|
@@ -0,0 +1,83 @@ |
|
|
|
|
|
import functools |
|
|
|
|
|
from libs import * |
|
|
|
|
|
import multiprocessing |
|
|
|
|
|
|
|
|
|
|
|
from gklearn.kernels.spKernel import spkernel |
|
|
|
|
|
from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct |
|
|
|
|
|
#from gklearn.utils.model_selection_precomputed import trial_do |
|
|
|
|
|
|
|
|
|
|
|
# datasets |
|
|
|
|
|
dslist = [ |
|
|
|
|
|
# {'name': 'Alkane', 'dataset': '../datasets/Alkane/dataset.ds', 'task': 'regression', |
|
|
|
|
|
# 'dataset_y': '../datasets/Alkane/dataset_boiling_point_names.txt'}, |
|
|
|
|
|
# # contains single node graph, node symb |
|
|
|
|
|
# {'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds', |
|
|
|
|
|
# 'task': 'regression'}, # node symb |
|
|
|
|
|
# {'name': 'MAO', 'dataset': '../datasets/MAO/dataset.ds'}, # node/edge symb |
|
|
|
|
|
# {'name': 'PAH', 'dataset': '../datasets/PAH/dataset.ds'}, # unlabeled |
|
|
|
|
|
# {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG_A.txt'}, # node/edge symb |
|
|
|
|
|
# {'name': 'Letter-med', 'dataset': '../datasets/Letter-med/Letter-med_A.txt'}, |
|
|
|
|
|
# # node nsymb |
|
|
|
|
|
# {'name': 'ENZYMES', 'dataset': '../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'}, |
|
|
|
|
|
# # node symb/nsymb |
|
|
|
|
|
# {'name': 'AIDS', 'dataset': '../datasets/AIDS/AIDS_A.txt'}, # node symb/nsymb, edge symb |
|
|
|
|
|
{'name': 'NCI1', 'dataset': '../datasets/NCI1/NCI1_A.txt'}, # node symb |
|
|
|
|
|
{'name': 'NCI109', 'dataset': '../datasets/NCI109/NCI109_A.txt'}, # node symb |
|
|
|
|
|
{'name': 'D&D', 'dataset': '../datasets/DD/DD_A.txt'}, # node symb |
|
|
|
|
|
# {'name': 'monoterpenoides', 'dataset': '../datasets/monoterpenoides/dataset_10+.ds'}, # node/edge |
|
|
|
|
|
# {'name': 'Letter-high', 'dataset': '../datasets/Letter-high/Letter-high_A.txt'}, |
|
|
|
|
|
# # node nsymb symb |
|
|
|
|
|
# |
|
|
|
|
|
# {'name': 'Mutagenicity', 'dataset': '../datasets/Mutagenicity/Mutagenicity_A.txt'}, |
|
|
|
|
|
# # node/edge symb |
|
|
|
|
|
# {'name': 'COIL-DEL', 'dataset': '../datasets/COIL-DEL/COIL-DEL_A.txt'}, # edge symb, node nsymb |
|
|
|
|
|
# # # {'name': 'BZR', 'dataset': '../datasets/BZR_txt/BZR_A_sparse.txt'}, # node symb/nsymb |
|
|
|
|
|
# # # {'name': 'COX2', 'dataset': '../datasets/COX2_txt/COX2_A_sparse.txt'}, # node symb/nsymb |
|
|
|
|
|
# {'name': 'Fingerprint', 'dataset': '../datasets/Fingerprint/Fingerprint_A.txt'}, |
|
|
|
|
|
# |
|
|
|
|
|
# # {'name': 'DHFR', 'dataset': '../datasets/DHFR_txt/DHFR_A_sparse.txt'}, # node symb/nsymb |
|
|
|
|
|
# # {'name': 'SYNTHETIC', 'dataset': '../datasets/SYNTHETIC_txt/SYNTHETIC_A_sparse.txt'}, # node symb/nsymb |
|
|
|
|
|
# # {'name': 'MSRC9', 'dataset': '../datasets/MSRC_9_txt/MSRC_9_A.txt'}, # node symb |
|
|
|
|
|
# # {'name': 'MSRC21', 'dataset': '../datasets/MSRC_21_txt/MSRC_21_A.txt'}, # node symb |
|
|
|
|
|
# # {'name': 'FIRSTMM_DB', 'dataset': '../datasets/FIRSTMM_DB/FIRSTMM_DB_A.txt'}, # node symb/nsymb ,edge nsymb |
|
|
|
|
|
|
|
|
|
|
|
# # {'name': 'PROTEINS', 'dataset': '../datasets/PROTEINS_txt/PROTEINS_A_sparse.txt'}, # node symb/nsymb |
|
|
|
|
|
# # {'name': 'PROTEINS_full', 'dataset': '../datasets/PROTEINS_full_txt/PROTEINS_full_A_sparse.txt'}, # node symb/nsymb |
|
|
|
|
|
# {'name': 'NCI-HIV', 'dataset': '../datasets/NCI-HIV/AIDO99SD.sdf', |
|
|
|
|
|
# 'dataset_y': '../datasets/NCI-HIV/aids_conc_may04.txt',}, # node/edge symb |
|
|
|
|
|
|
|
|
|
|
|
# # not working below |
|
|
|
|
|
# {'name': 'PTC_FM', 'dataset': '../datasets/PTC/Train/FM.ds',}, |
|
|
|
|
|
# {'name': 'PTC_FR', 'dataset': '../datasets/PTC/Train/FR.ds',}, |
|
|
|
|
|
# {'name': 'PTC_MM', 'dataset': '../datasets/PTC/Train/MM.ds',}, |
|
|
|
|
|
# {'name': 'PTC_MR', 'dataset': '../datasets/PTC/Train/MR.ds',}, |
|
|
|
|
|
] |
|
|
|
|
|
estimator = spkernel |
|
|
|
|
|
# hyper-parameters |
|
|
|
|
|
#gaussiankernel = functools.partial(gaussiankernel, gamma=0.5) |
|
|
|
|
|
mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) |
|
|
|
|
|
param_grid_precomputed = {'node_kernels': [ |
|
|
|
|
|
{'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}]} |
|
|
|
|
|
param_grid = [{'C': np.logspace(-10, 10, num=41, base=10)}, |
|
|
|
|
|
{'alpha': np.logspace(-10, 10, num=41, base=10)}] |
|
|
|
|
|
|
|
|
|
|
|
# for each dataset, do model selection. |
|
|
|
|
|
for ds in dslist: |
|
|
|
|
|
print() |
|
|
|
|
|
print(ds['name']) |
|
|
|
|
|
model_selection_for_precomputed_kernel( |
|
|
|
|
|
ds['dataset'], |
|
|
|
|
|
estimator, |
|
|
|
|
|
param_grid_precomputed, |
|
|
|
|
|
(param_grid[1] if ('task' in ds and ds['task'] |
|
|
|
|
|
== 'regression') else param_grid[0]), |
|
|
|
|
|
(ds['task'] if 'task' in ds else 'classification'), |
|
|
|
|
|
NUM_TRIALS=30, |
|
|
|
|
|
datafile_y=(ds['dataset_y'] if 'dataset_y' in ds else None), |
|
|
|
|
|
extra_params=(ds['extra_params'] if 'extra_params' in ds else None), |
|
|
|
|
|
ds_name=ds['name'], |
|
|
|
|
|
n_jobs=multiprocessing.cpu_count(), |
|
|
|
|
|
# n_jobs=7, |
|
|
|
|
|
read_gm_from_file=False, |
|
|
|
|
|
verbose=True) |
|
|
|
|
|
print() |