diff --git a/gklearn/preimage/median_preimage_generator.py b/gklearn/preimage/median_preimage_generator.py index 6d3a45f..0449da4 100644 --- a/gklearn/preimage/median_preimage_generator.py +++ b/gklearn/preimage/median_preimage_generator.py @@ -191,20 +191,22 @@ class MedianPreimageGenerator(PreimageGenerator): """ if self.__fit_method == 'random': # random if self.__ged_options['edit_cost'] == 'LETTER': - self.__edit_cost_constants = random.sample(range(1, 10), 3) - self.__edit_cost_constants = [item * 0.1 for item in self.__edit_cost_constants] + self.__edit_cost_constants = random.sample(range(1, 1000), 3) + self.__edit_cost_constants = [item * 0.001 for item in self.__edit_cost_constants] elif self.__ged_options['edit_cost'] == 'LETTER2': random.seed(time.time()) - self.__edit_cost_constants = random.sample(range(1, 10), 5) - # self.__edit_cost_constants = [item * 0.1 for item in self.__edit_cost_constants] + self.__edit_cost_constants = random.sample(range(1, 1000), 5) + self.__edit_cost_constants = [item * 0.01 for item in self.__edit_cost_constants] elif self.__ged_options['edit_cost'] == 'NON_SYMBOLIC': - self.__edit_cost_constants = random.sample(range(1, 10), 6) + self.__edit_cost_constants = random.sample(range(1, 1000), 6) + self.__edit_cost_constants = [item * 0.01 for item in self.__edit_cost_constants] if self._dataset.node_attrs == []: self.__edit_cost_constants[2] = 0 if self._dataset.edge_attrs == []: self.__edit_cost_constants[5] = 0 else: - self.__edit_cost_constants = random.sample(range(1, 10), 6) + self.__edit_cost_constants = random.sample(range(1, 1000), 6) + self.__edit_cost_constants = [item * 0.01 for item in self.__edit_cost_constants] if self._verbose >= 2: print('edit cost constants used:', self.__edit_cost_constants) elif self.__fit_method == 'expert': # expert