
|
verbose=True): |
|
|
|
|
|
"""Calculate mean average structural shortest path kernels between graphs. |
|
|
|
|
|
|
|
|
|
|
|
Parameters |
|
|
|
|
|
---------- |
|
|
|
|
|
Gn : List of NetworkX graph |
|
|
|
|
|
List of graphs between which the kernels are calculated. |
|
|
|
|
|
|
|
|
|
|
|
G1, G2 : NetworkX graphs |
|
|
|
|
|
Two graphs between which the kernel is calculated. |
|
|
|
|
|
|
|
|
|
|
|
node_label : string |
|
|
|
|
|
Node attribute used as label. The default node label is atom. |
|
|
|
|
|
|
|
|
|
|
|
edge_weight : string |
|
|
|
|
|
Edge attribute name corresponding to the edge weight. Applied for the |
|
|
|
|
|
computation of the shortest paths. |
|
|
|
|
|
|
|
|
|
|
|
edge_label : string |
|
|
|
|
|
Edge attribute used as label. The default edge label is bond_type. |
|
|
|
|
|
|
|
|
|
|
|
node_kernels : dict |
|
|
|
|
|
A dictionary of kernel functions for nodes, including 3 items: 'symb' |
|
|
|
|
|
for symbolic node labels, 'nsymb' for non-symbolic node labels, 'mix' |
|
|
|
|
|
for both labels. The first 2 functions take two node labels as |
|
|
|
|
|
parameters, and the 'mix' function takes 4 parameters, a symbolic and a |
|
|
|
|
|
non-symbolic label for each the two nodes. Each label is in form of 2-D |
|
|
|
|
|
dimension array (n_samples, n_features). Each function returns a number |
|
|
|
|
|
as the kernel value. Ignored when nodes are unlabeled. |
|
|
|
|
|
|
|
|
|
|
|
edge_kernels : dict |
|
|
|
|
|
A dictionary of kernel functions for edges, including 3 items: 'symb' |
|
|
|
|
|
for symbolic edge labels, 'nsymb' for non-symbolic edge labels, 'mix' |
|
|
|
|
|
for both labels. The first 2 functions take two edge labels as |
|
|
|
|
|
parameters, and the 'mix' function takes 4 parameters, a symbolic and a |
|
|
|
|
|
non-symbolic label for each the two edges. Each label is in form of 2-D |
|
|
|
|
|
dimension array (n_samples, n_features). Each function returns a number |
|
|
|
|
|
as the kernel value. Ignored when edges are unlabeled. |
|
|
|
|
|
|
|
|
|
|
|
compute_method : string |
|
|
|
|
|
Computation method to store the shortest paths and compute the graph |
|
|
|
|
|
kernel. The Following choices are available: |
|
|
|
|
|
|
|
|
|
|
|
'trie': store paths as tries. |
|
|
|
|
|
|
|
|
|
|
|
'naive': store paths to lists. |
|
|
|
|
|
|
|
|
|
|
|
n_jobs : int |
|
|
|
|
|
Number of jobs for parallelization. |
|
|
|
|
|
|
|
|
|
|
|
Return |
|
|
|
|
|
------ |
|
|
|
|
|
Kmatrix : Numpy matrix |
|
|
|
|
|
Kernel matrix, each element of which is the mean average structural |
|
|
|
|
|
shortest path kernel between 2 praphs. |
|
|
|
|
|
""" |
|
|
|
|
|
# pre-process |
|
|
|
|
|
Gn = args[0] if len(args) == 1 else [args[0], args[1]] |
|
|
|
|
|
Gn = [g.copy() for g in Gn] |
|
|
|
|
|
weight = None |
|
|
|
|
|
if edge_weight is None: |
|
|
|
|
|
if verbose: |
|
|
|
|
|
print('\n None edge weight specified. Set all weight to 1.\n') |
|
|
|
|
|
else: |
|
|
|
|
|
try: |
|
|
|
|
|
some_weight = list( |
|
|
|
|
|
nx.get_edge_attributes(Gn[0], edge_weight).values())[0] |
|
|
|
|
|
if isinstance(some_weight, (float, int)): |
|
|
|
|
|
weight = edge_weight |
|
|
|
|
|
else: |
|
|
|
|
|
if verbose: |
|
|
|
|
|
print( |
|
|
|
|
|
'\n Edge weight with name %s is not float or integer. Set all weight to 1.\n' |
|
|
|
|
|
% edge_weight) |
|
|
|
|
|
except: |
|
|
|
|
|
if verbose: |
|
|
|
|
|
print( |
|
|
|
|
|
'\n Edge weight with name "%s" is not found in the edge attributes. Set all weight to 1.\n' |
|
|
|
|
|
% edge_weight) |
|
|
|
|
|
ds_attrs = get_dataset_attributes( |
|
|
|
|
|
Gn, |
|
|
|
|
|
attr_names=['node_labeled', 'node_attr_dim', 'edge_labeled', |
|
|
|
|
|
'edge_attr_dim', 'is_directed'], |
|
|
|
|
|
node_label=node_label, edge_label=edge_label) |
|
|
|
|
|
|
|
|
|
|
|
start_time = time.time() |
|
|
|
|
|
|
|
|
|
|
|
# get shortest paths of each graph in Gn |
|
|
|
|
|
if parallel == 'imap_unordered': |
|
|
|
|
|
splist = [None] * len(Gn) |
|
|
|
|
|
pool = Pool(n_jobs) |
|
|
|
|
|
itr = zip(Gn, range(0, len(Gn))) |
|
|
|
|
|
if chunksize is None: |
|
|
|
|
|
if len(Gn) < 100 * n_jobs: |
|
|
|
|
|
chunksize = int(len(Gn) / n_jobs) + 1 |
|
|
|
|
|
else: |
|
|
|
|
|
chunksize = 100 |
|
|
|
|
|
# get shortest path graphs of Gn |
|
|
|
|
|
if compute_method == 'trie': |
|
|
|
|
|
getsp_partial = partial(wrapper_getSP_trie, weight, ds_attrs['is_directed']) |
|
|
|
|
|
else: |
|
|
|
|
|
getsp_partial = partial(wrapper_getSP_naive, weight, ds_attrs['is_directed']) |
|
|
|
|
|
if verbose: |
|
|
|
|
|
iterator = tqdm(pool.imap_unordered(getsp_partial, itr, chunksize), |
|
|
|
|
|
desc='getting shortest paths', file=sys.stdout) |
|
|
|
|
|
else: |
|
|
|
|
|
iterator = pool.imap_unordered(getsp_partial, itr, chunksize) |
|
|
|
|
|
for i, sp in iterator: |
|
|
|
|
|
splist[i] = sp |
|
|
|
|
|
# time.sleep(10) |
|
|
|
|
|
pool.close() |
|
|
|
|
|
pool.join() |
|
|
|
|
|
# ---- direct running, normally use single CPU core. ---- |
|
|
|
|
|
elif parallel is None: |
|
|
|
|
|
splist = [] |
|
|
|
|
|
if verbose: |
|
|
|
|
|
iterator = tqdm(Gn, desc='getting sp graphs', file=sys.stdout) |
|
|
|
|
|
else: |
|
|
|
|
|
iterator = Gn |
|
|
|
|
|
if compute_method == 'trie': |
|
|
|
|
|
for g in iterator: |
|
|
|
|
|
splist.append(get_sps_as_trie(g, weight, ds_attrs['is_directed'])) |
|
|
|
|
|
else: |
|
|
|
|
|
for g in iterator: |
|
|
|
|
|
splist.append(get_shortest_paths(g, weight, ds_attrs['is_directed'])) |
|
|
|
|
|
|
|
|
|
|
|
# ss = 0 |
|
|
|
|
|
# ss += sys.getsizeof(splist) |
|
|
|
|
|
# for spss in splist: |
|
|
|
|
|
# ss += sys.getsizeof(spss) |
|
|
|
|
|
# for spp in spss: |
|
|
|
|
|
# ss += sys.getsizeof(spp) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# time.sleep(20) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# # ---- only for the Fast Computation of Shortest Path Kernel (FCSP) |
|
|
|
|
|
# sp_ml = [0] * len(Gn) # shortest path matrices |
|
|
|
|
|
# for i in result_sp: |
|
|
|
|
|
# sp_ml[i[0]] = i[1] |
|
|
|
|
|
# edge_x_g = [[] for i in range(len(sp_ml))] |
|
|
|
|
|
# edge_y_g = [[] for i in range(len(sp_ml))] |
|
|
|
|
|
# edge_w_g = [[] for i in range(len(sp_ml))] |
|
|
|
|
|
# for idx, item in enumerate(sp_ml): |
|
|
|
|
|
# for i1 in range(len(item)): |
|
|
|
|
|
# for i2 in range(i1 + 1, len(item)): |
|
|
|
|
|
# if item[i1, i2] != np.inf: |
|
|
|
|
|
# edge_x_g[idx].append(i1) |
|
|
|
|
|
# edge_y_g[idx].append(i2) |
|
|
|
|
|
# edge_w_g[idx].append(item[i1, i2]) |
|
|
|
|
|
# print(len(edge_x_g[0])) |
|
|
|
|
|
# print(len(edge_y_g[0])) |
|
|
|
|
|
# print(len(edge_w_g[0])) |
|
|
|
|
|
|
|
|
|
|
|
Kmatrix = np.zeros((len(Gn), len(Gn))) |
|
|
|
|
|
|
|
|
|
|
|
# ---- use pool.imap_unordered to parallel and track progress. ---- |
|
|
|
|
|
if parallel == 'imap_unordered': |
|
|
|
|
|
def init_worker(spl_toshare, gs_toshare): |
|
|
|
|
|
global G_spl, G_gs |
|
|
|
|
|
G_spl = spl_toshare |
|
|
|
|
|
G_gs = gs_toshare |
|
|
|
|
|
if compute_method == 'trie': |
|
|
|
|
|
do_partial = partial(wrapper_ssp_do_trie, ds_attrs, node_label, edge_label, |
|
|
|
|
|
node_kernels, edge_kernels) |
|
|
|
|
|
parallel_gm(do_partial, Kmatrix, Gn, init_worker=init_worker, |
|
|
|
|
|
glbv=(splist, Gn), n_jobs=n_jobs, chunksize=chunksize, verbose=verbose) |
|
|
|
|
|
else: |
|
|
|
|
|
do_partial = partial(wrapper_ssp_do, ds_attrs, node_label, edge_label, |
|
|
|
|
|
node_kernels, edge_kernels) |
|
|
|
|
|
parallel_gm(do_partial, Kmatrix, Gn, init_worker=init_worker, |
|
|
|
|
|
glbv=(splist, Gn), n_jobs=n_jobs, chunksize=chunksize, verbose=verbose) |
|
|
|
|
|
# ---- direct running, normally use single CPU core. ---- |
|
|
|
|
|
elif parallel is None: |
|
|
|
|
|
from itertools import combinations_with_replacement |
|
|
|
|
|
itr = combinations_with_replacement(range(0, len(Gn)), 2) |
|
|
|
|
|
if verbose: |
|
|
|
|
|
iterator = tqdm(itr, desc='calculating kernels', file=sys.stdout) |
|
|
|
|
|
else: |
|
|
|
|
|
iterator = itr |
|
|
|
|
|
if compute_method == 'trie': |
|
|
|
|
|
for i, j in iterator: |
|
|
|
|
|
kernel = ssp_do_trie(Gn[i], Gn[j], splist[i], splist[j], |
|
|
|
|
|
ds_attrs, node_label, edge_label, node_kernels, edge_kernels) |
|
|
|
|
|
Kmatrix[i][j] = kernel |
|
|
|
|
|
Kmatrix[j][i] = kernel |
|
|
|
|
|
else: |
|
|
|
|
|
for i, j in iterator: |
|
|
|
|
|
kernel = structuralspkernel_do(Gn[i], Gn[j], splist[i], splist[j], |
|
|
|
|
|
ds_attrs, node_label, edge_label, node_kernels, edge_kernels) |
|
|
|
|
|
# if(kernel > 1): |
|
|
|
|
|
# print("error here ") |
|
|
|
|
|
Kmatrix[i][j] = kernel |
|
|
|
|
|
Kmatrix[j][i] = kernel |
|
|
|
|
|
|
|
|
|
|
|
# # ---- use pool.map to parallel. ---- |
|
|
|
|
|
# pool = Pool(n_jobs) |
|
|
|
|
|
# do_partial = partial(wrapper_ssp_do, ds_attrs, node_label, edge_label, |
|
|
|
|
|
# node_kernels, edge_kernels) |
|
|
|
|
|
# itr = zip(combinations_with_replacement(Gn, 2), |
|
|
|
|
|
# combinations_with_replacement(splist, 2), |
|
|
|
|
|
# combinations_with_replacement(range(0, len(Gn)), 2)) |
|
|
|
|
|
# for i, j, kernel in tqdm( |
|
|
|
|
|
# pool.map(do_partial, itr), desc='calculating kernels', |
|
|
|
|
|
# file=sys.stdout): |
|
|
|
|
|
# Kmatrix[i][j] = kernel |
|
|
|
|
|
# Kmatrix[j][i] = kernel |
|
|
|
|
|
# pool.close() |
|
|
|
|
|
# pool.join() |
|
|
|
|
|
|
|
|
|
|
|
# # ---- use pool.imap_unordered to parallel and track progress. ---- |
|
|
|
|
|
# do_partial = partial(wrapper_ssp_do, ds_attrs, node_label, edge_label, |
|
|
|
|
|
# node_kernels, edge_kernels) |
|
|
|
|
|
# itr = zip(combinations_with_replacement(Gn, 2), |
|
|
|
|
|
# combinations_with_replacement(splist, 2), |
|
|
|
|
|
# combinations_with_replacement(range(0, len(Gn)), 2)) |
|
|
|
|
|
# len_itr = int(len(Gn) * (len(Gn) + 1) / 2) |
|
|
|
|
|
# if len_itr < 1000 * n_jobs: |
|
|
|
|
|
# chunksize = int(len_itr / n_jobs) + 1 |
|
|
|
|
|
# else: |
|
|
|
|
|
# chunksize = 1000 |
|
|
|
|
|
# from contextlib import closing |
|
|
|
|
|
# with closing(Pool(n_jobs)) as pool: |
|
|
|
|
|
# for i, j, kernel in tqdm( |
|
|
|
|
|
# pool.imap_unordered(do_partial, itr, 1000), |
|
|
|
|
|
# desc='calculating kernels', |
|
|
|
|
|
# file=sys.stdout): |
|
|
|
|
|
# Kmatrix[i][j] = kernel |
|
|
|
|
|
# Kmatrix[j][i] = kernel |
|
|
|
|
|
# pool.close() |
|
|
|
|
|
# pool.join() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
run_time = time.time() - start_time |
|
|
|
|
|
if verbose: |
|
|
|
|
|
print("\n --- shortest path kernel matrix of size %d built in %s seconds ---" |
|
|
|
|
|
% (len(Gn), run_time)) |
|
|
|
|
|
|
|
|
|
|
|
return Kmatrix, run_time |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def structuralspkernel_do(g1, g2, spl1, spl2, ds_attrs, node_label, edge_label, |
|
|
|
|
|
node_kernels, edge_kernels): |
|
|
|
|
|
|
|
|
|
|
|
kernel = 0 |
|
|
|
|
|
|
|
|
|
|
|
# First, compute shortest path matrices, method borrowed from FCSP. |
|
|
|
|
|
vk_dict = getAllNodeKernels(g1, g2, node_kernels, node_label, ds_attrs) |
|
|
|
|
|
# Then, compute kernels between all pairs of edges, which is an idea of |
|
|
|
|
|
# extension of FCSP. It suits sparse graphs, which is the most case we |
|
|
|
|
|
# went though. For dense graphs, this would be slow. |
|
|
|
|
|
ek_dict = getAllEdgeKernels(g1, g2, edge_kernels, edge_label, ds_attrs) |
|
|
|
|
|
|
|
|
|
|
|
# compute graph kernels |
|
|
|
|
|
if vk_dict: |
|
|
|
|
|
if ek_dict: |
|
|
|
|
|
for p1, p2 in product(spl1, spl2): |
|
|
|
|
|
if len(p1) == len(p2): |
|
|
|
|
|
kpath = vk_dict[(p1[0], p2[0])] |
|
|
|
|
|
if kpath: |
|
|
|
|
|
for idx in range(1, len(p1)): |
|
|
|
|
|
kpath *= vk_dict[(p1[idx], p2[idx])] * \ |
|
|
|
|
|
ek_dict[((p1[idx-1], p1[idx]), |
|
|
|
|
|
(p2[idx-1], p2[idx]))] |
|
|
|
|
|
if not kpath: |
|
|
|
|
|
break |
|
|
|
|
|
kernel += kpath # add up kernels of all paths |
|
|
|
|
|
else: |
|
|
|
|
|
for p1, p2 in product(spl1, spl2): |
|
|
|
|
|
if len(p1) == len(p2): |
|
|
|
|
|
kpath = vk_dict[(p1[0], p2[0])] |
|
|
|
|
|
if kpath: |
|
|
|
|
|
for idx in range(1, len(p1)): |
|
|
|
|
|
kpath *= vk_dict[(p1[idx], p2[idx])] |
|
|
|
|
|
if not kpath: |
|
|
|
|
|
break |
|
|
|
|
|
kernel += kpath # add up kernels of all paths |
|
|
|
|
|
else: |
|
|
|
|
|
if ek_dict: |
|
|
|
|
|
for p1, p2 in product(spl1, spl2): |
|
|
|
|
|
if len(p1) == len(p2): |
|
|
|
|
|
if len(p1) == 0: |
|
|
|
|
|
kernel += 1 |
|
|
|
|
|
else: |
|
|
|
|
|
kpath = 1 |
|
|
|
|
|
for idx in range(0, len(p1) - 1): |
|
|
|
|
|
kpath *= ek_dict[((p1[idx], p1[idx+1]), |
|
|
|
|
|
(p2[idx], p2[idx+1]))] |
|
|
|
|
|
if not kpath: |
|
|
|
|
|
break |
|
|
|
|
|
kernel += kpath # add up kernels of all paths |
|
|
|
|
|
else: |
|
|
|
|
|
for p1, p2 in product(spl1, spl2): |
|
|
|
|
|
if len(p1) == len(p2): |
|
|
|
|
|
kernel += 1 |
|
|
|
|
|
try: |
|
|
|
|
|
kernel = kernel / (len(spl1) * len(spl2)) # calculate mean average |
|
|
|
|
|
except ZeroDivisionError: |
|
|
|
|
|
print(spl1, spl2) |
|
|
|
|
|
print(g1.nodes(data=True)) |
|
|
|
|
|
print(g1.edges(data=True)) |
|
|
|
|
|
raise Exception |
|
|
|
|
|
|
|
|
|
|
|
# # ---- exact implementation of the Fast Computation of Shortest Path Kernel (FCSP), reference [2], sadly it is slower than the current implementation |
|
|
|
|
|
# # compute vertex kernel matrix |
|
|
|
|
|
# try: |
|
|
|
|
|
# vk_mat = np.zeros((nx.number_of_nodes(g1), |
|
|
|
|
|
# nx.number_of_nodes(g2))) |
|
|
|
|
|
# g1nl = enumerate(g1.nodes(data=True)) |
|
|
|
|
|
# g2nl = enumerate(g2.nodes(data=True)) |
|
|
|
|
|
# for i1, n1 in g1nl: |
|
|
|
|
|
# for i2, n2 in g2nl: |
|
|
|
|
|
# vk_mat[i1][i2] = kn( |
|
|
|
|
|
# n1[1][node_label], n2[1][node_label], |
|
|
|
|
|
# [n1[1]['attributes']], [n2[1]['attributes']]) |
|
|
|
|
|
|
|
|
|
|
|
# range1 = range(0, len(edge_w_g[i])) |
|
|
|
|
|
# range2 = range(0, len(edge_w_g[j])) |
|
|
|
|
|
# for i1 in range1: |
|
|
|
|
|
# x1 = edge_x_g[i][i1] |
|
|
|
|
|
# y1 = edge_y_g[i][i1] |
|
|
|
|
|
# w1 = edge_w_g[i][i1] |
|
|
|
|
|
# for i2 in range2: |
|
|
|
|
|
# x2 = edge_x_g[j][i2] |
|
|
|
|
|
# y2 = edge_y_g[j][i2] |
|
|
|
|
|
# w2 = edge_w_g[j][i2] |
|
|
|
|
|
# ke = (w1 == w2) |
|
|
|
|
|
# if ke > 0: |
|
|
|
|
|
# kn1 = vk_mat[x1][x2] * vk_mat[y1][y2] |
|
|
|
|
|
# kn2 = vk_mat[x1][y2] * vk_mat[y1][x2] |
|
|
|
|
|
# Kmatrix += kn1 + kn2 |
|
|
|
|
|
return kernel |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def wrapper_ssp_do(ds_attrs, node_label, edge_label, node_kernels, |
|
|
|
|
|
edge_kernels, itr): |
|
|
|
|
|
i = itr[0] |
|
|
|
|
|
j = itr[1] |
|
|
|
|
|
return i, j, structuralspkernel_do(G_gs[i], G_gs[j], G_spl[i], G_spl[j], |
|
|
|
|
|
ds_attrs, node_label, edge_label, |
|
|
|
|
|
node_kernels, edge_kernels) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def ssp_do_trie(g1, g2, trie1, trie2, ds_attrs, node_label, edge_label, |
|
|
|
|
|
node_kernels, edge_kernels): |
|
|
|
|
|
|
|
|
|
|
|
# # traverse all paths in graph1. Deep-first search is applied. |
|
|
|
|
|
# def traverseBothTrie(root, trie2, kernel, pcurrent=[]): |
|
|
|
|
|
# for key, node in root['children'].items(): |
|
|
|
|
|
# pcurrent.append(key) |
|
|
|
|
|
# if node['isEndOfWord']: |
|
|
|
|
|
# # print(node['count']) |
|
|
|
|
|
# traverseTrie2(trie2.root, pcurrent, kernel, |
|
|
|
|
|
# pcurrent=[]) |
|
|
|
|
|
# if node['children'] != {}: |
|
|
|
|
|
# traverseBothTrie(node, trie2, kernel, pcurrent) |
|
|
|
|
|
# else: |
|
|
|
|
|
# del pcurrent[-1] |
|
|
|
|
|
# if pcurrent != []: |
|
|
|
|
|
# del pcurrent[-1] |
|
|
|
|
|
# |
|
|
|
|
|
# |
|
|
|
|
|
# # traverse all paths in graph2 and find out those that are not in |
|
|
|
|
|
# # graph1. Deep-first search is applied. |
|
|
|
|
|
# def traverseTrie2(root, p1, kernel, pcurrent=[]): |
|
|
|
|
|
# for key, node in root['children'].items(): |
|
|
|
|
|
# pcurrent.append(key) |
|
|
|
|
|
# if node['isEndOfWord']: |
|
|
|
|
|
# # print(node['count']) |
|
|
|
|
|
# kernel[0] += computePathKernel(p1, pcurrent, vk_dict, ek_dict) |
|
|
|
|
|
# if node['children'] != {}: |
|
|
|
|
|
# traverseTrie2(node, p1, kernel, pcurrent) |
|
|
|
|
|
# else: |
|
|
|
|
|
# del pcurrent[-1] |
|
|
|
|
|
# if pcurrent != []: |
|
|
|
|
|
# del pcurrent[-1] |
|
|
|
|
|
# |
|
|
|
|
|
# |
|
|
|
|
|
# kernel = [0] |
|
|
|
|
|
# |
|
|
|
|
|
# # First, compute shortest path matrices, method borrowed from FCSP. |
|
|
|
|
|
# vk_dict = getAllNodeKernels(g1, g2, node_kernels, node_label, ds_attrs) |
|
|
|
|
|
# # Then, compute kernels between all pairs of edges, which is an idea of |
|
|
|
|
|
# # extension of FCSP. It suits sparse graphs, which is the most case we |
|
|
|
|
|
# # went though. For dense graphs, this would be slow. |
|
|
|
|
|
# ek_dict = getAllEdgeKernels(g1, g2, edge_kernels, edge_label, ds_attrs) |
|
|
|
|
|
# |
|
|
|
|
|
# # compute graph kernels |
|
|
|
|
|
# traverseBothTrie(trie1[0].root, trie2[0], kernel) |
|
|
|
|
|
# |
|
|
|
|
|
# kernel = kernel[0] / (trie1[1] * trie2[1]) # calculate mean average |
|
|
|
|
|
|
|
|
|
|
|
# # traverse all paths in graph1. Deep-first search is applied. |
|
|
|
|
|
# def traverseBothTrie(root, trie2, kernel, vk_dict, ek_dict, pcurrent=[]): |
|
|
|
|
|
# for key, node in root['children'].items(): |
|
|
|
|
|
# pcurrent.append(key) |
|
|
|
|
|
# if node['isEndOfWord']: |
|
|
|
|
|
# # print(node['count']) |
|
|
|
|
|
# traverseTrie2(trie2.root, pcurrent, kernel, vk_dict, ek_dict, |
|
|
|
|
|
# pcurrent=[]) |
|
|
|
|
|
# if node['children'] != {}: |
|
|
|
|
|
# traverseBothTrie(node, trie2, kernel, vk_dict, ek_dict, pcurrent) |
|
|
|
|
|
# else: |
|
|
|
|
|
# del pcurrent[-1] |
|
|
|
|
|
# if pcurrent != []: |
|
|
|
|
|
# del pcurrent[-1] |
|
|
|
|
|
# |
|
|
|
|
|
# |
|
|
|
|
|
# # traverse all paths in graph2 and find out those that are not in |
|
|
|
|
|
# # graph1. Deep-first search is applied. |
|
|
|
|
|
# def traverseTrie2(root, p1, kernel, vk_dict, ek_dict, pcurrent=[]): |
|
|
|
|
|
# for key, node in root['children'].items(): |
|
|
|
|
|
# pcurrent.append(key) |
|
|
|
|
|
# if node['isEndOfWord']: |
|
|
|
|
|
# # print(node['count']) |
|
|
|
|
|
# kernel[0] += computePathKernel(p1, pcurrent, vk_dict, ek_dict) |
|
|
|
|
|
# if node['children'] != {}: |
|
|
|
|
|
# traverseTrie2(node, p1, kernel, vk_dict, ek_dict, pcurrent) |
|
|
|
|
|
# else: |
|
|
|
|
|
# del pcurrent[-1] |
|
|
|
|
|
# if pcurrent != []: |
|
|
|
|
|
# del pcurrent[-1] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
kernel = [0] |
|
|
|
|
|
|
|
|
|
|
|
# First, compute shortest path matrices, method borrowed from FCSP. |
|
|
|
|
|
vk_dict = getAllNodeKernels(g1, g2, node_kernels, node_label, ds_attrs) |
|
|
|
|
|
# Then, compute kernels between all pairs of edges, which is an idea of |
|
|
|
|
|
# extension of FCSP. It suits sparse graphs, which is the most case we |
|
|
|
|
|
# went though. For dense graphs, this would be slow. |
|
|
|
|
|
ek_dict = getAllEdgeKernels(g1, g2, edge_kernels, edge_label, ds_attrs) |
|
|
|
|
|
|
|
|
|
|
|
# compute graph kernels |
|
|
|
|
|
# traverseBothTrie(trie1[0].root, trie2[0], kernel, vk_dict, ek_dict) |
|
|
|
|
|
if vk_dict: |
|
|
|
|
|
if ek_dict: |
|
|
|
|
|
traverseBothTriem(trie1[0].root, trie2[0], kernel, vk_dict, ek_dict) |
|
|
|
|
|
else: |
|
|
|
|
|
traverseBothTriev(trie1[0].root, trie2[0], kernel, vk_dict, ek_dict) |
|
|
|
|
|
else: |
|
|
|
|
|
if ek_dict: |
|
|
|
|
|
traverseBothTriee(trie1[0].root, trie2[0], kernel, vk_dict, ek_dict) |
|
|
|
|
|
else: |
|
|
|
|
|
traverseBothTrieu(trie1[0].root, trie2[0], kernel, vk_dict, ek_dict) |
|
|
|
|
|
|
|
|
|
|
|
kernel = kernel[0] / (trie1[1] * trie2[1]) # calculate mean average |
|
|
|
|
|
|
|
|
|
|
|
return kernel |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def wrapper_ssp_do_trie(ds_attrs, node_label, edge_label, node_kernels, |
|
|
|
|
|
edge_kernels, itr): |
|
|
|
|
|
i = itr[0] |
|
|
|
|
|
j = itr[1] |
|
|
|
|
|
return i, j, ssp_do_trie(G_gs[i], G_gs[j], G_spl[i], G_spl[j], ds_attrs, |
|
|
|
|
|
node_label, edge_label, node_kernels, edge_kernels) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def getAllNodeKernels(g1, g2, node_kernels, node_label, ds_attrs): |
|
|
|
|
|
# compute shortest path matrices, method borrowed from FCSP. |
|
|
|
|
|
vk_dict = {} # shortest path matrices dict |
|
|
|
|
|
if ds_attrs['node_labeled']: |
|
|
|
|
|
# node symb and non-synb labeled |
|
|
|
|
|
if ds_attrs['node_attr_dim'] > 0: |
|
|
|
|
|
kn = node_kernels['mix'] |
|
|
|
|
|
for n1, n2 in product( |
|
|
|
|
|
g1.nodes(data=True), g2.nodes(data=True)): |
|
|
|
|
|
vk_dict[(n1[0], n2[0])] = kn( |
|
|
|
|
|
n1[1][node_label], n2[1][node_label], |
|
|
|
|
|
n1[1]['attributes'], n2[1]['attributes']) |
|
|
|
|
|
# node symb labeled |
|
|
|
|
|
else: |
|
|
|
|
|
kn = node_kernels['symb'] |
|
|
|
|
|
for n1 in g1.nodes(data=True): |
|
|
|
|
|
for n2 in g2.nodes(data=True): |
|
|
|
|
|
vk_dict[(n1[0], n2[0])] = kn(n1[1][node_label], |
|
|
|
|
|
n2[1][node_label]) |
|
|
|
|
|
else: |
|
|
|
|
|
# node non-synb labeled |
|
|
|
|
|
if ds_attrs['node_attr_dim'] > 0: |
|
|
|
|
|
kn = node_kernels['nsymb'] |
|
|
|
|
|
for n1 in g1.nodes(data=True): |
|
|
|
|
|
for n2 in g2.nodes(data=True): |
|
|
|
|
|
vk_dict[(n1[0], n2[0])] = kn(n1[1]['attributes'], |
|
|
|
|
|
n2[1]['attributes']) |
|
|
|
|
|
# node unlabeled |
|
|
|
|
|
else: |
|
|
|
|
|
pass |
|
|
|
|
|
|
|
|
|
|
|
return vk_dict |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def getAllEdgeKernels(g1, g2, edge_kernels, edge_label, ds_attrs): |
|
|
|
|
|
# compute kernels between all pairs of edges, which is an idea of |
|
|
|
|
|
# extension of FCSP. It suits sparse graphs, which is the most case we |
|
|
|
|
|
# went though. For dense graphs, this would be slow. |
|
|
|
|
|
ek_dict = {} # dict of edge kernels |
|
|
|
|
|
if ds_attrs['edge_labeled']: |
|
|
|
|
|
# edge symb and non-synb labeled |
|
|
|
|
|
if ds_attrs['edge_attr_dim'] > 0: |
|
|
|
|
|
ke = edge_kernels['mix'] |
|
|
|
|
|
for e1, e2 in product( |
|
|
|
|
|
g1.edges(data=True), g2.edges(data=True)): |
|
|
|
|
|
ek_temp = ke(e1[2][edge_label], e2[2][edge_label], |
|
|
|
|
|
e1[2]['attributes'], e2[2]['attributes']) |
|
|
|
|
|
ek_dict[((e1[0], e1[1]), (e2[0], e2[1]))] = ek_temp |
|
|
|
|
|
ek_dict[((e1[1], e1[0]), (e2[0], e2[1]))] = ek_temp |
|
|
|
|
|
ek_dict[((e1[0], e1[1]), (e2[1], e2[0]))] = ek_temp |
|
|
|
|
|
ek_dict[((e1[1], e1[0]), (e2[1], e2[0]))] = ek_temp |
|
|
|
|
|
# edge symb labeled |
|
|
|
|
|
else: |
|
|
|
|
|
ke = edge_kernels['symb'] |
|
|
|
|
|
for e1 in g1.edges(data=True): |
|
|
|
|
|
for e2 in g2.edges(data=True): |
|
|
|
|
|
ek_temp = ke(e1[2][edge_label], e2[2][edge_label]) |
|
|
|
|
|
ek_dict[((e1[0], e1[1]), (e2[0], e2[1]))] = ek_temp |
|
|
|
|
|
ek_dict[((e1[1], e1[0]), (e2[0], e2[1]))] = ek_temp |
|
|
|
|
|
ek_dict[((e1[0], e1[1]), (e2[1], e2[0]))] = ek_temp |
|
|
|
|
|
ek_dict[((e1[1], e1[0]), (e2[1], e2[0]))] = ek_temp |
|
|
|
|
|
else: |
|
|
|
|
|
# edge non-synb labeled |
|
|
|
|
|
if ds_attrs['edge_attr_dim'] > 0: |
|
|
|
|
|
ke = edge_kernels['nsymb'] |
|
|
|
|
|
for e1 in g1.edges(data=True): |
|
|
|
|
|
for e2 in g2.edges(data=True): |
|
|
|
|
|
ek_temp = ke(e1[2]['attributes'], e2[2]['attributes']) |
|
|
|
|
|
ek_dict[((e1[0], e1[1]), (e2[0], e2[1]))] = ek_temp |
|
|
|
|
|
ek_dict[((e1[1], e1[0]), (e2[0], e2[1]))] = ek_temp |
|
|
|
|
|
ek_dict[((e1[0], e1[1]), (e2[1], e2[0]))] = ek_temp |
|
|
|
|
|
ek_dict[((e1[1], e1[0]), (e2[1], e2[0]))] = ek_temp |
|
|
|
|
|
# edge unlabeled |
|
|
|
|
|
else: |
|
|
|
|
|
pass |
|
|
|
|
|
|
|
|
|
|
|
return ek_dict |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# traverse all paths in graph1. Deep-first search is applied. |
|
|
|
|
|
def traverseBothTriem(root, trie2, kernel, vk_dict, ek_dict, pcurrent=[]): |
|
|
|
|
|
for key, node in root['children'].items(): |
|
|
|
|
|
pcurrent.append(key) |
|
|
|
|
|
if node['isEndOfWord']: |
|
|
|
|
|
# print(node['count']) |
|
|
|
|
|
traverseTrie2m(trie2.root, pcurrent, kernel, vk_dict, ek_dict, |
|
|
|
|
|
pcurrent=[]) |
|
|
|
|
|
if node['children'] != {}: |
|
|
|
|
|
traverseBothTriem(node, trie2, kernel, vk_dict, ek_dict, pcurrent) |
|
|
|
|
|
else: |
|
|
|
|
|
del pcurrent[-1] |
|
|
|
|
|
if pcurrent != []: |
|
|
|
|
|
del pcurrent[-1] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# traverse all paths in graph2 and find out those that are not in |
|
|
|
|
|
# graph1. Deep-first search is applied. |
|
|
|
|
|
def traverseTrie2m(root, p1, kernel, vk_dict, ek_dict, pcurrent=[]): |
|
|
|
|
|
for key, node in root['children'].items(): |
|
|
|
|
|
pcurrent.append(key) |
|
|
|
|
|
if node['isEndOfWord']: |
|
|
|
|
|
# print(node['count']) |
|
|
|
|
|
if len(p1) == len(pcurrent): |
|
|
|
|
|
kpath = vk_dict[(p1[0], pcurrent[0])] |
|
|
|
|
|
if kpath: |
|
|
|
|
|
for idx in range(1, len(p1)): |
|
|
|
|
|
kpath *= vk_dict[(p1[idx], pcurrent[idx])] * \ |
|
|
|
|
|
ek_dict[((p1[idx-1], p1[idx]), |
|
|
|
|
|
(pcurrent[idx-1], pcurrent[idx]))] |
|
|
|
|
|
if not kpath: |
|
|
|
|
|
break |
|
|
|
|
|
kernel[0] += kpath # add up kernels of all paths |
|
|
|
|
|
if node['children'] != {}: |
|
|
|
|
|
traverseTrie2m(node, p1, kernel, vk_dict, ek_dict, pcurrent) |
|
|
|
|
|
else: |
|
|
|
|
|
del pcurrent[-1] |
|
|
|
|
|
if pcurrent != []: |
|
|
|
|
|
del pcurrent[-1] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# traverse all paths in graph1. Deep-first search is applied. |
|
|
|
|
|
def traverseBothTriev(root, trie2, kernel, vk_dict, ek_dict, pcurrent=[]): |
|
|
|
|
|
for key, node in root['children'].items(): |
|
|
|
|
|
pcurrent.append(key) |
|
|
|
|
|
if node['isEndOfWord']: |
|
|
|
|
|
# print(node['count']) |
|
|
|
|
|
traverseTrie2v(trie2.root, pcurrent, kernel, vk_dict, ek_dict, |
|
|
|
|
|
pcurrent=[]) |
|
|
|
|
|
if node['children'] != {}: |
|
|
|
|
|
traverseBothTriev(node, trie2, kernel, vk_dict, ek_dict, pcurrent) |
|
|
|
|
|
else: |
|
|
|
|
|
del pcurrent[-1] |
|
|
|
|
|
if pcurrent != []: |
|
|
|
|
|
del pcurrent[-1] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# traverse all paths in graph2 and find out those that are not in |
|
|
|
|
|
# graph1. Deep-first search is applied. |
|
|
|
|
|
def traverseTrie2v(root, p1, kernel, vk_dict, ek_dict, pcurrent=[]): |
|
|
|
|
|
for key, node in root['children'].items(): |
|
|
|
|
|
pcurrent.append(key) |
|
|
|
|
|
if node['isEndOfWord']: |
|
|
|
|
|
# print(node['count']) |
|
|
|
|
|
if len(p1) == len(pcurrent): |
|
|
|
|
|
kpath = vk_dict[(p1[0], pcurrent[0])] |
|
|
|
|
|
if kpath: |
|
|
|
|
|
for idx in range(1, len(p1)): |
|
|
|
|
|
kpath *= vk_dict[(p1[idx], pcurrent[idx])] |
|
|
|
|
|
if not kpath: |
|
|
|
|
|
break |
|
|
|
|
|
kernel[0] += kpath # add up kernels of all paths |
|
|
|
|
|
if node['children'] != {}: |
|
|
|
|
|
traverseTrie2v(node, p1, kernel, vk_dict, ek_dict, pcurrent) |
|
|
|
|
|
else: |
|
|
|
|
|
del pcurrent[-1] |
|
|
|
|
|
if pcurrent != []: |
|
|
|
|
|
del pcurrent[-1] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# traverse all paths in graph1. Deep-first search is applied. |
|
|
|
|
|
def traverseBothTriee(root, trie2, kernel, vk_dict, ek_dict, pcurrent=[]): |
|
|
|
|
|
for key, node in root['children'].items(): |
|
|
|
|
|
pcurrent.append(key) |
|
|
|
|
|
if node['isEndOfWord']: |
|
|
|
|
|
# print(node['count']) |
|
|
|
|
|
traverseTrie2e(trie2.root, pcurrent, kernel, vk_dict, ek_dict, |
|
|
|
|
|
pcurrent=[]) |
|
|
|
|
|
if node['children'] != {}: |
|
|
|
|
|
traverseBothTriee(node, trie2, kernel, vk_dict, ek_dict, pcurrent) |
|
|
|
|
|
else: |
|
|
|
|
|
del pcurrent[-1] |
|
|
|
|
|
if pcurrent != []: |
|
|
|
|
|
del pcurrent[-1] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# traverse all paths in graph2 and find out those that are not in |
|
|
|
|
|
# graph1. Deep-first search is applied. |
|
|
|
|
|
def traverseTrie2e(root, p1, kernel, vk_dict, ek_dict, pcurrent=[]): |
|
|
|
|
|
for key, node in root['children'].items(): |
|
|
|
|
|
pcurrent.append(key) |
|
|
|
|
|
if node['isEndOfWord']: |
|
|
|
|
|
# print(node['count']) |
|
|
|
|
|
if len(p1) == len(pcurrent): |
|
|
|
|
|
if len(p1) == 0: |
|
|
|
|
|
kernel += 1 |
|
|
|
|
|
else: |
|
|
|
|
|
kpath = 1 |
|
|
|
|
|
for idx in range(0, len(p1) - 1): |
|
|
|
|
|
kpath *= ek_dict[((p1[idx], p1[idx+1]), |
|
|
|
|
|
(pcurrent[idx], pcurrent[idx+1]))] |
|
|
|
|
|
if not kpath: |
|
|
|
|
|
break |
|
|
|
|
|
kernel[0] += kpath # add up kernels of all paths |
|
|
|
|
|
if node['children'] != {}: |
|
|
|
|
|
traverseTrie2e(node, p1, kernel, vk_dict, ek_dict, pcurrent) |
|
|
|
|
|
else: |
|
|
|
|
|
del pcurrent[-1] |
|
|
|
|
|
if pcurrent != []: |
|
|
|
|
|
del pcurrent[-1] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# traverse all paths in graph1. Deep-first search is applied. |
|
|
|
|
|
def traverseBothTrieu(root, trie2, kernel, vk_dict, ek_dict, pcurrent=[]): |
|
|
|
|
|
for key, node in root['children'].items(): |
|
|
|
|
|
pcurrent.append(key) |
|
|
|
|
|
if node['isEndOfWord']: |
|
|
|
|
|
# print(node['count']) |
|
|
|
|
|
traverseTrie2u(trie2.root, pcurrent, kernel, vk_dict, ek_dict, |
|
|
|
|
|
pcurrent=[]) |
|
|
|
|
|
if node['children'] != {}: |
|
|
|
|
|
traverseBothTrieu(node, trie2, kernel, vk_dict, ek_dict, pcurrent) |
|
|
|
|
|
else: |
|
|
|
|
|
del pcurrent[-1] |
|
|
|
|
|
if pcurrent != []: |
|
|
|
|
|
del pcurrent[-1] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# traverse all paths in graph2 and find out those that are not in |
|
|
|
|
|
# graph1. Deep-first search is applied. |
|
|
|
|
|
def traverseTrie2u(root, p1, kernel, vk_dict, ek_dict, pcurrent=[]): |
|
|
|
|
|
for key, node in root['children'].items(): |
|
|
|
|
|
pcurrent.append(key) |
|
|
|
|
|
if node['isEndOfWord']: |
|
|
|
|
|
# print(node['count']) |
|
|
|
|
|
if len(p1) == len(pcurrent): |
|
|
|
|
|
kernel[0] += 1 |
|
|
|
|
|
if node['children'] != {}: |
|
|
|
|
|
traverseTrie2u(node, p1, kernel, vk_dict, ek_dict, pcurrent) |
|
|
|
|
|
else: |
|
|
|
|
|
del pcurrent[-1] |
|
|
|
|
|
if pcurrent != []: |
|
|
|
|
|
del pcurrent[-1] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#def computePathKernel(p1, p2, vk_dict, ek_dict): |
|
|
|
|
|
# kernel = 0 |
|
|
|
|
|
# if vk_dict: |
|
|
|
|
|
# if ek_dict: |
|
|
|
|
|
# if len(p1) == len(p2): |
|
|
|
|
|
# kpath = vk_dict[(p1[0], p2[0])] |
|
|
|
|
|
# if kpath: |
|
|
|
|
|
# for idx in range(1, len(p1)): |
|
|
|
|
|
# kpath *= vk_dict[(p1[idx], p2[idx])] * \ |
|
|
|
|
|
# ek_dict[((p1[idx-1], p1[idx]), |
|
|
|
|
|
# (p2[idx-1], p2[idx]))] |
|
|
|
|
|
# if not kpath: |
|
|
|
|
|
# break |
|
|
|
|
|
# kernel += kpath # add up kernels of all paths |
|
|
|
|
|
# else: |
|
|
|
|
|
# if len(p1) == len(p2): |
|
|
|
|
|
# kpath = vk_dict[(p1[0], p2[0])] |
|
|
|
|
|
# if kpath: |
|
|
|
|
|
# for idx in range(1, len(p1)): |
|
|
|
|
|
# kpath *= vk_dict[(p1[idx], p2[idx])] |
|
|
|
|
|
# if not kpath: |
|
|
|
|
|
# break |
|
|
|
|
|
# kernel += kpath # add up kernels of all paths |
|
|
|
|
|
# else: |
|
|
|
|
|
# if ek_dict: |
|
|
|
|
|
# if len(p1) == len(p2): |
|
|
|
|
|
# if len(p1) == 0: |
|
|
|
|
|
# kernel += 1 |
|
|
|
|
|
# else: |
|
|
|
|
|
# kpath = 1 |
|
|
|
|
|
# for idx in range(0, len(p1) - 1): |
|
|
|
|
|
# kpath *= ek_dict[((p1[idx], p1[idx+1]), |
|
|
|
|
|
# (p2[idx], p2[idx+1]))] |
|
|
|
|
|
# if not kpath: |
|
|
|
|
|
# break |
|
|
|
|
|
# kernel += kpath # add up kernels of all paths |
|
|
|
|
|
# else: |
|
|
|
|
|
# if len(p1) == len(p2): |
|
|
|
|
|
# kernel += 1 |
|
|
|
|
|
# |
|
|
|
|
|
# return kernel |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_shortest_paths(G, weight, directed): |
|
|
|
|
|
"""Get all shortest paths of a graph. |
|
|
|
|
|
|
|
|
|
|
|
Parameters |
|
|
|
|
|
---------- |
|
|
|
|
|
G : NetworkX graphs |
|
|
|
|
|
The graphs whose paths are calculated. |
|
|
|
|
|
weight : string/None |
|
|
|
|
|
edge attribute used as weight to calculate the shortest path. |
|
|
|
|
|
directed: boolean |
|
|
|
|
|
Whether graph is directed. |
|
|
|
|
|
|
|
|
|
|
|
Return |
|
|
|
|
|
------ |
|
|
|
|
|
sp : list of list |
|
|
|
|
|
List of shortest paths of the graph, where each path is represented by a list of nodes. |
|
|
|
|
|
""" |
|
|
|
|
|
sp = [] |
|
|
|
|
|
for n1, n2 in combinations(G.nodes(), 2): |
|
|
|
|
|
try: |
|
|
|
|
|
spltemp = list(nx.all_shortest_paths(G, n1, n2, weight=weight)) |
|
|
|
|
|
except nx.NetworkXNoPath: # nodes not connected |
|
|
|
|
|
# sp.append([]) |
|
|
|
|
|
pass |
|
|
|
|
|
else: |
|
|
|
|
|
sp += spltemp |
|
|
|
|
|
# each edge walk is counted twice, starting from both its extreme nodes. |
|
|
|
|
|
if not directed: |
|
|
|
|
|
sp += [sptemp[::-1] for sptemp in spltemp] |
|
|
|
|
|
|
|
|
|
|
|
# add single nodes as length 0 paths. |
|
|
|
|
|
sp += [[n] for n in G.nodes()] |
|
|
|
|
|
return sp |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def wrapper_getSP_naive(weight, directed, itr_item): |
|
|
|
|
|
g = itr_item[0] |
|
|
|
|
|
i = itr_item[1] |
|
|
|
|
|
return i, get_shortest_paths(g, weight, directed) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_sps_as_trie(G, weight, directed): |
|
|
|
|
|
"""Get all shortest paths of a graph and insert them into a trie. |
|
|
|
|
|
|
|
|
|
|
|
Parameters |
|
|
|
|
|
---------- |
|
|
|
|
|
G : NetworkX graphs |
|
|
|
|
|
The graphs whose paths are calculated. |
|
|
|
|
|
weight : string/None |
|
|
|
|
|
edge attribute used as weight to calculate the shortest path. |
|
|
|
|
|
directed: boolean |
|
|
|
|
|
Whether graph is directed. |
|
|
|
|
|
|
|
|
|
|
|
Return |
|
|
|
|
|
------ |
|
|
|
|
|
sp : list of list |
|
|
|
|
|
List of shortest paths of the graph, where each path is represented by a list of nodes. |
|
|
|
|
|
""" |
|
|
|
|
|
sptrie = Trie() |
|
|
|
|
|
lensp = 0 |
|
|
|
|
|
for n1, n2 in combinations(G.nodes(), 2): |
|
|
|
|
|
try: |
|
|
|
|
|
spltemp = list(nx.all_shortest_paths(G, n1, n2, weight=weight)) |
|
|
|
|
|
except nx.NetworkXNoPath: # nodes not connected |
|
|
|
|
|
pass |
|
|
|
|
|
else: |
|
|
|
|
|
lensp += len(spltemp) |
|
|
|
|
|
if not directed: |
|
|
|
|
|
lensp += len(spltemp) |
|
|
|
|
|
for sp in spltemp: |
|
|
|
|
|
sptrie.insertWord(sp) |
|
|
|
|
|
# each edge walk is counted twice, starting from both its extreme nodes. |
|
|
|
|
|
if not directed: |
|
|
|
|
|
sptrie.insertWord(sp[::-1]) |
|
|
|
|
|
|
|
|
|
|
|
# add single nodes as length 0 paths. |
|
|
|
|
|
for n in G.nodes(): |
|
|
|
|
|
sptrie.insertWord([n]) |
|
|
|
|
|
|
|
|
|
|
|
return sptrie, lensp + nx.number_of_nodes(G) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def wrapper_getSP_trie(weight, directed, itr_item): |
|
|
|
|
|
g = itr_item[0] |
|
|
|
|
|
i = itr_item[1] |
|
|
|
|
|
return i, get_sps_as_trie(g, weight, directed) |