#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Oct 29 19:17:36 2020 @author: ljia """ from gklearn.utils import Dataset def get_dataset(ds_name): # The node/edge labels that will not be used in the computation. if ds_name == 'MAO': irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} elif ds_name == 'Monoterpenoides': irrelevant_labels = {'edge_labels': ['valence']} elif ds_name == 'MUTAG': irrelevant_labels = {'edge_labels': ['label_0']} elif ds_name == 'AIDS_symb': irrelevant_labels = {'node_attrs': ['chem', 'charge', 'x', 'y'], 'edge_labels': ['valence']} ds_name = 'AIDS' # Initialize a Dataset. dataset = Dataset() # Load predefined dataset. dataset.load_predefined_dataset(ds_name) # Remove irrelevant labels. dataset.remove_labels(**irrelevant_labels) print('dataset size:', len(dataset.graphs)) return dataset