Browse Source

New translations fixed_point.py (Chinese Simplified)

l10n_v0.2.x
linlin 4 years ago
parent
commit
ff37219918
1 changed files with 245 additions and 0 deletions
  1. +245
    -0
      lang/zh/gklearn/kernels/fixed_point.py

+ 245
- 0
lang/zh/gklearn/kernels/fixed_point.py View File

@@ -0,0 +1,245 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Aug 20 16:09:51 2020

@author: ljia

@references:

[1] S Vichy N Vishwanathan, Nicol N Schraudolph, Risi Kondor, and Karsten M Borgwardt. Graph kernels. Journal of Machine Learning Research, 11(Apr):1201–1242, 2010.
"""

import sys
from tqdm import tqdm
import numpy as np
import networkx as nx
from control import dlyap
from gklearn.utils.parallel import parallel_gm, parallel_me
from gklearn.kernels import RandomWalk


class FixedPoint(RandomWalk):
def __init__(self, **kwargs):
RandomWalk.__init__(self, **kwargs)

def _compute_gm_series(self):
self._check_edge_weight(self._graphs)
self._check_graphs(self._graphs)
if self._verbose >= 2:
import warnings
warnings.warn('All labels are ignored.')
lmda = self._weight
# compute Gram matrix.
gram_matrix = np.zeros((len(self._graphs), len(self._graphs)))
if self._q == None:
# don't normalize adjacency matrices if q is a uniform vector. Note
# A_wave_list actually contains the transposes of the adjacency matrices.
if self._verbose >= 2:
iterator = tqdm(self._graphs, desc='compute adjacency matrices', file=sys.stdout)
else:
iterator = self._graphs
A_wave_list = [nx.adjacency_matrix(G, self._edge_weight).todense().transpose() for G in iterator]
# # normalized adjacency matrices
# A_wave_list = []
# for G in tqdm(Gn, desc='compute adjacency matrices', file=sys.stdout):
# A_tilde = nx.adjacency_matrix(G, eweight).todense().transpose()
# norm = A_tilde.sum(axis=0)
# norm[norm == 0] = 1
# A_wave_list.append(A_tilde / norm)

if self._p == None: # p is uniform distribution as default.
from itertools import combinations_with_replacement
itr = combinations_with_replacement(range(0, len(self._graphs)), 2)
if self._verbose >= 2:
iterator = tqdm(itr, desc='calculating kernels', file=sys.stdout)
else:
iterator = itr
for i, j in iterator:
kernel = self.__kernel_do(A_wave_list[i], A_wave_list[j], lmda)
gram_matrix[i][j] = kernel
gram_matrix[j][i] = kernel
else: # @todo
pass
else: # @todo
pass
return gram_matrix
def _compute_gm_imap_unordered(self):
self._check_edge_weight(self._graphs)
self._check_graphs(self._graphs)
if self._verbose >= 2:
import warnings
warnings.warn('All labels are ignored.')
# compute Gram matrix.
gram_matrix = np.zeros((len(self._graphs), len(self._graphs)))
if self._q == None:
# don't normalize adjacency matrices if q is a uniform vector. Note
# A_wave_list actually contains the transposes of the adjacency matrices.
if self._verbose >= 2:
iterator = tqdm(self._graphs, desc='compute adjacency matrices', file=sys.stdout)
else:
iterator = self._graphs
A_wave_list = [nx.adjacency_matrix(G, self._edge_weight).todense().transpose() for G in iterator] # @todo: parallel?

if self._p == None: # p is uniform distribution as default.
def init_worker(A_wave_list_toshare):
global G_A_wave_list
G_A_wave_list = A_wave_list_toshare
do_fun = self._wrapper_kernel_do
parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=init_worker,
glbv=(A_wave_list,), n_jobs=self._n_jobs, verbose=self._verbose)

else: # @todo
pass
else: # @todo
pass
return gram_matrix
def _compute_kernel_list_series(self, g1, g_list):
self._check_edge_weight(g_list + [g1])
self._check_graphs(g_list + [g1])
if self._verbose >= 2:
import warnings
warnings.warn('All labels are ignored.')
lmda = self._weight
# compute kernel list.
kernel_list = [None] * len(g_list)
if self._q == None:
# don't normalize adjacency matrices if q is a uniform vector. Note
# A_wave_list actually contains the transposes of the adjacency matrices.
A_wave_1 = nx.adjacency_matrix(g1, self._edge_weight).todense().transpose()
if self._verbose >= 2:
iterator = tqdm(range(len(g_list)), desc='compute adjacency matrices', file=sys.stdout)
else:
iterator = range(len(g_list))
A_wave_list = [nx.adjacency_matrix(G, self._edge_weight).todense().transpose() for G in iterator]

if self._p == None: # p is uniform distribution as default.
if self._verbose >= 2:
iterator = tqdm(range(len(g_list)), desc='calculating kernels', file=sys.stdout)
else:
iterator = range(len(g_list))
for i in iterator:
kernel = self.__kernel_do(A_wave_1, A_wave_list[i], lmda)
kernel_list[i] = kernel
else: # @todo
pass
else: # @todo
pass
return kernel_list
def _compute_kernel_list_imap_unordered(self, g1, g_list):
self._check_edge_weight(g_list + [g1])
self._check_graphs(g_list + [g1])
if self._verbose >= 2:
import warnings
warnings.warn('All labels are ignored.')
# compute kernel list.
kernel_list = [None] * len(g_list)
if self._q == None:
# don't normalize adjacency matrices if q is a uniform vector. Note
# A_wave_list actually contains the transposes of the adjacency matrices.
A_wave_1 = nx.adjacency_matrix(g1, self._edge_weight).todense().transpose()
if self._verbose >= 2:
iterator = tqdm(range(len(g_list)), desc='compute adjacency matrices', file=sys.stdout)
else:
iterator = range(len(g_list))
A_wave_list = [nx.adjacency_matrix(G, self._edge_weight).todense().transpose() for G in iterator] # @todo: parallel?

if self._p == None: # p is uniform distribution as default.
def init_worker(A_wave_1_toshare, A_wave_list_toshare):
global G_A_wave_1, G_A_wave_list
G_A_wave_1 = A_wave_1_toshare
G_A_wave_list = A_wave_list_toshare

do_fun = self._wrapper_kernel_list_do
def func_assign(result, var_to_assign):
var_to_assign[result[0]] = result[1]
itr = range(len(g_list))
len_itr = len(g_list)
parallel_me(do_fun, func_assign, kernel_list, itr, len_itr=len_itr,
init_worker=init_worker, glbv=(A_wave_1, A_wave_list), method='imap_unordered',
n_jobs=self._n_jobs, itr_desc='calculating kernels', verbose=self._verbose)
else: # @todo
pass
else: # @todo
pass
return kernel_list


def _wrapper_kernel_list_do(self, itr):
return itr, self._kernel_do(G_A_wave_1, G_A_wave_list[itr], self._weight)
def _compute_single_kernel_series(self, g1, g2):
self._check_edge_weight([g1] + [g2])
self._check_graphs([g1] + [g2])
if self._verbose >= 2:
import warnings
warnings.warn('All labels are ignored.')
lmda = self._weight
if self._q == None:
# don't normalize adjacency matrices if q is a uniform vector. Note
# A_wave_list actually contains the transposes of the adjacency matrices.
A_wave_1 = nx.adjacency_matrix(g1, self._edge_weight).todense().transpose()
A_wave_2 = nx.adjacency_matrix(g2, self._edge_weight).todense().transpose()
if self._p == None: # p is uniform distribution as default.
kernel = self.__kernel_do(A_wave_1, A_wave_2, lmda)
else: # @todo
pass
else: # @todo
pass
return kernel
def __kernel_do(self, A_wave1, A_wave2, lmda):
S = lmda * A_wave2
T_t = A_wave1
# use uniform distribution if there is no prior knowledge.
nb_pd = len(A_wave1) * len(A_wave2)
p_times_uni = 1 / nb_pd
M0 = np.full((len(A_wave2), len(A_wave1)), p_times_uni)
X = dlyap(S, T_t, M0)
X = np.reshape(X, (-1, 1), order='F')
# use uniform distribution if there is no prior knowledge.
q_times = np.full((1, nb_pd), p_times_uni)
return np.dot(q_times, X)
def _wrapper_kernel_do(self, itr):
i = itr[0]
j = itr[1]
return i, j, self.__kernel_do(G_A_wave_list[i], G_A_wave_list[j], self._weight)

Loading…
Cancel
Save