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Abstract Biometrics is the automatic identification of
an individual that is based on physiological or
behavioural characteristics. Due to its security-related
applications and the current world political climate,
biometrics is currently the subject of intense research
by both private and academic institutions. Fingerprints
are emerging as the most common and trusted bio-
metric for personal identification. The main objective
of this paper is to review the extensive research that
has been done on fingerprint classification over the last
four decades. In particular, it discusses the fingerprint
features that are useful for distinguishing fingerprint
classes and reviews the methods of classification that
have been applied to the problem. Finally, it presents
empirical results from the state of the art fingerprint
classification systems that have been tested using the
NIST Special Database 4.
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Introduction

Biometrics is the automatic identification of an indi-
vidual based on his or her physiological or behavioural
characteristics. The ability to accurately identify or
authenticate an individual based on these characteristics
has several advantages over traditional means of
authentication such as knowledge-based (e.g., password)
or token-based (e.g., key) authentication [1]. Due to its
security-related applications and the current world
political climate, biometrics has recently become the

subject of intense research by both private and academic
institutions.

There are several human characteristics that can be
used as the basis for biometric systems [1]. For example,
a person’s face, retina, or voice can all be used to iden-
tify that individual with a high degree of accuracy. The
use of fingerprints has several advantages over the other
methods, and therefore is one of the most researched
and mature fields of authentication. The uniqueness of
fingerprints has been studied and it is well established
that the probability of two fingerprints matching is
vanishingly small [2, 3]. Furthermore, unlike faces and
voice prints, fingerprints are persistent with age and can
not be easily disguised.

Fingerprint matching and fingerprint classification
are two conceptually separate problems. For the fin-
gerprint matching problem the input is two fingerprint
images and the output is the probability that the
fingerprints were captured from the same finger. A
comprehensive review of fingerprint matching algo-
rithms has been recently conducted by Yager and
Amin [4]. The current state of the art algorithms for
fingerprint matching are computationally very expen-
sive. Therefore, given the large size of present day
fingerprint databases (the FBI fingerprint database
contains over 200 million prints), it is often necessary
to employ methods to reduce the number of one-to-
one fingerprint comparisons performed when executing
a fingerprint query. The most common way to do this
is to partition the fingerprint databases into mutually
exclusive classes (or bins). After classifying (or bin-
ning) the query fingerprint, it is only necessary to
match that print against others of the same type. This
drastically reduces the number of one-to-one matches
performed.

Many schemes have been presented for the automatic
classification of fingerprints over the last four decades
and this paper presents the first extensive review of this
research. The section History begins with an overview of
the history of fingerprint classification. The section
Fingerprint classes presents commonly used fingerprint
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classes and the section Fingerprint classificatin chal-
lenges discusses some issues that make the fingerprint
classification problem difficult. The section Feature
extraction looks at the fingerprint features that are
useful for classification and discusses some methods
used for extracting them. The section Classification
performance presents the techniques used for classifica-
tion. Finally, the Conclusioncloses with some conclud-
ing remarks.

Fingerprint classification

History

The exact origin of the use of fingerprints for identifi-
cation is unclear. There is some evidence that finger-
prints were used in ancient times; however there is no
indication that anyone at the time recognised the full
potential of fingerprints as a means of personal iden-
tification. The first reliable record comes from Sir
William Herschel [5]. In 1858 he was an employee of
the East India Company and stationed in India. While
preparing a contract with a local man for building
materials, he decided to take an imprint of the indi-
vidual’s palm instead of using the more conventional
signature. His motivation was to ‘‘frighten [the con-
tractor] out of all thought of repudiating his signature
hereafter’’. Herschel soon recognised the potential of
using fingerprints as a means of personal identification
and studied the issue as a hobby for years after his
initial experiment. After noting that fingerprints taken
from the same individual 32 years apart were un-
changed, Herschel discovered the immutability of fin-
gerprints. The persistence of fingerprints over time is
vital to their applicability as a means of personal
identification.

The first scientific publication proposing the use of
fingerprints for identification was written by Henry

Faulds in 1880 [6]. In the late 1880s Sir Francis Galton
began the first rigorous study of fingerprint-based
identification [7]. Among many contributions to the
field, his work contained the first system for fingerprint
classification. Classification was introduced as a means
of indexing fingerprints in order to facilitate searching
for a particular fingerprint within a collection of many
prints. He proposed three basic fingerprint classes: the
arch, the loop and the whorl. Galton’s other major
contribution was the first study into the uniqueness of
fingerprints. In addition to permanence, uniqueness is
the other necessity for fingerprints to be a viable method
of personal identification.

Several years later Edward Henry continued Gal-
ton’s work on fingerprint classification [8]. Henry sub-
divided the three main classes into more specific sub-
classes. He also introduced the concept of fingerprint
‘‘core’’ and ‘‘delta’’ points and used them as aids for
fingerprint classification. Henry’s classification scheme
constitutes the basis for most modern classification
schemes.

The first publication on the automation of fingerprint
matching appeared in 1963 [9]. The subject received in-
creased attention during the subsequent decades and
continues to be an active area of research to this day.

Fingerprint classes

Fingerprints can be categorised based on their global
pattern of ridges and valleys. Galton originally pro-
posed the use of three fingerprint classes: the arch, the
whorl and the loop [7]. Henry subdivided the arch
category to include the plain arch and the tented arch.
He also defined two types of loops: ulnar and radial,
also known as right loops and left loops respectively.
He also added classes that are combinations of arches,
loops and whorls: central pocket loops, twin loops and
accidentals. Henry used the accidental class to describe

Fig. 1 Henry’s fingerprint
classes
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the small number of fingerprints that are ambiguous
and do not fall clearly into any of the other catego-
ries. These eight categories are known as ‘‘Henry’s
Classification’’ and examples of each are shown in
Fig. 1.

The distribution of the classes in nature is not uni-
form. Central pockets, twin loops, and accidentals are
very rare so they are often ignored for classification
purposes. The probabilities of the other classes are
approximately 0.037, 0.338, 0.317, 0.029 and 0.279 for
the arch, left loop, right loop, tented arch and whorl,
respectively [10]. Note that left loops, right loops, and
whorls are the most common, making up 93.4% of all
fingerprints.

Henry’s classification (and others based on it) are
known as exclusive because they partition fingerprints
into mutually exclusive categories. Many large-scale
fingerprint verification systems are designed to only
match a print against others from the same class. This
has several disadvantages [11]. First of all, there are
some fingerprints that are ambiguous and can not be
classified even by a human expert. In these cases it is
unclear which fingerprint classes the ambiguous print
should be matched against. Furthermore, there is al-
ways the possibility of misclassification due to noise or
an error in the system. In these cases, if no match is
found in the erroneous class the entire database will
need to be searched. Finally, even assuming the clas-
sification is robust, this does not always significantly
reduce the number of one-to-one matches. A large
majority (almost 95%) of fingerprints fall into only
three classes. When an individual is being identified
using all ten of their fingerprints (known as ten-print
based identification), knowing the class of all ten fin-
gers greatly reduces the number of matches that are
necessary. However, when only a single fingerprint is
available (such as latent fingerprints) the print will
almost certainly need to be matched against a large
segment (usually about 1/3) of the database.

Continuous classification addresses some of the
shortcomings of exclusive classification. Instead of
being represented by a single class, fingerprints are
represented by a feature vector containing important
distinguishing characteristics of the print. The similar-
ity of two fingerprints can be defined as the Euclidean
distance between them in the feature space and query
fingerprints are matched against all other prints that
fall within a given radius. This immediately resolves the
problem of which prints should be matched against an
ambiguous fingerprint. Furthermore, the matching ra-
dius can be adjusted as a system parameter allowing
the system operator to dynamically adjust the expected
accuracy of the system. Relatively little research has
been conducted into continuous fingerprint classifica-
tion, and therefore it is not a focus of the present work.
However, one continuous system is described in the
section Graph matching. Fingerprint database indexing
is a closely related problem to continuous classification
[12, 13, 14].

Fingerprint classification challenges

There are several challenges to the classification of fin-
gerprints that are specific the fingerprint domain. These
are important issues that need to be addressed by any
fingerprint classification system.

Prints from the same finger will be slightly different
every time they are captured for several reasons, and
classification systems must be designed to be robust
when dealing with these variations. There are several
causes for this variation. For example, every time a
finger is pressed against a surface, it is applied with a
certain amount of pressure at a well defined angle, and
these parameters vary from time to time, resulting in a
different portion of the print being captured. Conse-
quently, fingerprint classifiers should not be sensitive to
translations or rotations of fingerprints. Random noise
and other effects caused by the skin conditions (e.g., dry,
sweaty, dirty, diseased, etc.) can cause errors in the fin-
gerprint image. It is important for classification systems
to recover the original ridge patterns, and therefore
preprocessing is usually conducted to enhance the fin-
gerprint image.

Another major challenge is related to fingerprint
class variation. The majority of classification schemes
use 5 classes (see the section Fingerprint classes).
However, there is a wide variety of possible patterns
within each class. Furthermore, in some cases prints
from one class can appear very similar to prints from
another class. In other words, there is large intraclass
variation and small interclass variation. This is the
most significant factor that makes the fingerprint clas-
sification problem so difficult, and is one of the moti-
vations for developing continuous classification
schemes.

Ambiguous fingerprints are a related issue. In some
cases, a fingerprint will have properties from more than
one class. A fingerprint classification system must devise
a method for dealing with these prints, such as having an
‘‘anomalies’’ class or rejecting them outright.

Feature extraction

The goal of feature extraction in a general pattern rec-
ognition system is to extract information from the input
data that is useful for determining its category. In the
fingerprint domain there are several features that have
been found to be useful for this purpose.

The classification of a fingerprint is based on its
global pattern of ridge and valleys. Therefore, features
based directly on the fingerprint ridges are a natural
choice. There are many different ways to extract and
represent ridge information and these will be discussed
in detail in the section Ridge features. Orientation fields
are a convenient way to summarise the ridge-valley
patterns of a fingerprint and are presented in the section
Orientation fields. Another feature that is often used for
distinguishing fingerprint classes is the existence and
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location of singularities. A discussion of singularities and
singularity extraction is presented in the section Singu-
larities. Finally, information on structural features can
be found in the section Structural features.

For completeness, minutiae points should also be
mentioned as an important fingerprint feature. Minutiae
points are places where a ridge separates into two ridges
(known as a bifurcation) or a ridge terminates (known as
a ridge ending). The location and orientation of minu-
tiae points is a very important distinguishing feature for
fingerprint matching and a large number of fingerprint
matching algorithms are based on comparing the
minutiae points from two fingerprint images. Conse-
quently, there has been a tremendous amount of effort
put into developing minutiae extraction and matching
algorithms [4]. However, minutiae features are not use-
ful for fingerprint classification and will not be dis-
cussed.

Ridge features

Several methods have been developed in an effort to
extract useful information from fingerprint ridges. Some
of these methods examine the frequency and orientation
of the ridges, while others develop mathematical models
to represent the structure of the ridges.

Frequency

The ridges and valleys in a small area of a fingerprint
have a well-defined frequency and orientation. There-
fore, valuable information about a fingerprint can be
obtained by employing various methods of frequency
analysis.

Fourier transform: The Fourier transform is a fun-
damental tool for frequency analysis. In the context of
digital image processing, all images can be represented
fully in either the spatial domain or the frequency do-
main. In the spatial domain, the image is represented by
the intensity of pixel values at every location in the im-
age. In the frequency domain images are represented by
their component frequencies.

In Fig. 2a small section of a fingerprint image is
shown. Within this region, the ridges form a set of
periodic and nearly parallel lines with a constant fre-
quency and orientation. The Fourier transform of this
region is shown in Fig. 2b. The bright spots in the
Fourier transform represent the dominant frequencies.

Fitz and Green [16] use Fourier transform features
as the basis of their classification scheme. They use a
Hexagonal Fast Fourier transform to transform the
fingerprint image into the frequency domain and use a
‘‘wedge-ring detector’’ to extract features. A wedge-ring
detector partitions the frequency domain into non-
overlapping regions as shown in Fig. 3.

The values in each segment are summed to give a
feature for that region, and classification is then based

on an eight element feature vector. The wedge-ring
detector overcomes some of the invariance challenges
discussed in the section Feature extraction. Translations
in the spatial domain will not cause changes in the fre-
quency domain, therefore this representation is transla-
tion invariant. It also offers some rotation invariance
because the rings are summed along an angular variable.
However, there are major limitations of this approach.
The features extracted by the wedge-ring detector are
strictly global and do not contain very much discrimi-
natory information. For example, the frequencies of
ridges and valleys is similar for all fingerprint images of
the same resolution. Therefore, summing along the rings
of the detector will likely give similar results for all in-
put. Orientation information is important, but the
wedge features are too simplistic to capture much useful
information about the distribution of orientations that
determine a fingerprint’s class. Furthermore, the domi-
nant orientations in a fingerprint image depends heavily
on the area of the print that has been captured and has
little relevance to the fingerprint’s class.

Gabor filters: As shown in Fig. 2a, the ridges and
valleys in a small region of a fingerprint contain a nar-
row range of frequency and orientation components.
Gabor filters are band-pass filters with adjustable fre-
quency, orientation, and bandwidth parameters. A Ga-
bor function is a sinusoidal waveform that is modulated
by a rotated Gaussian envelope, and has the following
form in the spatial domain:

G x; y; f ; h; rð Þ ¼ exp � x002 þ y002

2r2

( )
cos 2pfx00ð Þ ð1Þ

Fig. 3 A wedge-ring detector

Fig. 2 a Fingerprint ridges;b The Fourier spectrum of a
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x00 ¼ x cos h� y sin h ð2Þ

y00 ¼ x sin hþ y cos h ð3Þ

where f is the frequency of the sinusoidal plane wave
along the direction h and r is the standard deviation of
the Gaussian envelope [17].

Fig. 4a shows a Gabor filter in the spatial domain
and Fig. 4b shows a Gabor filter in the frequency do-
main, which is simply a shifted Gaussian function.

When properly tuned, a Gabor filter can be used to
filter an image, maintaining only regions of a given
frequency and orientation. This has profound implica-
tions for fingerprint image analysis because the filters
can be tuned to the inter-ridge frequency and local ori-
entation. The primary application of this is for finger-
print image enhancement [18]; however, it can also be
used for feature extraction.

Jain et al. use Gabor filters in four directions to ex-
tract features from fingerprints for classification [17].
The filter frequency f is set to the average ridge fre-
quency and four values for h are used, being 0�, 45�, 90�
and 135�. The 0� -oriented filter accentuates those ridges
parallel to the x-axis and smoothes all other ridges. The
first step of the feature extraction algorithm is to find a
centre point in the fingerprint image, which is defined to
be the point of maximum curvature. A circular disc
around the centre point is tessellated into 48 sectors, and
each sector is filtered in four directions. The variance of
each sector after being filtered defines a feature vector
with 192 elements, known as a FingerCode. This is a
powerful representation of a fingerprint that captures
information about ridge orientations around the core of
the fingerprint. Since the Gabor filter is tuned to the
inter-ridge frequency, it will filter out all irrelevant
information from the image. Furthermore, since each
fingerprint is registered with respect to a common
landmark, the representation is not sensitive to transla-
tions. One disadvantage is that finding the centre point
can be difficult for noisy images. Another problem with
this representation is that it is sensitive to rotations of
the fingerprint image. A classification system that uses
FingerCode features can be found in the section Hybrid
classifiers.

Ridge structure features

There are two main approaches to extracting informa-
tion about fingerprint ridge structures. One method is to
develop a mathematical models of fingerprint ridges and
represent the fingerprint using these models. Another
approach is to simply record characteristics of the ridges
and store this information for classification.

Geometric framework: A geometric framework for
analysing the global ridge structure of a fingerprint im-
age has been developed by Chong et al. [19]. Their
method approximates the shape of each ridge using a B-
spline curve. A B-spline is a generalization of the Bézier
curve and is often used for curve fitting in computer
graphics. After the individual ridges have been modelled
using B-splines, neighbouring ridges with a similar ori-
entation are grouped together. Combining similarly
oriented, non-overlapping ridges into composite ridges
helps avoid the problem of ridges that have been broken
due to noise, making it a robust representation of the
overall ridge structure. After grouping, only a few rep-
resentative ridges are left and they can be used to rep-
resent the global geometric shape of the fingerprint. This
is illustrated in Fig. 5.

This representation of the global ridge structure is
rich, compact and mostly invariant to translation and
rotation. Furthermore, these ridge feature are robust
against the large intraclass variation of the fingerprint
classes. However, this scheme does not handle the small
interclass variation very well. In other words, using these
features it will be difficult for a classifier to distinguish
between two fingerprints that have a similar global
shape yet belong to different classes. Furthermore, since
the ridges are extracted from the fingerprint image itself,
extensive preprocessing and post-processing is necessary
to deal with artefacts created by noise. It is possible that
this could be avoided by extracting the geometric shapes
from a fingerprint’s orientation field (see the section
Orientation fields). A classification system based on
Chong et al.’s geometric framework is presented in the
section Global ridge structures.

Hierarchical kernel fitting: Another mathematical
model for representing fingerprint ridge structures has
been proposed by Jain and Minut [20]. For each fin-
gerprint class a fingerprint kernel is defined that repre-
sents the ridge structure of fingerprints belonging to that

Fig. 5 On the left are the fingerprint ridges of an arch. Similar
ridges are grouped to obtain the global geometric shape of the
fingerprint [19]Fig. 4 A Gabor filter
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class. Some examples kernels are shown in Fig. 6. The
fingerprint kernels are defined using polynomial splines.
A hierarchy of kernels has been constructed, with ker-
nels at the top representing ‘‘ambiguous’’ classes and the
sub-kernels are used for finer distinctions. One advan-
tage of fingerprint kernels is that they are extracted from
a fingerprint’s orientation field, which can be reliably
created even for noisy images (see the Conclusion). For
kernel-based classification, the feature extraction stage
and classification stage of the system are closely related.
The fingerprint is classified by finding the kernel that
best fits its orientation field.

Fiducial lines: Senior has developed a novel method
for extracting and representing fingerprint ridge features
[21]. The first step is to obtain a thinned binary repre-
sentation of the fingerprint ridges. Next, a set of hori-
zontal lines are arranged across the fingerprint for the
purpose of sampling ridge features (see Fig. 7). Senior
refers to these as fiducial lines. Finally, for each inter-
section of a fiducial line and a ridge, four features are
calculated: (1) the distance since the last intersection, (2)
the angle of intersection, (3) the change in angle since the
last intersection, and (4) the curvature of the ridge at the
intersection. When calculated for each intersection, these
features capture information about the orientation,
spacing and curvature of the fingerprint ridges. The
advantage of this approach over using orientation fields
(see the section Orientation fields) is that any number of
features can be calculated at each intersection, thereby
capturing additional information that may aid classifi-
cation. However, the primary disadvantage is the
assumption that the fingerprint ridge map can be reliably
extracted, which is a difficult and computationally
expensive operation. A system using these features for
classification is discussed in the section Hybrid classifi-
ers.

Ridge Recurrence: Jain et al. store information about
the structure of fingerprint ridges for their classification
scheme [22]. Each ridge is classified as either non-
recurring, recurring, or fully recurring. Non-recurring
ridges do not curve very much, recurring ridges curve

approximately p and fully recurring ridges curve by
more than p. This information alone can not be used to
classify fingerprints, but can be used to supplement other
features with some information about the overall ridge
structure of the fingerprint.

Orientation fields

Orientation fields (also known as directional fields)
contain information about the local average directions
of fingerprint ridges. They are stored as a discrete matrix
whose elements are vectors tangent to the fingerprint
ridges in the corresponding region. An example of a
fingerprint and its orientation field is shown in Fig. 8.

Orientation fields are widely used in fingerprint sys-
tems and have several applications. One common
application is for image enhancement [18] and they can
also be used for the detection of singular points (see the
section Singularities). One of their most important
applications is for fingerprint classification. A finger-
print’s class is determined largely by the global pattern
of its ridges, and it is exactly this information that is
captured by an orientation field. Orientation fields have
the additional benefit that they can be calculated reliably
even for noisy images.

The calculation of orientation fields

Several methods for calculating orientation fields have
been devised. Perhaps the most common method in-
volves averaging gradients in a local area. Image gradi-
ents will point in the direction from ridges towards
valleys as this will be the direction with the greatest rate
of change in greyscale pixel values for a local area. The
orientation of the ridges in that area will be perpendic-
ular to the average gradients. Gradient-based techniques
are popular due to their ability to create highly accurate
results. Several algorithms using this approach can be
found in the literature [23, 24, 25, 26].

Another technique for creating orientation fields is
based on convolving the fingerprint image with masks
designed to detect local ridge orientations. These algo-
rithms have the advantage that they do not require the
gradient fields to be calculated, and can therefore be

Fig. 6 The kernels (from left to right) for arch, left loop, right loop
and whorl [20]

Fig. 8 a A fingerprint Image; b The orientation field of a

Fig. 7 Fingerprint ridges with horizontal fiducial lines for sampling

82



executed very quickly. The ridge-valley algorithm is the
most popular mask-based method [27, 28]. A disad-
vantage of this method is that the orientations are
quantised to only eight directions. Most modern systems
require a greater degree of accuracy, and therefore rely
primarily on gradient based algorithms.

A more thorough discussion of orientation field
estimation can be found in [4].

Dimension reduction for orientation fields

Orientation fields are a very important feature for fin-
gerprint classification. In particular, orientation fields
are often used as features for structural and neural
network classification approaches (see the sections
Structural features and The neural approach, respec-
tively). However, one problem when using the orienta-
tion field as a feature vector for classification is its high
dimensionality. The actual number of orientation com-
ponents will vary depending on the implementation. For
example, if a fingerprint image is 512 · 512 pixels and
tiles of size 16 · 16 are used, the orientation field will be
comprised of 1024 individual elements. Feature vectors
with high dimensions such as this have several practical
disadvantages such as large storage requirements, high
computational costs, and the ‘‘curse of dimensionality’’.
Therefore, it is often beneficial to reduce the dimen-
sionality of orientation field feature vectors before
classification.

Candela et al. use the Karhunen-Loève (K-L) trans-
form to reduce the dimension of the feature vector from
1680 elements to 64 elements in their classification sys-
tem PCASYS [28]. The KL transform has the advantage
that it preserves the approximate distance between fea-
ture vectors in the feature space. The KL transform,
which reduces an original feature vector u to a vector w
with n elements, is defined byw=YTu. Y is obtained by
first calculating the covariance matrix of some typical
feature vectors. Then a diagonalisation routine is used to
produce a subset of eigenvectors of the covariance ma-
trix corresponding to the largest eigenvalues. Y contains
the first n eigenvectors as its columns. By using the K-L
transform, PCASYS obtains (approximately) the same
classification results as using the original feature vectors,
but with much lower computational and storage costs.

Self-organising feature maps (SOMs) have also been
used to reduce the dimensionality of feature vectors
based on orientation fields, and are discussed in the
section The neural approach.

Singularities

A singularity is a local region of a fingerprint where the
ridge pattern has special properties making it visually
prominent. There are two types of fingerprint singular-
ities: cores and deltas (see Fig. 9). A core is the turning
point of an inner-most ridge and a delta is a place where

two ridges running side-by-side diverge. Henry origi-
nally introduced the concept of fingerprint singularities
as an aid for fingerprint classification [8]. He noted, for
example, that whorl fingerprints have two delta points
and one or two core points. Similar observations can be
made about the other fingerprint classes, and heuristic
rules such as these form the basis of some fingerprint
classification systems (see the section Singularities).

Singularities have other applications such as align-
ment landmarks for fingerprint matching. Because of
their extensive use in fingerprint systems, reliable
detection and extraction of singular points is very
important. Various methods for singularity detection
have been proposed. Complex filters designed to detect
prominent symmetries in the complex orientation field
have been proposed by Nilsson and Bigun [30]. Drets
and Liljenström train a neural network to recognise
singularities in the orientation field [31], and a syntactic
singularity detector is presented by Kawagoe and Tojo
[32].

The most common tool for singularity extraction is
the Poincaré index. The first application of Poincaré
indices to fingerprint images was presented by Kawagoe
and Tojo [32]; however, a intuitively similar algorithm
was presented earlier [33]. In the context of fingerprint
images, the Poincaré index is defined as the rotation of
the vectors along a curve in the orientation field. All
points of a fingerprint can be classified as either core
points, delta points or normal points depending on their
Poincaré index.

The Poincaré index is computed by considering a
small closed curve around a point in the orientation field
and summing the changes in direction of vectors along
the curve [34]. Let Yx(Æ) and Yy(Æ) represent the x and y
coordinates of a closed digital curve with NY pixels and
let O(x,y) be the orientation field vector at position (x,y).
The Poincaré index of a pixel (i,j) enclosed by Y is:

Poincar�e i; jð Þ ¼ 1

2p

XNW

k¼0
D kð Þ ð4Þ

where

D kð Þ ¼
d kð Þ if d kð Þj j\p=2;
pþ d kð Þ if d kð Þ6p=2;
p� d kð Þ otherwise.

8<
: ð5Þ

Fig. 9 Singularities
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d kð Þ ¼ O Wx i00ð Þ;Wy i00ð Þ
� �

� O Wx ið Þ;Wy ið Þ
� �

ð6Þ

i00 ¼ iþ 1ð Þ mod NW ð7Þ

Several examples of this are illustrated in Fig. 10.
Figure 10a shows an example of typical orientations that
would surround a core point. If you startwith the vector in
themiddle of the bottom rowandmove counter-clockwise
around the other vectors, the total change in direction is
180�. This corresponds to a Poincaré index value of 1

2.
Poincaré indices of � 1

2, and 0 occur for delta points,
whorls and normal points respectively.

The size of the enclosure Y is very important. If it is
too small spurious singularities may be detected, or if it
is too big some singularities may be missed. The optimal
size for Y depends on the resolution of the fingerprint
images and can be determined empirically.

Structural features

Structural features record the relationship between low-
level elements, and can be useful for fingerprint classi-
fication. Maio and Maltoni present a representation of
fingerprints based on relational graphs [35] that has also
been adopted by several other researchers [36, 37]. Their
representation segments the orientation field into re-
gions whose orientation vectors are approximately
homogeneous (i.e., they have similar orientations). An
example of this is given in Fig. 11a. Each region is
represented by a node of a graph and adjacent regions
are connected by an edge, as in Fig. 11b. The nodes are
labelled with the area of the corresponding region and
edges are labelled with the orientation difference of the
regions, the distance between the centres of the regions
and the length of their common border. This relational
graph summarises the topology of the fingerprint and is
invariant to translation and rotation.

When segmenting the orientation field the variance of
the orientation vectors should be minimised. However,
the shape of the regions is also important because highly
irregular shapes are likely due to overfitting. In [35] the
shape is controlled by simultaneously minimising the

variance of vector orientations and penalising elongated
shapes (shapes with a large perimeter and a small area).
Segmentation is accomplished using a dynamic cluster-
ing algorithm. In [36] it was pointed out that the tech-
nique described above suffers from several problems
which lead to very different outputs from similar inputs.
A new approach is proposed that uses a set of dynamic
masks. A dynamic mask is defined for each of the fin-
gerprint classes and is used to guide the segmentation
process. Classification systems based on relational
graphs are presented in the section Graph matching.

Chang and Fan present an alternate fingerprint rep-
resentation that captures structural information [38].
The fingerprints are represented as combinations of 10
basic ridge patterns. Examples of the basic patterns are
shown in Fig. 12. Chang and Fan claim that all finger-
prints can be represented by combinations of these basic
types and classification can be performed based on their
distribution in the fingerprint (see the section Syntactic
pattern recognition). This fingerprint representation
provides structural information about the fingerprint

Fig. 10 Singular points and
their Poincaré indexes. The
indices are as follows: a 1/2;
b-1/2; c 1; d0

Fig. 11 Structural features using a relational graph [36]

Fig. 12 Three of Chang and Fan’s ten basic ridge patterns [38]
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and is very powerful if it can be reliably constructed.
However, it may be difficult to categorise the individual
ridge structures for a noisy image, making this approach
only suitable for high-quality input.

Classification techniques

The previous section presented fingerprint features that
are commonly used for fingerprint classification. This
section discusses some of the classification methods that
have been applied to the problem. The section Structural
features presents structural classification approaches,
namely syntactic pattern recognition and graph match-
ing. Various heuristic approaches based on singularities
and ridge structures are discussed in the section The
heuristic approach. The section The neural approach
surveys the existing applications of neural networks to
fingerprint classification and the section Other ap-
proaches reviews miscellaneous approaches to classifi-
cation.

A structural approach

Structural pattern recognition classifies input based on
the interrelationships of low-level features. See the sec-
tion Structural features for a discussion on structural
features of fingerprints. Two methods of structural
pattern recognition will be discussed here: syntactic
classification and graph matching.

Syntactic pattern recognition

In syntactic pattern recognition an analogy is drawn
between the structure of the input data’s features and the
syntax of a language. Complex patterns are decomposed
into simple sub-patterns known as primitives that com-
prise the alphabet of the language. The input data is
represented by a sequence of primitives, which is con-
sidered to be a sentence of a language. Every class has an
associated set of rules (or grammar) that describe how to
build new sequences (or sentences). Classification is
performed by determining which grammar most likely
produced a given input sequence. In the context of fin-
gerprint classification, each fingerprint class would have
a grammar that generates sequences corresponding to
that class.

During the mid-1970s Moayer and Fu published
several of the early papers on fingerprint classification
[39, 40, 41]. All of these publications make use of syn-
tactic pattern recognition. In [39], a class of context-free
languages is used to describe the fingerprint classes. The
fingerprint features are extracted from the fingerprint’s
orientation field (see the section Structural features)
whose vectors have been quantised to four directions.
For each square block of 4 orientation field elements, the
number of possible combinations of directions is
44=256. Of these 256 combinations, 56 occur commonly

and are used as primitives. A fingerprint can be repre-
sented as a sequence of these 56 primitives. Context-free
grammars are used to describe the production rules for
the fingerprint classes and a top-down parser is devel-
oped for classification.

Another classification method using the syntactical
approach is presented by Rao and Black [42]. More re-
cently, Chang and Fan developed a classification scheme
[38] that uses regular expressions to describe the struc-
ture of fingerprint ridges. In the section Structural fea-
tures a ridge distribution model is presented that
represents fingerprints as combinations of ten basic ridge
patterns. These basic patterns are the primitives for
Chang and Fan’s syntactic classification scheme. A
‘‘ridge distribution sequence’’ is obtained by the noting
the type of ridges encountered when traversing the fin-
gerprint from the bottom to the top. Regular expressions
for generating the ridge distribution sequences for seven
fingerprint classes are formulated and a nondeterminis-
tic finite automata is constructed to perform classifica-
tion.

Syntactic methods tend to be robust in the presence
of noise and can be designed to be invariant to trans-
lations and rotations. However, they struggle with the
large intraclass and small interclass variations of fin-
gerprint classes. In other words, the grammars must be
able to recognise a wide variety of different sequences as
being from the same class, yet still be able to differentiate
very similar sequences from different classes. The syn-
tactic classifier’s performance is closely related to the
features used as fingerprint primitives. Of the schemes
discussed above, only the primitives of the ridge distri-
bution model are rich enough to form the basis of a
robust syntactic classifier.

Graph matching

Given two graphs as input, graph matching algorithms
attempt to determine whether or not the graphs are
isomorphic. In the section Structural features a method
for representing a fingerprint’s topology using relational
graphs is presented (see Fig. 11), and Maio and Maltoni
have proposed a system that classifies fingerprints based
on these graphs [35]. For each fingerprint class a model
graph is created that has a structure typical of that class.
Since there will inevitably be some variation among
graphs from the same class, Maio and Maltoni propose
to use an inexact graph matching algorithm. This would
allow one to define a distance between two graphs that
could be used as the basis for either an exclusive or
continuous classification scheme.

Graph matching based techniques have been further
researched by Cappelli et al. [36]. As described in the
section Structural features, Cappelli et al. use a modified
method of partitioning the orientation field by ‘‘guid-
ing’’ the segmentation with the use of dynamic masks. A
dynamic mask is defined for five fingerprint classes: the
arch, left loop, right loop, tented arch and whorl. For an
input image, an application cost is calculated for each of
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the dynamic masks. Intuitively, the application cost
quantifies how well the mask ‘‘fits’’ the input fingerprint.
The application costs for each dynamic mask are used to
create a feature vector with five elements. If exclusive
classification is required, the class with the lowest
application cost can be used as the fingerprint’s class. A
more sophisticated approach to exclusive classification
would be to use a neural network or statistical classifier
to classify the feature vectors. However, this represen-
tation was originally intended to be used as the basis for
a continuous classification scheme, and it is more suit-
able for this purpose. This can be illustrated with an
example. The relational graphs for tented arches, left
loops and right loops tend to look similar. The strength
of this approach is that the degree of similarity with all
three classes is recorded. This is valuable discriminatory
information, and it is beneficial to exploit it for contin-
uous classification rather than forcing the print into a
single arbitrary category.

The heuristic approach

Humans have been classifying fingerprints using their
expert knowledge of the domain ever since Henry first
proposed his classification scheme in the early 1900s.
One approach for automated fingerprint classification is
to codify the knowledge of human experts using a sys-
tem of heuristic rules. Some systems use heuristic rules
based on the singularity features, some use ridge fea-
tures, while others use a combination of singularity and
ridge features.

Singularities

The section Singularitiesdefines singularities (core and
delta points) and discusses various methods of detecting
and extracting them from fingerprint images. Henry
introduced singular points because of their usefulness
for classifying fingerprints. For example, he noted that
‘‘in loops... there is one delta’’ [8]. Fig. 13a shows a left
loop with one core point and one delta point, which is
characteristic of left loops. Having detected a finger-
print’s singularities, heuristic rules based on their num-

ber and location can be used to accurately classify
fingerprints.

Karu and Jain have developed a six class fingerprint
classification system based on heuristics [43]. Finger-
prints with no core or delta points are classified as
arches. Loops and tented arches both contain one core
and one delta. They are discriminated by the symmetry
of the line connecting the core and delta point: this line
is parallel to local orientation vectors for a tented arch,
but it transverses the orientation vectors for a loop.
This can be illustrated by looking at Fig. 13. In
Fig. 13a line connecting the core and delta points
transverses the ridges between them, while a line con-
necting the core and delta points in Fig. 13b is parallel
to the ridges between them. Whorls and twin loops
have two cores and two deltas and are discriminated
using a similar technique that discriminates loops and
tented arches. Left loops and right loops are distin-
guished by examining the direction of local orientation
vectors around the core point. Other classification
systems based on singularity heuristics can be found in
the literature [44, 45, 46].

Systems based on singularity rules work very well if
the singularities are accurately detected. They are not
sensitive to rotations and translations and fingerprints.
Furthermore, they can classify prints from different
classes with similar global ridges patterns (small inter-
class variation) and prints with very different global
ridges patterns from the same class (large intraclass
variation). However, a major disadvantage of systems
that base their classification only on singularity features
is that the reliable detection of core and delta points is
very difficult. Since singularities are local features they
are very sensitive to noise. If the singularities are not
extracted (or if spurious singularities are) the systems
described in this section perform poorly.

Global ridge structures

Several methods have been proposed to extract and
represent the ridge structures that are found in a fin-
gerprint (see the section Ridge features) and it is possible
to use these features as the basis for a heuristic classifi-
cation system. One advantage of this approach is that

Fig. 13 Fingerprints with their core and delta points marked by a
circ and D, respectively

Fig. 14 The global geometry of a twin loop and features that can
be used to recognise it [19]
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ridge structures can be global features, and therefore can
often be reliably extracted even for noisy images.

Chong et al. use the geometric framework described
in the section The calculation of orientation fieldsto
represent the global geometric shape of fingerprints (see
Fig. 5) [19]. It is interesting to note that their classifi-
cation system uses the five fingerprint classes arch, right
loop, left loop, whorl and twin loop, whereas most five-
class systems use the tented arch instead of the twin
loop. Classification is based on analysing the global
geometric shape of the fingerprint. For example, Fig. 14
shows the global geometric shape of the twin loop. Twin
loops can be recognised by the fact that they are the only
global geometric shape that has two turns with opposite
signs. Other (more complex) rules can be constructed
that discriminate the other fingerprint classes. The
advantages and disadvantages of the geometric repre-
sentation of fingerprints are discussed in the section
Ridge structure features.

Singularities and global ridge structures

As mentioned above, systems that are based solely on
singularity features perform very poorly on noisy images
since the singularities can not always be extracted reli-
ably. However, a drawback of global ridge structure
features is their difficulty dealing with the large intraclass
variations and small interclass variations of fingerprint
classes. Some classification systems overcome these
limitations by using both local (singularities) and global
(ridge structures) features. These systems, if designed
properly, can accurately classify fingerprints even when
some singularities can not be found.

Kawagoe and Tojo use singularity counts to provide
a coarse classification of fingerprint images according to
Table 1 [32]. Flow-line tracing around singular regions is
then used to perform more detailed classification. For
example, for a tented arch the flow-line leading from the
core point should be straight down, and this can be used
to discriminate it from the loop types. A similar ap-
proach is taken by Zhang et al. [47].

Ridge shape can also be incorporated with singularity
information to aid classification [22, 34]. The fingerprint
ridges are divided into three categories based on their
curvature. Non-recurring ridges do not curve very much,
type-1 recurring ridges curve approximately p and type-
2 fully recurring ridges curve by more than p. Classifi-
cation is based on the number of core points, delta

points, type-1 recurring ridges and type-2 recurring
ridges. For example, a rule states that if there exists at
least one type-2 recurring ridge, two core points, and
two deltas points, then classify the fingerprint as a
whorl.

The neural approach

The applicability of neural networks to fingerprint
classification began to be researched in the early 1990s
[48, 49, 50]. Research has continued since then, and
neural networks are now one of the most commonly
used classifiers for fingerprint classification systems.

The National Institute of Standards and Technology
developed a classification system for the FBI in the early
1990s [29] that uses neural network classification. This
research formed the basis for the PCASYS system
(Pattern-level Classification Automation System for
Fingerprints) whose source code is now publicly avail-
able at http://www.itl.nist.gov/[28]. After preprocessing,
the first stage in PCASYS is to calculate the fingerprint’s
orientation field. The directional image is then registered
with respect to the centre of the fingerprint image.
Registration is used to reduce the translational variation
between the orientation fields of different fingerprints.
Registration requires a feature that can consistently be
extracted from all fingerprint classes. PCASYS uses the
core of loops, the upper core of whorls and a well-de-
fined feature of arches and tented arches (which do not
have true core points). The dimensionality of the ori-
entation field is reduced using the KL transform (see the
section Dimension reduction for orientation fields),
reducing the feature vector from 1680 elements to 64
elements. Next, a probabilistic neural network (PNN) is
used to classify the feature vector. Finally, an auxiliary
classifier known as a pseudoridge tracer is used to im-
prove the reliability of classification. The pseudoridge
tracer helps to detect whorls, and a simple rule is used to
combine the output of the pseudoridge tracer and the
PNN. The result is a hybrid classification system (see the
section Dimension reduction for orientation fields), al-
though the pseudoridge tracer plays a relatively minor
role.

Neto and Borges have developed a neural network
classification system that uses wavelet features [51].
Wavelets form the basis of the FBI’s fingerprint image
compression scheme [52]; however, wavelet-based rep-
resentations are not very useful for fingerprint classifi-
cation due to their sensitivity to rotations and
translations. A feed-forward neural network with a
single hidden layer was trained to classify feature vectors
consisting of 64 wavelet coefficients. However, due to the
limitations of the feature set, the results from this system
are not very impressive.

Halici and Ongun have suggested the use of a neural
network known as an SOM [53]. SOMs are based on
Kohonen learning and are used for dimensionality
reduction (see the section Dimension reduction for

Table 1 Kawagoe and Tojo’s coarse classification by singularity
count [32]. A whorl point contains two close core points and
*represents any number

Whorl Core Delta Type

1 0 * Whorl
0 1 * Loop, pocketed loop,

or tented arch
0 2 * Twin loop or whorl
0 0 0 Arch
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orientation fields). The SOM maps n-dimensional input
vectors to a lower dimension; usually the 2-D plane.
The topology for a typical SOM network has ninput
nodes and m·m output nodes and each output node
has a connection to each input node. During the
training stage, a mapping is found such that similar
input vectors are situated close to each other in the
output plane. This process assigns a class to all regions
of the output plane, and classification is performed by
mapping input vectors to these regions. Halici and
Ongun present a modified version of SOM that in-
cludes a certainty parameter to handle fingerprints with
distorted regions. The features being used for classifi-
cation are the fingerprint’s orientation field and some
certainty measures. Several other systems using SOMs
have also been proposed [54, 55].

A fuzzy-network classifier is used by Mohamed and
Nyongesa to classify fingerprints based on singularity
features [56]. The features used include the number of
core and delta points, the orientation of core points, the
relative position of core and delta points and the global
direction of the orientation field. The authors point out
that noise and preprocessing errors lead to a wide vari-
ation of values for fingerprints within the same class
(intraclass variation). Therefore, techniques that provide
some flexibility, such as fuzzy-neural classifiers, are
desirable. Fuzzy-neural systems combine the advantages
of fuzzy logic techniques and neural networks. Fuzzy
logic deals with explicit knowledge and high-level rea-
soning, while neural networks deal with implicit
knowledge and offer algorithms for learning and classi-
fication. The neural network is used to automatically
generate fuzzy logic rules during the training period. In a
sense, this scheme is a combination between the neural
approaches discussed in this section and the heuristic
approaches based on singularities discussed in the sec-
tion Singularities.

Another fingerprint classification system using artifi-
cial neural networks is described by Nagaty [57]. Most of
the neural network classification systems discussed so far
use the vectors from the orientation field as the features
for classification. Nagaty presents a system that uses
structural and statistical features. Structural features are
extracted from the orientation field using a line tracing
algorithm. Prominent flow lines are represented by
strings of symbols that encode information about their
endpoints and curvature. These are known as charac-
teristic strings, and moments are used to extract statis-
tical features from them. A three-layer feed-forward
artificial neural network with six subnetworks (one for
each class) is used for classification.

Other approaches

Several fingerprint classification systems use cluster-
ing algorithms for classification. The section Fre-
quencydescribed a feature extraction method proposed
by Fitz and Green that is based on Fourier transforms.

Information from the frequency domain is extracted
using a wedge-ring detector [16]. Feature vectors for
labelled samples are inserted into the feature space as
references, and unlabeled samples are classified accord-
ing to the label of their nearest neighbour. Using a single
nearest neighbour for classification is very simplistic and
is not capable of creating complex partitions of the
feature space.

The use of a k -Means classifier has been investigated
by Wang et al. [58]. Clustering was performed on 500
samples, each labelled as either a whorl, left loop, right
loop, or arch. The features used were the orientation
vectors in the area surrounding a fingerprint’s core.
Through experimentation, the authors found that using
nine clusters had the best performance, and these clus-
ters were found using a k -Means clustering algorithms.
For classification, an unlabelled feature vector is as-
signed to the most common class of its three-nearest
neighbours. Using clustering and three-nearest neigh-
bours is certainly more powerful than simply using a
single nearest neighbour, and it still has a low compu-
tational complexity. However, the classifier is not as
sophisticated as neural approaches or many statistical
classifiers.

Cappelli et al. have developed a system that uses a
multi-space KL transform as the basis for classification
[59]. As mentioned in the section Dimension resduction
for orientation fields, the KL transform reduces the
dimensionality of a feature space while minimising the
average mean-squared error. The Multi-space KL
(MKL) transform is a generalisation of the KL trans-
form that uses multiple subspaces for classification. One
subspace is trained for each fingerprint class and fin-
gerprints are characterised by their distances to the
subspaces. This representation could be used as the basis
for a continuous classification scheme, or the fingerprint
class could be assigned using a minimum-distance cri-
terion. Using MKL is powerful and has a strong ability
to distinguish the fingerprint classes.

Support vector machines (SVMs) are a relatively re-
cent classifier that are based on statistical learning the-
ory [60]. SVMs are a binary classifier that work by
finding the optimal separating hyperplane in the feature
space [61]. Yao et al. have applied SVMs to the problem
of fingerprint classification using the FingerCode rep-
resentation of the fingerprint (see the section Frequency)
[62]. One advantage of SVMs is their strong ability to
classify vectors with high-dimensions (such as Finger-
Codes). Since SVMs are a binary classifier, various
methods have been adopted for the application of SVMs
to problems with multiple classes. Assuming there are n
classes, one approach is to use n2 classifiers, each of
which distinguishes a single pair of classes (one-vs-one).
Another approach is to use n classifiers, each of which
distinguish one class from all others (one-vs-all). Yao
et al. performed experiments with both of these ap-
proaches, along with a scheme based on error-correcting
codes. SVMs are a powerful classifier and encouraging
results were presented.
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Hybrid classifiers

It is well known in pattern recognition that all classifiers
have strengths and weaknesses when compared to each
other. In other words, there is no known classifier that
consistently outperforms all other classifiers on all
problems. Therefore, it is often beneficial to combine
classifiers to exploit their relative advantages. When two
different classifiers are used in conjunction it is known as
a hybrid classifier.

SVMss (the section The neural approach) and neural
networks are combined for classification by Yao et al.
[37]. The features used are a combination of structural
features and frequency-based features. For the structural
features, the orientation field is segmented into homo-
geneous regions and represented using relational graphs
(see Fig. 11). FingerCode features (see the section Fre-
quency) are used to provide frequency information. The
authors performed several experiments to compare the
discriminatory ability of these features. In one experi-
ment, the FingerCodes were classified using a multilayer
perceptron and the relational graphs were classified
using a recursive neural network. The authors found
that vector-based features (FingerCodes) had a much
higher classification accuracy. In particular, they noted
that the structural information is good for classifying
whorls and arches, but not very useful for distinguishing
left loops, right loops and tented arches. By combining
the results from the two classifiers (using a k -nearest
neighbour classifier) they were able to obtain better re-
sults than either individual classifier in isolation. In an-
other experiment the authors explore the use of SVMs.
They compare an SVM’s performance when using only
FingerCode features with the performance obtained
when also incorporating structural features that were
extracted using a recursive neural network. Once again,
the classification accuracy was improved by incorpo-
rating structural features. Furthermore, the SVM results
were superior to the ones from using two neural net-
works for classification.

Senior has proposed a hybrid of a hidden Markov
model (HMM) classifier and a decision tree [63]. HMMs
are a family of tools for modelling sequential processes
in a statistical and generative manner. The HMM clas-
sification features were generated from the fiducial lines
described in the section Ridge structure features. Hidden
Markov models are used to model the features found
along the parallel lines. The decision tree classifier used a
completely different set of features so that its classifica-
tion errors were uncorrelated to those from the HMM
classifier. The features for the decision tree classifier
describe the ridge shapes. Each node of the decision tree
is a binary question about the features of a fingerprint.
Depending on the answer, a sub-tree is chosen and an-
other question is asked. When a node with no children is
found (a leaf), it will have a class (or class probability
distribution) associated with it. Senior also considers the
classes predicted by the PCASYS classification system
(the section The neural approach). Therefore, his system

uses three different feature sets and three different clas-
sifiers. The results are combined using a backpropaga-
tion neural network. Systems such as this one using
multiple feature sets and multiple classifiers have the
potential to be very powerful because they can exploit
the advantages of the different fingerprint representa-
tions and classifiers to overcome any individual weak-
nesses.

Jain et al. have proposed a two-stage classifier based
on FingerCodes (see the section Frequency) [17]. The
algorithm first uses a k -Nearest-Neighbour classifier to
determine the two most likely classes of the fingerprint.
These are determined by the two most common classes
of the knearest neighbours to the vector in the feature
space. During the second stage, the fingerprint’s class is
determined by a neural network trained specifically to
distinguish those two classes. Therefore, if five finger-

print classes are being used
5
2

� �
individual neural

networks are trained. This approach allows the neural
networks to be highly specialised to distinguish between
only two classes. This is an advantage because the var-
iability between classes can be very small, making it
difficult for a single classifier to accurately discriminate
all of them. SVMs have been shown to be well suited for
classifying FingerCodes [62], so by using SVMs instead
of neural networks the accuracy of this system may be
improved further.

Classification performance

A common way to represent the results of fingerprint
classification is by using a confusion matrix. A confusion
matrix has a row for each predicted class and a column
for each actual class. Table 2 shows a confusion matrix
from [43]. Numbers on the diagonal (shown in bold) are
fingerprints that have been correctly classified, while
numbers off the diagonal show misclassifications. For
example, 197 tented arches were classified as arches.

The comparison of classification algorithms is diffi-
cult for several reasons. First of all, different classifi-
cation systems use different fingerprint classes, and this
directly affects the accuracy of a system. For example,
a system that categorises fingerprints as only arches,
loops, or whorls has a much easier classification
task than one that uses all eight of Henry’s classes.

Table 2 An example confusion matrix [43]. The left column is the
assigned class and the top row is the actual class

Whorl Left
loop

Right
loop

Arch Tented
arch

Whorl 731 35 30 1 10
Left loop 33 780 6 10 79
Right loop 23 3 672 7 7
Arch 5 36 37 912 197
Tented arch 4 11 45 5 321
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Furthermore, different fingerprint databases are used to
evaluate system results. The quality of the fingerprint
images is closely tied to the system’s performance, and
it varies widely between datasets. Fortunately the Na-
tional Institute for Standards and Technology has
made several standard fingerprint databases publicly
available. NIST Special Database 4 contains 2000 8-bit
greyscale fingerprint pairs (i.e., there are two different
fingerprints from 2000 fingers, so there are 4000 images
in total) [64]. The prints are labelled as arches (A),
tented arches (T), left loops (L), right loops (R), or
whorls (W). Some fingerprints are also labelled with
alternate classes when ambiguities are present. The
database is evenly distributed over the five classes (800
images of each). This distribution does not reflect the
actual class distribution found in nature. The NIST
Special Databases 9 and 14 contain fingerprints la-
belled using all eight of Henry’s classes plus scar and
amputation. The distribution of the classes in NIST 9
and NIST 14 approximates the natural distribution.
NIST 4 has become the most common dataset for
evaluating fingerprint classification algorithms. Table 3
lists some fingerprint classification systems that have
published results using the NIST 4 database. The other
classification systems discussed in this paper have not
been included in Table 3 because they are evaluated
using non-standard databases.

Even though the algorithms listed in Table 3 are
tested on the same dataset, there are still some obstacles
to performing a direct and fair comparison between
them. Some algorithms (such as neural networks and
SVMs) need to be trained, and the images used to train a
classifier will vary from system to system. Often these
algorithms will use a portion of the database for training
and a portion for testing. For example, Mohamed and
Nyongesa use the entire database for both training and
testing [56]. Consequently, their reported accuracy re-
sults do not necessarily reflect how well the classifier will
perform on unseen data. Some other systems (such as
Jain et al. [17]) use half of the NIST 4 database for
training and half for testing.

Table 4 shows the accuracy results for the algo-
rithms in Table 3when tested on the NIST 4 database.
The ‘‘Classes’’ column is the number of classes used for
classification. When five classes are used, they are arch,
tented arch, whorl, left loop and right loop. Arch and
tented arch are difficult to distinguish and are relatively
rare, so they are combined into one class when four
classes are used. NIST 4 provides alternate classes for
some fingerprints. Most classification schemes only use
the first class listed and ignore alternate classes. How-
ever, Jain and Minut [20] and Cappelli et al. [59]
consider a fingerprint to be correctly classified if it
matches any of the alternate labels provided. This re-
sults in a higher accuracy than if only the first label is
used.

The ‘‘Accuracy’’ column is the percentage of the
database that is correctly labelled by the classification
system. The accuracy values listed are not weighted to

Table 3 Summary of the classi-
fication algorithms evaluated
using NIST 4

Author and year Features Classification

Wilson et al. (1992) [29] Orientation field NN
Karu and Jain (1996) [43] Singularities Heuristics
Senior (1998) [21] Ridge structure HMM
Jain et al. (1999) [17] FingerCode kNN, NN
Hong and Jain (1999) [34] Singularities and ridge

structure
Heuristics

Cappelli et al. (1999) [59] Orientation field Multi-space KL
Cappelli et al. (1999) [36] Relational graph Inexact graph matching
Yao et al. (2001) [62] FingerCode SVM
Senoir (2001) [63] Ridge structure HMM, Decision tree, NN
Chang and Fan (2002) [38] Ridge distribution Syntactic
Mohamed and Nyongesa
(2002) [56]

Singularities Fuzzy NN

Zhang et al. (2002) [47] Singularities, ridge tracing Heuristics
Jain and Minut (2002) [20] Fingerprint kernels Kernel fitting
Yao et al. (2003) [37] Relational graph, FingerCode SVM, NN

Table 4 A comparison of fingerprint classification algorithm
accuracies

Author and year Classes Accuracy

Wilson et al. (1992) [29] 5 81.0
Karu and Jain (1996) [43] 5 85.4
Jain et al. (1999) [17] 5 90.0
Hong and Jain (1999) [34] 5 87.5
Cappelli et al. (1999) [59] 5 92.2
Cappelli et al. (1999) [36] 5 87.1
Yao et al. (2001) [62] 5 89.3
Chang and Fan (2002) [38] 5 94.8
Mohamed and Nyongesa
(2002) [56]

5 92.4

Zhang et al. (2002) [47] 5 84.0
Yao et al. (2003) [37] 5 90.0
Wilson et al. (1992) [29] 4 86.0
Karu and Jain (1996) [43] 4 91.4
Senior (1998) [21] 4 81.6
Jain et al. (1999) [17] 4 94.8
Hong and Jain (1999) [34] 4 92.3
Senoir (2001) [63] 4 88.5
Jain and Minut (2002) [20] 4 91.3
Yao et al. (2003) [37] 4 94.7
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reflect the natural distribution of fingerprint classes. As
mentioned above, the NIST 4 database has an equal
number of samples from each fingerprint class. In order
to get a better estimate of a system’s real-world per-
formance, some authors weight the accuracies for each
class individually according to the natural distribution
before combining the results. Using weighted accura-
cies will lead to a different overall accuracy. For
example, a system that often misclassifies arches (which
are rare) will have a lower accuracy when tested on
NIST 4 than in the real world because NIST 4 contains
20% arches. In the case of Senior, the accuracy value
was calculated from the confusion matrix given in
Table 2[63] because only weighted accuracies were
presented.

Some algorithms reject images for various reasons. In
some cases fingerprints that can not be classified with a
certain degree of confidence are rejected in order to in-
crease a system’s overall performance. Fingerprints can
also be rejected during the preprocessing stage if they are
of particularly poor quality. For example, some images
in the NIST 4 database do not have FingerCode repre-
sentations because the core point could not be deter-
mined. For some systems the number of images rejected
is an adjustable parameter and the authors publish re-
sults showing the how the system’s performance varies
as the rejection rate is increased. Due to space con-
straints, only accuracies with a 0% rejection rate are
shown in Table 4. However, there are two exceptions:
for Chang and Fan [38] and Jain and Minut [20] the
performance with no rejected input is not reported. The
rejection rates for these systems are 5.1% and 1.8%,
respectively.

With all of these factors in mind, it is difficult to
directly compare the results shown in Table 4. However,
it is definitely clear that the accuracies have been
improving over time. Also, several of the better results
are reported from systems that use combinations of
features. For example, Yao et al. [37] have very high
accuracies for both the four and five class problem, and
they use combinations of feature sets and classifiers.

Conclusions

Automated fingerprint classification is an inherently
difficult problem that has yet to be adequately solved.
Karu and Jain claim that the FBI requirements for an
acceptable fingerprint classification system is 99%
accuracy with a 20% rejection rate [43]. Some of the
state of the art algorithms listed in Table 4 come very
close to satisfying this requirement. For example,
Cappelli et al. can achieve 97% accuracy for the five
class problem with a rejection rate of 21.6% [59]. This is
close to the FBI requirements, however one can not help
but question the performance of a system that rejects
such a high percentage of its input. Yet, this is the cur-
rent state of the art of fingerprint classification despite
several decades of research.

The next generation of fingerprint classification sys-
tems will most likely use combinations of features. The
best features for classification are fingerprint singulari-
ties. However, core points and delta points can be dif-
ficult to detect in noisy images. On the other hand,
orientation fields and ridge structure features can be
reliably calculated even for noisy images, but these fea-
tures are not as discriminative as singularities. Robust
systems of the future will need to exploit the relative
advantages of these different fingerprint representations.
Since different classifiers work well with different feature
sets, systems with combinations of classifiers will also
become more common. Using meta-level classification
to combine results from base-level classifiers is a prom-
ising approach that would benefit from further investi-
gation.

Future efforts should also explore alternative means
of classification. Henry’s system was appropriate 100
years ago when classification was performed manually.
However, this does not necessarily indicate that it is
well-suited as the basis for the automated fingerprint
identification systems of today. Continuous classifica-
tion is one alternative that may be a more natural choice
for modern identification systems. However, continuous
classification is not compatible with many existing fin-
gerprint databases that are based on Henry’s classifica-
tion, so it will be adopted slowly.

Biometric systems will likely become ubiquitous
within the coming years, and fingerprints are emerging
as the preferred biometric for identification. In order for
real-time identification to be feasible, it is vital that large
fingerprint databases execute queries quickly and accu-
rately. These databases will rely heavily on fingerprint
classification and indexing to minimise the number of
necessary one-to-one fingerprint matches. Considering
both the importance of the problem and the need for
performance improvements, more research into finger-
print classification is required and there are many
opportunities for advancements and innovations in the
field.

Originality and contributions

The main contribution of this article is in its presentation of the
state of the art in automated fingerprint classification. Fingerprint
classification is currently a hot research topic in the image analysis
and pattern recognition communities. However, despite increasing
attention from both private and academic institutions, the finger-
print classification problem is far from solved. This article surveys
the features the are most useful for classification, and identifies the
classification strategies that proven successful.

Of particular value for practitioners in the field is a tabula-
tion of results from a wide variety of systems on a standard
dataset (i.e., the NIST Special Database 4). This will quickly and
conveniently familiarise researchers with the top results in the
field. To our knowledge, this is the most extensive survey of
fingerprint classification techniques in publication. The review
will be valuable for readers with no background in fingerprint
recognition as there is little assumed knowledge. Furthermore, it
will also be of interest to those with a background in the area
wishing to acquaint themselves with the latest developments in
the field.
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