|
|
@@ -0,0 +1,245 @@ |
|
|
|
#!/usr/bin/env python3 |
|
|
|
# -*- coding: utf-8 -*- |
|
|
|
""" |
|
|
|
Created on Thu Aug 20 16:09:51 2020 |
|
|
|
|
|
|
|
@author: ljia |
|
|
|
|
|
|
|
@references: |
|
|
|
|
|
|
|
[1] S Vichy N Vishwanathan, Nicol N Schraudolph, Risi Kondor, and Karsten M Borgwardt. Graph kernels. Journal of Machine Learning Research, 11(Apr):1201–1242, 2010. |
|
|
|
""" |
|
|
|
|
|
|
|
import sys |
|
|
|
from tqdm import tqdm |
|
|
|
import numpy as np |
|
|
|
import networkx as nx |
|
|
|
from control import dlyap |
|
|
|
from gklearn.utils.parallel import parallel_gm, parallel_me |
|
|
|
from gklearn.kernels import RandomWalk |
|
|
|
|
|
|
|
|
|
|
|
class FixedPoint(RandomWalk): |
|
|
|
|
|
|
|
|
|
|
|
def __init__(self, **kwargs): |
|
|
|
RandomWalk.__init__(self, **kwargs) |
|
|
|
|
|
|
|
|
|
|
|
def _compute_gm_series(self): |
|
|
|
self._check_edge_weight(self._graphs) |
|
|
|
self._check_graphs(self._graphs) |
|
|
|
if self._verbose >= 2: |
|
|
|
import warnings |
|
|
|
warnings.warn('All labels are ignored.') |
|
|
|
|
|
|
|
lmda = self._weight |
|
|
|
|
|
|
|
# compute Gram matrix. |
|
|
|
gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) |
|
|
|
|
|
|
|
if self._q == None: |
|
|
|
# don't normalize adjacency matrices if q is a uniform vector. Note |
|
|
|
# A_wave_list actually contains the transposes of the adjacency matrices. |
|
|
|
if self._verbose >= 2: |
|
|
|
iterator = tqdm(self._graphs, desc='compute adjacency matrices', file=sys.stdout) |
|
|
|
else: |
|
|
|
iterator = self._graphs |
|
|
|
A_wave_list = [nx.adjacency_matrix(G, self._edge_weight).todense().transpose() for G in iterator] |
|
|
|
# # normalized adjacency matrices |
|
|
|
# A_wave_list = [] |
|
|
|
# for G in tqdm(Gn, desc='compute adjacency matrices', file=sys.stdout): |
|
|
|
# A_tilde = nx.adjacency_matrix(G, eweight).todense().transpose() |
|
|
|
# norm = A_tilde.sum(axis=0) |
|
|
|
# norm[norm == 0] = 1 |
|
|
|
# A_wave_list.append(A_tilde / norm) |
|
|
|
|
|
|
|
if self._p == None: # p is uniform distribution as default. |
|
|
|
from itertools import combinations_with_replacement |
|
|
|
itr = combinations_with_replacement(range(0, len(self._graphs)), 2) |
|
|
|
if self._verbose >= 2: |
|
|
|
iterator = tqdm(itr, desc='calculating kernels', file=sys.stdout) |
|
|
|
else: |
|
|
|
iterator = itr |
|
|
|
|
|
|
|
for i, j in iterator: |
|
|
|
kernel = self.__kernel_do(A_wave_list[i], A_wave_list[j], lmda) |
|
|
|
gram_matrix[i][j] = kernel |
|
|
|
gram_matrix[j][i] = kernel |
|
|
|
|
|
|
|
else: # @todo |
|
|
|
pass |
|
|
|
else: # @todo |
|
|
|
pass |
|
|
|
|
|
|
|
return gram_matrix |
|
|
|
|
|
|
|
|
|
|
|
def _compute_gm_imap_unordered(self): |
|
|
|
self._check_edge_weight(self._graphs) |
|
|
|
self._check_graphs(self._graphs) |
|
|
|
if self._verbose >= 2: |
|
|
|
import warnings |
|
|
|
warnings.warn('All labels are ignored.') |
|
|
|
|
|
|
|
# compute Gram matrix. |
|
|
|
gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) |
|
|
|
|
|
|
|
if self._q == None: |
|
|
|
# don't normalize adjacency matrices if q is a uniform vector. Note |
|
|
|
# A_wave_list actually contains the transposes of the adjacency matrices. |
|
|
|
if self._verbose >= 2: |
|
|
|
iterator = tqdm(self._graphs, desc='compute adjacency matrices', file=sys.stdout) |
|
|
|
else: |
|
|
|
iterator = self._graphs |
|
|
|
A_wave_list = [nx.adjacency_matrix(G, self._edge_weight).todense().transpose() for G in iterator] # @todo: parallel? |
|
|
|
|
|
|
|
if self._p == None: # p is uniform distribution as default. |
|
|
|
def init_worker(A_wave_list_toshare): |
|
|
|
global G_A_wave_list |
|
|
|
G_A_wave_list = A_wave_list_toshare |
|
|
|
|
|
|
|
do_fun = self._wrapper_kernel_do |
|
|
|
|
|
|
|
parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=init_worker, |
|
|
|
glbv=(A_wave_list,), n_jobs=self._n_jobs, verbose=self._verbose) |
|
|
|
|
|
|
|
else: # @todo |
|
|
|
pass |
|
|
|
else: # @todo |
|
|
|
pass |
|
|
|
|
|
|
|
return gram_matrix |
|
|
|
|
|
|
|
|
|
|
|
def _compute_kernel_list_series(self, g1, g_list): |
|
|
|
self._check_edge_weight(g_list + [g1]) |
|
|
|
self._check_graphs(g_list + [g1]) |
|
|
|
if self._verbose >= 2: |
|
|
|
import warnings |
|
|
|
warnings.warn('All labels are ignored.') |
|
|
|
|
|
|
|
lmda = self._weight |
|
|
|
|
|
|
|
# compute kernel list. |
|
|
|
kernel_list = [None] * len(g_list) |
|
|
|
|
|
|
|
if self._q == None: |
|
|
|
# don't normalize adjacency matrices if q is a uniform vector. Note |
|
|
|
# A_wave_list actually contains the transposes of the adjacency matrices. |
|
|
|
A_wave_1 = nx.adjacency_matrix(g1, self._edge_weight).todense().transpose() |
|
|
|
if self._verbose >= 2: |
|
|
|
iterator = tqdm(range(len(g_list)), desc='compute adjacency matrices', file=sys.stdout) |
|
|
|
else: |
|
|
|
iterator = range(len(g_list)) |
|
|
|
A_wave_list = [nx.adjacency_matrix(G, self._edge_weight).todense().transpose() for G in iterator] |
|
|
|
|
|
|
|
if self._p == None: # p is uniform distribution as default. |
|
|
|
if self._verbose >= 2: |
|
|
|
iterator = tqdm(range(len(g_list)), desc='calculating kernels', file=sys.stdout) |
|
|
|
else: |
|
|
|
iterator = range(len(g_list)) |
|
|
|
|
|
|
|
for i in iterator: |
|
|
|
kernel = self.__kernel_do(A_wave_1, A_wave_list[i], lmda) |
|
|
|
kernel_list[i] = kernel |
|
|
|
|
|
|
|
else: # @todo |
|
|
|
pass |
|
|
|
else: # @todo |
|
|
|
pass |
|
|
|
|
|
|
|
return kernel_list |
|
|
|
|
|
|
|
|
|
|
|
def _compute_kernel_list_imap_unordered(self, g1, g_list): |
|
|
|
self._check_edge_weight(g_list + [g1]) |
|
|
|
self._check_graphs(g_list + [g1]) |
|
|
|
if self._verbose >= 2: |
|
|
|
import warnings |
|
|
|
warnings.warn('All labels are ignored.') |
|
|
|
|
|
|
|
# compute kernel list. |
|
|
|
kernel_list = [None] * len(g_list) |
|
|
|
|
|
|
|
if self._q == None: |
|
|
|
# don't normalize adjacency matrices if q is a uniform vector. Note |
|
|
|
# A_wave_list actually contains the transposes of the adjacency matrices. |
|
|
|
A_wave_1 = nx.adjacency_matrix(g1, self._edge_weight).todense().transpose() |
|
|
|
if self._verbose >= 2: |
|
|
|
iterator = tqdm(range(len(g_list)), desc='compute adjacency matrices', file=sys.stdout) |
|
|
|
else: |
|
|
|
iterator = range(len(g_list)) |
|
|
|
A_wave_list = [nx.adjacency_matrix(G, self._edge_weight).todense().transpose() for G in iterator] # @todo: parallel? |
|
|
|
|
|
|
|
if self._p == None: # p is uniform distribution as default. |
|
|
|
def init_worker(A_wave_1_toshare, A_wave_list_toshare): |
|
|
|
global G_A_wave_1, G_A_wave_list |
|
|
|
G_A_wave_1 = A_wave_1_toshare |
|
|
|
G_A_wave_list = A_wave_list_toshare |
|
|
|
|
|
|
|
do_fun = self._wrapper_kernel_list_do |
|
|
|
|
|
|
|
def func_assign(result, var_to_assign): |
|
|
|
var_to_assign[result[0]] = result[1] |
|
|
|
itr = range(len(g_list)) |
|
|
|
len_itr = len(g_list) |
|
|
|
parallel_me(do_fun, func_assign, kernel_list, itr, len_itr=len_itr, |
|
|
|
init_worker=init_worker, glbv=(A_wave_1, A_wave_list), method='imap_unordered', |
|
|
|
n_jobs=self._n_jobs, itr_desc='calculating kernels', verbose=self._verbose) |
|
|
|
|
|
|
|
else: # @todo |
|
|
|
pass |
|
|
|
else: # @todo |
|
|
|
pass |
|
|
|
|
|
|
|
return kernel_list |
|
|
|
|
|
|
|
|
|
|
|
def _wrapper_kernel_list_do(self, itr): |
|
|
|
return itr, self._kernel_do(G_A_wave_1, G_A_wave_list[itr], self._weight) |
|
|
|
|
|
|
|
|
|
|
|
def _compute_single_kernel_series(self, g1, g2): |
|
|
|
self._check_edge_weight([g1] + [g2]) |
|
|
|
self._check_graphs([g1] + [g2]) |
|
|
|
if self._verbose >= 2: |
|
|
|
import warnings |
|
|
|
warnings.warn('All labels are ignored.') |
|
|
|
|
|
|
|
lmda = self._weight |
|
|
|
|
|
|
|
if self._q == None: |
|
|
|
# don't normalize adjacency matrices if q is a uniform vector. Note |
|
|
|
# A_wave_list actually contains the transposes of the adjacency matrices. |
|
|
|
A_wave_1 = nx.adjacency_matrix(g1, self._edge_weight).todense().transpose() |
|
|
|
A_wave_2 = nx.adjacency_matrix(g2, self._edge_weight).todense().transpose() |
|
|
|
if self._p == None: # p is uniform distribution as default. |
|
|
|
kernel = self.__kernel_do(A_wave_1, A_wave_2, lmda) |
|
|
|
else: # @todo |
|
|
|
pass |
|
|
|
else: # @todo |
|
|
|
pass |
|
|
|
|
|
|
|
return kernel |
|
|
|
|
|
|
|
|
|
|
|
def __kernel_do(self, A_wave1, A_wave2, lmda): |
|
|
|
|
|
|
|
S = lmda * A_wave2 |
|
|
|
T_t = A_wave1 |
|
|
|
# use uniform distribution if there is no prior knowledge. |
|
|
|
nb_pd = len(A_wave1) * len(A_wave2) |
|
|
|
p_times_uni = 1 / nb_pd |
|
|
|
M0 = np.full((len(A_wave2), len(A_wave1)), p_times_uni) |
|
|
|
X = dlyap(S, T_t, M0) |
|
|
|
X = np.reshape(X, (-1, 1), order='F') |
|
|
|
# use uniform distribution if there is no prior knowledge. |
|
|
|
q_times = np.full((1, nb_pd), p_times_uni) |
|
|
|
return np.dot(q_times, X) |
|
|
|
|
|
|
|
|
|
|
|
def _wrapper_kernel_do(self, itr): |
|
|
|
i = itr[0] |
|
|
|
j = itr[1] |
|
|
|
return i, j, self.__kernel_do(G_A_wave_list[i], G_A_wave_list[j], self._weight) |