diff --git a/gklearn/preimage/random_preimage_generator.py b/gklearn/preimage/random_preimage_generator.py index 5ac9353..bdf9fe6 100644 --- a/gklearn/preimage/random_preimage_generator.py +++ b/gklearn/preimage/random_preimage_generator.py @@ -20,6 +20,7 @@ from gklearn.utils import Timer from gklearn.utils.utils import get_graph_kernel_by_name # from gklearn.utils.dataset import Dataset + class RandomPreimageGenerator(PreimageGenerator): def __init__(self, dataset=None): @@ -337,10 +338,12 @@ class RandomPreimageGenerator(PreimageGenerator): # compute new distances. kernels_to_gtmp, _ = self._graph_kernel.compute(gtemp, self._dataset.graphs, **self._kernel_options) kernel_gtmp, _ = self._graph_kernel.compute(gtemp, gtemp, **self._kernel_options) - kernels_to_gtmp = [kernels_to_gtmp[i] / np.sqrt(self.__gram_matrix_unnorm[i, i] * kernel_gtmp) for i in range(len(kernels_to_gtmp))] # normalize + if self._kernel_options['normalize']: + kernels_to_gtmp = [kernels_to_gtmp[i] / np.sqrt(self.__gram_matrix_unnorm[i, i] * kernel_gtmp) for i in range(len(kernels_to_gtmp))] # normalize + kernel_gtmp = 1 # @todo: not correct kernel value gram_with_gtmp = np.concatenate((np.array([kernels_to_gtmp]), np.copy(self._graph_kernel.gram_matrix)), axis=0) - gram_with_gtmp = np.concatenate((np.array([[1] + kernels_to_gtmp]).T, gram_with_gtmp), axis=1) + gram_with_gtmp = np.concatenate((np.array([[kernel_gtmp] + kernels_to_gtmp]).T, gram_with_gtmp), axis=1) dnew = compute_k_dis(0, range(1, 1 + len(self._dataset.graphs)), self.__alphas, gram_with_gtmp, term3=term3, withterm3=True) return gtemp, dnew