#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ compute gm with load_data.py and test them. Created on Wed Sep 19 16:12:13 2018 @author: ljia """ """Shortest-Path graph kernel. Python implementation based on: "Shortest-path kernels on graphs", by Borgwardt, K.M.; Kriegel, H.-P., in Data Mining, Fifth IEEE International Conference on , vol., no., pp.8 pp.-, 27-30 Nov. 2005 doi: 10.1109/ICDM.2005.132 Author : Sandro Vega-Pons, Emanuele Olivetti """ import sys sys.path.insert(0, "../../") import numpy as np import networkx as nx from gklearn.utils.graphfiles import loadDataset import matplotlib.pyplot as plt from numpy.linalg import eig class GK_SP: """ Shorthest path graph kernel. """ def compare(self, g_1, g_2, verbose=False): """Compute the kernel value (similarity) between two graphs. Parameters ---------- g1 : networkx.Graph First graph. g2 : networkx.Graph Second graph. Returns ------- k : The similarity value between g1 and g2. """ # Diagonal superior matrix of the floyd warshall shortest # paths: fwm1 = np.array(nx.floyd_warshall_numpy(g_1)) fwm1 = np.where(fwm1 == np.inf, 0, fwm1) fwm1 = np.where(fwm1 == np.nan, 0, fwm1) fwm1 = np.triu(fwm1, k=1) bc1 = np.bincount(fwm1.reshape(-1).astype(int)) fwm2 = np.array(nx.floyd_warshall_numpy(g_2)) fwm2 = np.where(fwm2 == np.inf, 0, fwm2) fwm2 = np.where(fwm2 == np.nan, 0, fwm2) fwm2 = np.triu(fwm2, k=1) bc2 = np.bincount(fwm2.reshape(-1).astype(int)) # Copy into arrays with the same length the non-zero shortests # paths: v1 = np.zeros(max(len(bc1), len(bc2)) - 1) v1[range(0, len(bc1)-1)] = bc1[1:] v2 = np.zeros(max(len(bc1), len(bc2)) - 1) v2[range(0, len(bc2)-1)] = bc2[1:] return np.sum(v1 * v2) def compare_normalized(self, g_1, g_2, verbose=False): """Compute the normalized kernel value between two graphs. A normalized version of the kernel is given by the equation: k_norm(g1, g2) = k(g1, g2) / sqrt(k(g1,g1) * k(g2,g2)) Parameters ---------- g1 : networkx.Graph First graph. g2 : networkx.Graph Second graph. Returns ------- k : The similarity value between g1 and g2. """ return self.compare(g_1, g_2) / (np.sqrt(self.compare(g_1, g_1) * self.compare(g_2, g_2))) def compare_list(self, graph_list, verbose=False): """Compute the all-pairs kernel values for a list of graphs. This function can be used to directly compute the kernel matrix for a list of graphs. The direct computation of the kernel matrix is faster than the computation of all individual pairwise kernel values. Parameters ---------- graph_list: list A list of graphs (list of networkx graphs) Return ------ K: numpy.array, shape = (len(graph_list), len(graph_list)) The similarity matrix of all graphs in graph_list. """ n = len(graph_list) k = np.zeros((n, n)) for i in range(n): for j in range(i, n): k[i, j] = self.compare(graph_list[i], graph_list[j]) k[j, i] = k[i, j] k_norm = np.zeros(k.shape) for i in range(k.shape[0]): for j in range(k.shape[1]): k_norm[i, j] = k[i, j] / np.sqrt(k[i, i] * k[j, j]) return k_norm ds_name = 'PAH' datafile = '../../datasets/PAH/dataset.ds' dataset, y = loadDataset(datafile, filename_y=None, extra_params=None) gk_sp = GK_SP() x = gk_sp.compare_list(dataset) np.savez('../check_gm/' + ds_name + '.gm.jstsp', gms=x) plt.imshow(x) plt.colorbar() plt.savefig('../check_gm/' + ds_name + '.gm.jstsp.eps', format='eps', dpi=300) # print(np.transpose(x)) print('if symmetric: ', np.array_equal(x, np.transpose(x))) print('diag: ', np.diag(x)) print('sum diag < 0.1: ', np.sum(np.diag(x) < 0.1)) print('min, max diag: ', min(np.diag(x)), max(np.diag(x))) print('mean x: ', np.mean(np.mean(x))) [lamnda, v] = eig(x) print('min, max lambda: ', min(lamnda), max(lamnda))