|
|
@@ -19,44 +19,38 @@ def test_list_graph_kernels(): |
|
|
|
def chooseDataset(ds_name): |
|
|
|
"""Choose dataset according to name. |
|
|
|
""" |
|
|
|
from gklearn.utils import Dataset |
|
|
|
|
|
|
|
dataset = Dataset() |
|
|
|
from gklearn.dataset import Dataset |
|
|
|
|
|
|
|
# no node labels (and no edge labels). |
|
|
|
if ds_name == 'Alkane': |
|
|
|
dataset.load_predefined_dataset(ds_name) |
|
|
|
dataset = Dataset('Alkane_unlabeled') |
|
|
|
dataset.trim_dataset(edge_required=False) |
|
|
|
irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} |
|
|
|
dataset.remove_labels(**irrelevant_labels) |
|
|
|
dataset.cut_graphs(range(1, 10)) |
|
|
|
# node symbolic labels. |
|
|
|
elif ds_name == 'Acyclic': |
|
|
|
dataset.load_predefined_dataset(ds_name) |
|
|
|
dataset = Dataset('Acyclic') |
|
|
|
dataset.trim_dataset(edge_required=False) |
|
|
|
irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} |
|
|
|
dataset.remove_labels(**irrelevant_labels) |
|
|
|
# node non-symbolic labels. |
|
|
|
elif ds_name == 'Letter-med': |
|
|
|
dataset.load_predefined_dataset(ds_name) |
|
|
|
dataset = Dataset('Letter-med') |
|
|
|
dataset.trim_dataset(edge_required=False) |
|
|
|
# node symbolic and non-symbolic labels (and edge symbolic labels). |
|
|
|
elif ds_name == 'AIDS': |
|
|
|
dataset.load_predefined_dataset(ds_name) |
|
|
|
dataset = Dataset('AIDS') |
|
|
|
dataset.trim_dataset(edge_required=False) |
|
|
|
# edge non-symbolic labels (no node labels). |
|
|
|
elif ds_name == 'Fingerprint_edge': |
|
|
|
dataset.load_predefined_dataset('Fingerprint') |
|
|
|
dataset = Dataset('Fingerprint') |
|
|
|
dataset.trim_dataset(edge_required=True) |
|
|
|
irrelevant_labels = {'edge_attrs': ['orient', 'angle']} |
|
|
|
dataset.remove_labels(**irrelevant_labels) |
|
|
|
# edge non-symbolic labels (and node non-symbolic labels). |
|
|
|
elif ds_name == 'Fingerprint': |
|
|
|
dataset.load_predefined_dataset(ds_name) |
|
|
|
dataset = Dataset('Fingerprint') |
|
|
|
dataset.trim_dataset(edge_required=True) |
|
|
|
# edge symbolic and non-symbolic labels (and node symbolic and non-symbolic labels). |
|
|
|
elif ds_name == 'Cuneiform': |
|
|
|
dataset.load_predefined_dataset(ds_name) |
|
|
|
dataset = Dataset('Cuneiform') |
|
|
|
dataset.trim_dataset(edge_required=True) |
|
|
|
|
|
|
|
dataset.cut_graphs(range(0, 3)) |
|
|
@@ -544,4 +538,4 @@ if __name__ == "__main__": |
|
|
|
# test_RandomWalk('Acyclic', 'fp', None, None) |
|
|
|
# test_RandomWalk('Acyclic', 'spectral', 'exp', 'imap_unordered') |
|
|
|
# test_CommonWalk('Alkane', 0.01, 'geo') |
|
|
|
# test_ShortestPath('Acyclic') |
|
|
|
# test_ShortestPath('Acyclic') |