diff --git a/lang/fr/gklearn/kernels/weisfeiler_lehman.py b/lang/fr/gklearn/kernels/weisfeiler_lehman.py index f5f4145..8ab7634 100644 --- a/lang/fr/gklearn/kernels/weisfeiler_lehman.py +++ b/lang/fr/gklearn/kernels/weisfeiler_lehman.py @@ -125,12 +125,12 @@ class WeisfeilerLehman(GraphKernel): # @todo: total parallelization and sp, edge def __subtree_kernel_do(self, Gn): - """Calculate Weisfeiler-Lehman kernels between graphs. + """Compute Weisfeiler-Lehman kernels between graphs. Parameters ---------- Gn : List of NetworkX graph - List of graphs between which the kernels are calculated. + List of graphs between which the kernels are computed. Return ------ @@ -152,7 +152,7 @@ class WeisfeilerLehman(GraphKernel): # @todo: total parallelization and sp, edge # number of occurence of each label in G all_num_of_each_label.append(dict(Counter(labels_ori))) - # calculate subtree kernel with the 0th iteration and add it to the final kernel. + # Compute subtree kernel with the 0th iteration and add it to the final kernel. self.__compute_gram_matrix(gram_matrix, all_num_of_each_label, Gn) # iterate each height @@ -198,7 +198,7 @@ class WeisfeilerLehman(GraphKernel): # @todo: total parallelization and sp, edge # all_labels_ori.update(labels_comp) all_num_of_each_label.append(dict(Counter(labels_comp))) - # calculate subtree kernel with h iterations and add it to the final kernel + # Compute subtree kernel with h iterations and add it to the final kernel self.__compute_gram_matrix(gram_matrix, all_num_of_each_label, Gn) return gram_matrix @@ -244,12 +244,12 @@ class WeisfeilerLehman(GraphKernel): # @todo: total parallelization and sp, edge def _wl_spkernel_do(Gn, node_label, edge_label, height): - """Calculate Weisfeiler-Lehman shortest path kernels between graphs. + """Compute Weisfeiler-Lehman shortest path kernels between graphs. Parameters ---------- Gn : List of NetworkX graph - List of graphs between which the kernels are calculated. + List of graphs between which the kernels are computed. node_label : string node attribute used as label. edge_label : string @@ -312,7 +312,7 @@ class WeisfeilerLehman(GraphKernel): # @todo: total parallelization and sp, edge for node in G.nodes(data = True): node[1][node_label] = set_compressed[set_multisets[node[0]]] - # calculate subtree kernel with h iterations and add it to the final kernel + # Compute subtree kernel with h iterations and add it to the final kernel for i in range(0, len(Gn)): for j in range(i, len(Gn)): for e1 in Gn[i].edges(data = True): @@ -326,12 +326,12 @@ class WeisfeilerLehman(GraphKernel): # @todo: total parallelization and sp, edge def _wl_edgekernel_do(Gn, node_label, edge_label, height): - """Calculate Weisfeiler-Lehman edge kernels between graphs. + """Compute Weisfeiler-Lehman edge kernels between graphs. Parameters ---------- Gn : List of NetworkX graph - List of graphs between which the kernels are calculated. + List of graphs between which the kernels are computed. node_label : string node attribute used as label. edge_label : string @@ -390,7 +390,7 @@ class WeisfeilerLehman(GraphKernel): # @todo: total parallelization and sp, edge for node in G.nodes(data = True): node[1][node_label] = set_compressed[set_multisets[node[0]]] - # calculate subtree kernel with h iterations and add it to the final kernel + # Compute subtree kernel with h iterations and add it to the final kernel for i in range(0, len(Gn)): for j in range(i, len(Gn)): for e1 in Gn[i].edges(data = True): @@ -403,12 +403,12 @@ class WeisfeilerLehman(GraphKernel): # @todo: total parallelization and sp, edge def _wl_userkernel_do(Gn, node_label, edge_label, height, base_kernel): - """Calculate Weisfeiler-Lehman kernels based on user-defined kernel between graphs. + """Compute Weisfeiler-Lehman kernels based on user-defined kernel between graphs. Parameters ---------- Gn : List of NetworkX graph - List of graphs between which the kernels are calculated. + List of graphs between which the kernels are computed. node_label : string node attribute used as label. edge_label : string @@ -463,7 +463,7 @@ class WeisfeilerLehman(GraphKernel): # @todo: total parallelization and sp, edge for node in G.nodes(data = True): node[1][node_label] = set_compressed[set_multisets[node[0]]] - # calculate kernel with h iterations and add it to the final kernel + # Compute kernel with h iterations and add it to the final kernel gram_matrix += base_kernel(Gn, node_label, edge_label) return gram_matrix