|
@@ -20,6 +20,7 @@ from gklearn.utils import Timer |
|
|
from gklearn.utils.utils import get_graph_kernel_by_name |
|
|
from gklearn.utils.utils import get_graph_kernel_by_name |
|
|
# from gklearn.utils.dataset import Dataset |
|
|
# from gklearn.utils.dataset import Dataset |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class RandomPreimageGenerator(PreimageGenerator): |
|
|
class RandomPreimageGenerator(PreimageGenerator): |
|
|
|
|
|
|
|
|
def __init__(self, dataset=None): |
|
|
def __init__(self, dataset=None): |
|
@@ -337,10 +338,12 @@ class RandomPreimageGenerator(PreimageGenerator): |
|
|
# compute new distances. |
|
|
# compute new distances. |
|
|
kernels_to_gtmp, _ = self._graph_kernel.compute(gtemp, self._dataset.graphs, **self._kernel_options) |
|
|
kernels_to_gtmp, _ = self._graph_kernel.compute(gtemp, self._dataset.graphs, **self._kernel_options) |
|
|
kernel_gtmp, _ = self._graph_kernel.compute(gtemp, gtemp, **self._kernel_options) |
|
|
kernel_gtmp, _ = self._graph_kernel.compute(gtemp, gtemp, **self._kernel_options) |
|
|
kernels_to_gtmp = [kernels_to_gtmp[i] / np.sqrt(self.__gram_matrix_unnorm[i, i] * kernel_gtmp) for i in range(len(kernels_to_gtmp))] # normalize |
|
|
|
|
|
|
|
|
if self._kernel_options['normalize']: |
|
|
|
|
|
kernels_to_gtmp = [kernels_to_gtmp[i] / np.sqrt(self.__gram_matrix_unnorm[i, i] * kernel_gtmp) for i in range(len(kernels_to_gtmp))] # normalize |
|
|
|
|
|
kernel_gtmp = 1 |
|
|
# @todo: not correct kernel value |
|
|
# @todo: not correct kernel value |
|
|
gram_with_gtmp = np.concatenate((np.array([kernels_to_gtmp]), np.copy(self._graph_kernel.gram_matrix)), axis=0) |
|
|
gram_with_gtmp = np.concatenate((np.array([kernels_to_gtmp]), np.copy(self._graph_kernel.gram_matrix)), axis=0) |
|
|
gram_with_gtmp = np.concatenate((np.array([[1] + kernels_to_gtmp]).T, gram_with_gtmp), axis=1) |
|
|
|
|
|
|
|
|
gram_with_gtmp = np.concatenate((np.array([[kernel_gtmp] + kernels_to_gtmp]).T, gram_with_gtmp), axis=1) |
|
|
dnew = compute_k_dis(0, range(1, 1 + len(self._dataset.graphs)), self.__alphas, gram_with_gtmp, term3=term3, withterm3=True) |
|
|
dnew = compute_k_dis(0, range(1, 1 + len(self._dataset.graphs)), self.__alphas, gram_with_gtmp, term3=term3, withterm3=True) |
|
|
|
|
|
|
|
|
return gtemp, dnew |
|
|
return gtemp, dnew |
|
|