#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Mar 16 18:04:55 2020 @author: ljia """ import numpy as np import time from tqdm import tqdm import sys import networkx as nx import multiprocessing from multiprocessing import Pool from functools import partial from gklearn.ged.env import AlgorithmState, NodeMap from gklearn.ged.util import misc from gklearn.utils import Timer, SpecialLabel class MedianGraphEstimatorCML(object): # @todo: differ dummy_node from undifined node? """Estimate median graphs using the pure Python version of GEDEnv. """ def __init__(self, ged_env, constant_node_costs): """Constructor. Parameters ---------- ged_env : gklearn.gedlib.gedlibpy.GEDEnv Initialized GED environment. The edit costs must be set by the user. constant_node_costs : Boolean Set to True if the node relabeling costs are constant. """ self._ged_env = ged_env self._init_method = 'BRANCH_FAST' self._init_options = '' self._descent_method = 'BRANCH_FAST' self._descent_options = '' self._refine_method = 'IPFP' self._refine_options = '' self._constant_node_costs = constant_node_costs self._labeled_nodes = (ged_env.get_num_node_labels() > 1) self._node_del_cost = ged_env.get_node_del_cost(ged_env.get_node_label(1, to_dict=False)) self._node_ins_cost = ged_env.get_node_ins_cost(ged_env.get_node_label(1, to_dict=False)) self._labeled_edges = (ged_env.get_num_edge_labels() > 1) self._edge_del_cost = ged_env.get_edge_del_cost(ged_env.get_edge_label(1, to_dict=False)) self._edge_ins_cost = ged_env.get_edge_ins_cost(ged_env.get_edge_label(1, to_dict=False)) self._init_type = 'RANDOM' self._num_random_inits = 10 self._desired_num_random_inits = 10 self._use_real_randomness = True self._seed = 0 self._parallel = True self._update_order = True self._sort_graphs = True # sort graphs by size when computing GEDs. self._refine = True self._time_limit_in_sec = 0 self._epsilon = 0.0001 self._max_itrs = 100 self._max_itrs_without_update = 3 self._num_inits_increase_order = 10 self._init_type_increase_order = 'K-MEANS++' self._max_itrs_increase_order = 10 self._print_to_stdout = 2 self._median_id = np.inf # @todo: check self._node_maps_from_median = {} self._sum_of_distances = 0 self._best_init_sum_of_distances = np.inf self._converged_sum_of_distances = np.inf self._runtime = None self._runtime_initialized = None self._runtime_converged = None self._itrs = [] # @todo: check: {} ? self._num_decrease_order = 0 self._num_increase_order = 0 self._num_converged_descents = 0 self._state = AlgorithmState.TERMINATED self._label_names = {} if ged_env is None: raise Exception('The GED environment pointer passed to the constructor of MedianGraphEstimator is null.') elif not ged_env.is_initialized(): raise Exception('The GED environment is uninitialized. Call gedlibpy.GEDEnv.init() before passing it to the constructor of MedianGraphEstimator.') def set_options(self, options): """Sets the options of the estimator. Parameters ---------- options : string String that specifies with which options to run the estimator. """ self._set_default_options() options_map = misc.options_string_to_options_map(options) for opt_name, opt_val in options_map.items(): if opt_name == 'init-type': self._init_type = opt_val if opt_val != 'MEDOID' and opt_val != 'RANDOM' and opt_val != 'MIN' and opt_val != 'MAX' and opt_val != 'MEAN': raise Exception('Invalid argument ' + opt_val + ' for option init-type. Usage: options = "[--init-type RANDOM|MEDOID|EMPTY|MIN|MAX|MEAN] [...]"') elif opt_name == 'random-inits': try: self._num_random_inits = int(opt_val) self._desired_num_random_inits = self._num_random_inits except: raise Exception('Invalid argument "' + opt_val + '" for option random-inits. Usage: options = "[--random-inits ]"') if self._num_random_inits <= 0: raise Exception('Invalid argument "' + opt_val + '" for option random-inits. Usage: options = "[--random-inits ]"') elif opt_name == 'randomness': if opt_val == 'PSEUDO': self._use_real_randomness = False elif opt_val == 'REAL': self._use_real_randomness = True else: raise Exception('Invalid argument "' + opt_val + '" for option randomness. Usage: options = "[--randomness REAL|PSEUDO] [...]"') elif opt_name == 'stdout': if opt_val == '0': self._print_to_stdout = 0 elif opt_val == '1': self._print_to_stdout = 1 elif opt_val == '2': self._print_to_stdout = 2 else: raise Exception('Invalid argument "' + opt_val + '" for option stdout. Usage: options = "[--stdout 0|1|2] [...]"') elif opt_name == 'parallel': if opt_val == 'TRUE': self._parallel = True elif opt_val == 'FALSE': self._parallel = False else: raise Exception('Invalid argument "' + opt_val + '" for option parallel. Usage: options = "[--parallel TRUE|FALSE] [...]"') elif opt_name == 'update-order': if opt_val == 'TRUE': self._update_order = True elif opt_val == 'FALSE': self._update_order = False else: raise Exception('Invalid argument "' + opt_val + '" for option update-order. Usage: options = "[--update-order TRUE|FALSE] [...]"') elif opt_name == 'sort-graphs': if opt_val == 'TRUE': self._sort_graphs = True elif opt_val == 'FALSE': self._sort_graphs = False else: raise Exception('Invalid argument "' + opt_val + '" for option sort-graphs. Usage: options = "[--sort-graphs TRUE|FALSE] [...]"') elif opt_name == 'refine': if opt_val == 'TRUE': self._refine = True elif opt_val == 'FALSE': self._refine = False else: raise Exception('Invalid argument "' + opt_val + '" for option refine. Usage: options = "[--refine TRUE|FALSE] [...]"') elif opt_name == 'time-limit': try: self._time_limit_in_sec = float(opt_val) except: raise Exception('Invalid argument "' + opt_val + '" for option time-limit. Usage: options = "[--time-limit ] [...]') elif opt_name == 'max-itrs': try: self._max_itrs = int(opt_val) except: raise Exception('Invalid argument "' + opt_val + '" for option max-itrs. Usage: options = "[--max-itrs ] [...]') elif opt_name == 'max-itrs-without-update': try: self._max_itrs_without_update = int(opt_val) except: raise Exception('Invalid argument "' + opt_val + '" for option max-itrs-without-update. Usage: options = "[--max-itrs-without-update ] [...]') elif opt_name == 'seed': try: self._seed = int(opt_val) except: raise Exception('Invalid argument "' + opt_val + '" for option seed. Usage: options = "[--seed ] [...]') elif opt_name == 'epsilon': try: self._epsilon = float(opt_val) except: raise Exception('Invalid argument "' + opt_val + '" for option epsilon. Usage: options = "[--epsilon ] [...]') if self._epsilon <= 0: raise Exception('Invalid argument "' + opt_val + '" for option epsilon. Usage: options = "[--epsilon ] [...]') elif opt_name == 'inits-increase-order': try: self._num_inits_increase_order = int(opt_val) except: raise Exception('Invalid argument "' + opt_val + '" for option inits-increase-order. Usage: options = "[--inits-increase-order ]"') if self._num_inits_increase_order <= 0: raise Exception('Invalid argument "' + opt_val + '" for option inits-increase-order. Usage: options = "[--inits-increase-order ]"') elif opt_name == 'init-type-increase-order': self._init_type_increase_order = opt_val if opt_val != 'CLUSTERS' and opt_val != 'K-MEANS++': raise Exception('Invalid argument ' + opt_val + ' for option init-type-increase-order. Usage: options = "[--init-type-increase-order CLUSTERS|K-MEANS++] [...]"') elif opt_name == 'max-itrs-increase-order': try: self._max_itrs_increase_order = int(opt_val) except: raise Exception('Invalid argument "' + opt_val + '" for option max-itrs-increase-order. Usage: options = "[--max-itrs-increase-order ] [...]') else: valid_options = '[--init-type ] [--random-inits ] [--randomness ] [--seed ] [--stdout ] ' valid_options += '[--time-limit ] [--max-itrs ] [--epsilon ] ' valid_options += '[--inits-increase-order ] [--init-type-increase-order ] [--max-itrs-increase-order ]' raise Exception('Invalid option "' + opt_name + '". Usage: options = "' + valid_options + '"') def set_init_method(self, init_method, init_options={}): """Selects method to be used for computing the initial medoid graph. Parameters ---------- init_method : string The selected method. Default: ged::Options::GEDMethod::BRANCH_UNIFORM. init_options : string The options for the selected method. Default: "". Notes ----- Has no effect unless "--init-type MEDOID" is passed to set_options(). """ self._init_method = init_method; self._init_options = init_options; def set_descent_method(self, descent_method, descent_options=''): """Selects method to be used for block gradient descent.. Parameters ---------- descent_method : string The selected method. Default: ged::Options::GEDMethod::BRANCH_FAST. descent_options : string The options for the selected method. Default: "". Notes ----- Has no effect unless "--init-type MEDOID" is passed to set_options(). """ self._descent_method = descent_method; self._descent_options = descent_options; def set_refine_method(self, refine_method, refine_options): """Selects method to be used for improving the sum of distances and the node maps for the converged median. Parameters ---------- refine_method : string The selected method. Default: "IPFP". refine_options : string The options for the selected method. Default: "". Notes ----- Has no effect if "--refine FALSE" is passed to set_options(). """ self._refine_method = refine_method self._refine_options = refine_options def run(self, graph_ids, set_median_id, gen_median_id): """Computes a generalized median graph. Parameters ---------- graph_ids : list[integer] The IDs of the graphs for which the median should be computed. Must have been added to the environment passed to the constructor. set_median_id : integer The ID of the computed set-median. A dummy graph with this ID must have been added to the environment passed to the constructor. Upon termination, the computed median can be obtained via gklearn.gedlib.gedlibpy.GEDEnv.get_graph(). gen_median_id : integer The ID of the computed generalized median. Upon termination, the computed median can be obtained via gklearn.gedlib.gedlibpy.GEDEnv.get_graph(). """ # Sanity checks. if len(graph_ids) == 0: raise Exception('Empty vector of graph IDs, unable to compute median.') all_graphs_empty = True for graph_id in graph_ids: if self._ged_env.get_graph_num_nodes(graph_id) > 0: all_graphs_empty = False break if all_graphs_empty: raise Exception('All graphs in the collection are empty.') # Start timer and record start time. start = time.time() timer = Timer(self._time_limit_in_sec) self._median_id = gen_median_id self._state = AlgorithmState.TERMINATED # Get NetworkX graph representations of the input graphs. graphs = {} for graph_id in graph_ids: # @todo: get_nx_graph() function may need to be modified according to the coming code. graphs[graph_id] = self._ged_env.get_nx_graph(graph_id) # print(self._ged_env.get_graph_internal_id(0)) # print(graphs[0].graph) # print(graphs[0].nodes(data=True)) # print(graphs[0].edges(data=True)) # print(nx.adjacency_matrix(graphs[0])) # Construct initial medians. medians = [] self._construct_initial_medians(graph_ids, timer, medians) end_init = time.time() self._runtime_initialized = end_init - start # print(medians[0].graph) # print(medians[0].nodes(data=True)) # print(medians[0].edges(data=True)) # print(nx.adjacency_matrix(medians[0])) # Reset information about iterations and number of times the median decreases and increases. self._itrs = [0] * len(medians) self._num_decrease_order = 0 self._num_increase_order = 0 self._num_converged_descents = 0 # Initialize the best median. best_sum_of_distances = np.inf self._best_init_sum_of_distances = np.inf node_maps_from_best_median = {} # Run block gradient descent from all initial medians. self._ged_env.set_method(self._descent_method, self._descent_options) for median_pos in range(0, len(medians)): # Terminate if the timer has expired and at least one SOD has been computed. if timer.expired() and median_pos > 0: break # Print information about current iteration. if self._print_to_stdout == 2: print('\n===========================================================') print('Block gradient descent for initial median', str(median_pos + 1), 'of', str(len(medians)), '.') print('-----------------------------------------------------------') # Get reference to the median. median = medians[median_pos] # Load initial median into the environment. self._ged_env.load_nx_graph(median, gen_median_id) self._ged_env.init(self._ged_env.get_init_type()) # Compute node maps and sum of distances for initial median. # xxx = self._node_maps_from_median self._compute_init_node_maps(graph_ids, gen_median_id) # yyy = self._node_maps_from_median self._best_init_sum_of_distances = min(self._best_init_sum_of_distances, self._sum_of_distances) self._ged_env.load_nx_graph(median, set_median_id) # print(self._best_init_sum_of_distances) # Run block gradient descent from initial median. converged = False itrs_without_update = 0 while not self._termination_criterion_met(converged, timer, self._itrs[median_pos], itrs_without_update): # Print information about current iteration. if self._print_to_stdout == 2: print('\n===========================================================') print('Iteration', str(self._itrs[median_pos] + 1), 'for initial median', str(median_pos + 1), 'of', str(len(medians)), '.') print('-----------------------------------------------------------') # Initialize flags that tell us what happened in the iteration. median_modified = False node_maps_modified = False decreased_order = False increased_order = False # Update the median. median_modified = self._update_median(graphs, median) if self._update_order: pass # @todo: # if not median_modified or self._itrs[median_pos] == 0: # decreased_order = self._decrease_order(graphs, median) # if not decreased_order or self._itrs[median_pos] == 0: # increased_order = self._increase_order(graphs, median) # Update the number of iterations without update of the median. if median_modified or decreased_order or increased_order: itrs_without_update = 0 else: itrs_without_update += 1 # Print information about current iteration. if self._print_to_stdout == 2: print('Loading median to environment: ... ', end='') # Load the median into the environment. # @todo: should this function use the original node label? self._ged_env.load_nx_graph(median, gen_median_id) self._ged_env.init(self._ged_env.get_init_type()) # Print information about current iteration. if self._print_to_stdout == 2: print('done.') # Print information about current iteration. if self._print_to_stdout == 2: print('Updating induced costs: ... ', end='') # Compute induced costs of the old node maps w.r.t. the updated median. for graph_id in graph_ids: # print(self._node_maps_from_median[graph_id].induced_cost()) # xxx = self._node_maps_from_median[graph_id] self._ged_env.compute_induced_cost(gen_median_id, graph_id, self._node_maps_from_median[graph_id]) # print('---------------------------------------') # print(self._node_maps_from_median[graph_id].induced_cost()) # @todo:!!!!!!!!!!!!!!!!!!!!!!!!!!!!This value is a slight different from the c++ program, which might be a bug! Use it very carefully! # Print information about current iteration. if self._print_to_stdout == 2: print('done.') # Update the node maps. node_maps_modified = self._update_node_maps() # Update the order of the median if no improvement can be found with the current order. # Update the sum of distances. old_sum_of_distances = self._sum_of_distances self._sum_of_distances = 0 for graph_id, node_map in self._node_maps_from_median.items(): self._sum_of_distances += node_map.induced_cost() # print(self._sum_of_distances) # Print information about current iteration. if self._print_to_stdout == 2: print('Old local SOD: ', old_sum_of_distances) print('New local SOD: ', self._sum_of_distances) print('Best converged SOD: ', best_sum_of_distances) print('Modified median: ', median_modified) print('Modified node maps: ', node_maps_modified) print('Decreased order: ', decreased_order) print('Increased order: ', increased_order) print('===========================================================\n') converged = not (median_modified or node_maps_modified or decreased_order or increased_order) self._itrs[median_pos] += 1 # Update the best median. if self._sum_of_distances < best_sum_of_distances: best_sum_of_distances = self._sum_of_distances node_maps_from_best_median = self._node_maps_from_median.copy() # @todo: this is a shallow copy, not sure if it is enough. best_median = median # Update the number of converged descents. if converged: self._num_converged_descents += 1 # Store the best encountered median. self._sum_of_distances = best_sum_of_distances self._node_maps_from_median = node_maps_from_best_median self._ged_env.load_nx_graph(best_median, gen_median_id) self._ged_env.init(self._ged_env.get_init_type()) end_descent = time.time() self._runtime_converged = end_descent - start # Refine the sum of distances and the node maps for the converged median. self._converged_sum_of_distances = self._sum_of_distances if self._refine: self._improve_sum_of_distances(timer) # Record end time, set runtime and reset the number of initial medians. end = time.time() self._runtime = end - start self._num_random_inits = self._desired_num_random_inits # Print global information. if self._print_to_stdout != 0: print('\n===========================================================') print('Finished computation of generalized median graph.') print('-----------------------------------------------------------') print('Best SOD after initialization: ', self._best_init_sum_of_distances) print('Converged SOD: ', self._converged_sum_of_distances) if self._refine: print('Refined SOD: ', self._sum_of_distances) print('Overall runtime: ', self._runtime) print('Runtime of initialization: ', self._runtime_initialized) print('Runtime of block gradient descent: ', self._runtime_converged - self._runtime_initialized) if self._refine: print('Runtime of refinement: ', self._runtime - self._runtime_converged) print('Number of initial medians: ', len(medians)) total_itr = 0 num_started_descents = 0 for itr in self._itrs: total_itr += itr if itr > 0: num_started_descents += 1 print('Size of graph collection: ', len(graph_ids)) print('Number of started descents: ', num_started_descents) print('Number of converged descents: ', self._num_converged_descents) print('Overall number of iterations: ', total_itr) print('Overall number of times the order decreased: ', self._num_decrease_order) print('Overall number of times the order increased: ', self._num_increase_order) print('===========================================================\n') def _improve_sum_of_distances(self, timer): # @todo: go through and test # Use method selected for refinement phase. self._ged_env.set_method(self._refine_method, self._refine_options) # Print information about current iteration. if self._print_to_stdout == 2: progress = tqdm(desc='Improving node maps', total=len(self._node_maps_from_median), file=sys.stdout) print('\n===========================================================') print('Improving node maps and SOD for converged median.') print('-----------------------------------------------------------') progress.update(1) # Improving the node maps. nb_nodes_median = self._ged_env.get_graph_num_nodes(self._gen_median_id) for graph_id, node_map in self._node_maps_from_median.items(): if time.expired(): if self._state == AlgorithmState.TERMINATED: self._state = AlgorithmState.CONVERGED break nb_nodes_g = self._ged_env.get_graph_num_nodes(graph_id) if nb_nodes_median <= nb_nodes_g or not self._sort_graphs: self._ged_env.run_method(self._gen_median_id, graph_id) if self._ged_env.get_upper_bound(self._gen_median_id, graph_id) < node_map.induced_cost(): self._node_maps_from_median[graph_id] = self._ged_env.get_node_map(self._gen_median_id, graph_id) else: self._ged_env.run_method(graph_id, self._gen_median_id) if self._ged_env.get_upper_bound(graph_id, self._gen_median_id) < node_map.induced_cost(): node_map_tmp = self._ged_env.get_node_map(graph_id, self._gen_median_id) node_map_tmp.forward_map, node_map_tmp.backward_map = node_map_tmp.backward_map, node_map_tmp.forward_map self._node_maps_from_median[graph_id] = node_map_tmp self._sum_of_distances += self._node_maps_from_median[graph_id].induced_cost() # Print information. if self._print_to_stdout == 2: progress.update(1) self._sum_of_distances = 0.0 for key, val in self._node_maps_from_median.items(): self._sum_of_distances += val.induced_cost() # Print information. if self._print_to_stdout == 2: print('===========================================================\n') def _median_available(self): return self._median_id != np.inf def get_state(self): if not self._median_available(): raise Exception('No median has been computed. Call run() before calling get_state().') return self._state def get_sum_of_distances(self, state=''): """Returns the sum of distances. Parameters ---------- state : string The state of the estimator. Can be 'initialized' or 'converged'. Default: "" Returns ------- float The sum of distances (SOD) of the median when the estimator was in the state `state` during the last call to run(). If `state` is not given, the converged SOD (without refinement) or refined SOD (with refinement) is returned. """ if not self._median_available(): raise Exception('No median has been computed. Call run() before calling get_sum_of_distances().') if state == 'initialized': return self._best_init_sum_of_distances if state == 'converged': return self._converged_sum_of_distances return self._sum_of_distances def get_runtime(self, state): if not self._median_available(): raise Exception('No median has been computed. Call run() before calling get_runtime().') if state == AlgorithmState.INITIALIZED: return self._runtime_initialized if state == AlgorithmState.CONVERGED: return self._runtime_converged return self._runtime def get_num_itrs(self): if not self._median_available(): raise Exception('No median has been computed. Call run() before calling get_num_itrs().') return self._itrs def get_num_times_order_decreased(self): if not self._median_available(): raise Exception('No median has been computed. Call run() before calling get_num_times_order_decreased().') return self._num_decrease_order def get_num_times_order_increased(self): if not self._median_available(): raise Exception('No median has been computed. Call run() before calling get_num_times_order_increased().') return self._num_increase_order def get_num_converged_descents(self): if not self._median_available(): raise Exception('No median has been computed. Call run() before calling get_num_converged_descents().') return self._num_converged_descents def get_ged_env(self): return self._ged_env def _set_default_options(self): self._init_type = 'RANDOM' self._num_random_inits = 10 self._desired_num_random_inits = 10 self._use_real_randomness = True self._seed = 0 self._parallel = True self._update_order = True self._sort_graphs = True self._refine = True self._time_limit_in_sec = 0 self._epsilon = 0.0001 self._max_itrs = 100 self._max_itrs_without_update = 3 self._num_inits_increase_order = 10 self._init_type_increase_order = 'K-MEANS++' self._max_itrs_increase_order = 10 self._print_to_stdout = 2 self._label_names = {} def _construct_initial_medians(self, graph_ids, timer, initial_medians): # Print information about current iteration. if self._print_to_stdout == 2: print('\n===========================================================') print('Constructing initial median(s).') print('-----------------------------------------------------------') # Compute or sample the initial median(s). initial_medians.clear() if self._init_type == 'MEDOID': self._compute_medoid(graph_ids, timer, initial_medians) elif self._init_type == 'MAX': pass # @todo # compute_max_order_graph_(graph_ids, initial_medians) elif self._init_type == 'MIN': pass # @todo # compute_min_order_graph_(graph_ids, initial_medians) elif self._init_type == 'MEAN': pass # @todo # compute_mean_order_graph_(graph_ids, initial_medians) else: pass # @todo # sample_initial_medians_(graph_ids, initial_medians) # Print information about current iteration. if self._print_to_stdout == 2: print('===========================================================') def _compute_medoid(self, graph_ids, timer, initial_medians): # Use method selected for initialization phase. self._ged_env.set_method(self._init_method, self._init_options) # Compute the medoid. if self._parallel: # @todo: notice when parallel self._ged_env is not modified. sum_of_distances_list = [np.inf] * len(graph_ids) len_itr = len(graph_ids) itr = zip(graph_ids, range(0, len(graph_ids))) n_jobs = multiprocessing.cpu_count() if len_itr < 100 * n_jobs: chunksize = int(len_itr / n_jobs) + 1 else: chunksize = 100 def init_worker(ged_env_toshare): global G_ged_env G_ged_env = ged_env_toshare do_fun = partial(_compute_medoid_parallel, graph_ids, self._sort_graphs) pool = Pool(processes=n_jobs, initializer=init_worker, initargs=(self._ged_env,)) if self._print_to_stdout == 2: iterator = tqdm(pool.imap_unordered(do_fun, itr, chunksize), desc='Computing medoid', file=sys.stdout) else: iterator = pool.imap_unordered(do_fun, itr, chunksize) for i, dis in iterator: sum_of_distances_list[i] = dis pool.close() pool.join() medoid_id = np.argmin(sum_of_distances_list) best_sum_of_distances = sum_of_distances_list[medoid_id] initial_medians.append(self._ged_env.get_nx_graph(medoid_id)) # @todo else: # Print information about current iteration. if self._print_to_stdout == 2: progress = tqdm(desc='Computing medoid', total=len(graph_ids), file=sys.stdout) medoid_id = graph_ids[0] best_sum_of_distances = np.inf for g_id in graph_ids: if timer.expired(): self._state = AlgorithmState.CALLED break nb_nodes_g = self._ged_env.get_graph_num_nodes(g_id) sum_of_distances = 0 for h_id in graph_ids: # @todo: this can be faster, only a half is needed. nb_nodes_h = self._ged_env.get_graph_num_nodes(h_id) if nb_nodes_g <= nb_nodes_h or not self._sort_graphs: self._ged_env.run_method(g_id, h_id) # @todo sum_of_distances += self._ged_env.get_upper_bound(g_id, h_id) else: self._ged_env.run_method(h_id, g_id) sum_of_distances += self._ged_env.get_upper_bound(h_id, g_id) if sum_of_distances < best_sum_of_distances: best_sum_of_distances = sum_of_distances medoid_id = g_id # Print information about current iteration. if self._print_to_stdout == 2: progress.update(1) initial_medians.append(self._ged_env.get_nx_graph(medoid_id)) # @todo # Print information about current iteration. if self._print_to_stdout == 2: print('\n') def _compute_init_node_maps(self, graph_ids, gen_median_id): # Compute node maps and sum of distances for initial median. if self._parallel: # @todo: notice when parallel self._ged_env is not modified. self._sum_of_distances = 0 self._node_maps_from_median.clear() sum_of_distances_list = [0] * len(graph_ids) len_itr = len(graph_ids) itr = graph_ids n_jobs = multiprocessing.cpu_count() if len_itr < 100 * n_jobs: chunksize = int(len_itr / n_jobs) + 1 else: chunksize = 100 def init_worker(ged_env_toshare): global G_ged_env G_ged_env = ged_env_toshare nb_nodes_median = self._ged_env.get_graph_num_nodes(gen_median_id) do_fun = partial(_compute_init_node_maps_parallel, gen_median_id, self._sort_graphs, nb_nodes_median) pool = Pool(processes=n_jobs, initializer=init_worker, initargs=(self._ged_env,)) if self._print_to_stdout == 2: iterator = tqdm(pool.imap_unordered(do_fun, itr, chunksize), desc='Computing initial node maps', file=sys.stdout) else: iterator = pool.imap_unordered(do_fun, itr, chunksize) for g_id, sod, node_maps in iterator: sum_of_distances_list[g_id] = sod self._node_maps_from_median[g_id] = node_maps pool.close() pool.join() self._sum_of_distances = np.sum(sum_of_distances_list) # xxx = self._node_maps_from_median else: # Print information about current iteration. if self._print_to_stdout == 2: progress = tqdm(desc='Computing initial node maps', total=len(graph_ids), file=sys.stdout) self._sum_of_distances = 0 self._node_maps_from_median.clear() nb_nodes_median = self._ged_env.get_graph_num_nodes(gen_median_id) for graph_id in graph_ids: nb_nodes_g = self._ged_env.get_graph_num_nodes(graph_id) if nb_nodes_median <= nb_nodes_g or not self._sort_graphs: self._ged_env.run_method(gen_median_id, graph_id) self._node_maps_from_median[graph_id] = self._ged_env.get_node_map(gen_median_id, graph_id) else: self._ged_env.run_method(graph_id, gen_median_id) node_map_tmp = self._ged_env.get_node_map(graph_id, gen_median_id) node_map_tmp.forward_map, node_map_tmp.backward_map = node_map_tmp.backward_map, node_map_tmp.forward_map self._node_maps_from_median[graph_id] = node_map_tmp # print(self._node_maps_from_median[graph_id]) self._sum_of_distances += self._node_maps_from_median[graph_id].induced_cost() # print(self._sum_of_distances) # Print information about current iteration. if self._print_to_stdout == 2: progress.update(1) # Print information about current iteration. if self._print_to_stdout == 2: print('\n') def _termination_criterion_met(self, converged, timer, itr, itrs_without_update): if timer.expired() or (itr >= self._max_itrs if self._max_itrs >= 0 else False): if self._state == AlgorithmState.TERMINATED: self._state = AlgorithmState.INITIALIZED return True return converged or (itrs_without_update > self._max_itrs_without_update if self._max_itrs_without_update >= 0 else False) def _update_median(self, graphs, median): # Print information about current iteration. if self._print_to_stdout == 2: print('Updating median: ', end='') # Store copy of the old median. old_median = median.copy() # @todo: this is just a shallow copy. # Update the node labels. if self._labeled_nodes: self._update_node_labels(graphs, median) # Update the edges and their labels. self._update_edges(graphs, median) # Print information about current iteration. if self._print_to_stdout == 2: print('done.') return not self._are_graphs_equal(median, old_median) def _update_node_labels(self, graphs, median): # print('----------------------------') # Print information about current iteration. if self._print_to_stdout == 2: print('nodes ... ', end='') # Collect all possible node labels. all_labels = self._ged_env.get_all_node_labels() # Iterate through all nodes of the median. for i in range(0, nx.number_of_nodes(median)): # print('i: ', i) # Collect the labels of the substituted nodes. node_labels = [] for graph_id, graph in graphs.items(): k = self._node_maps_from_median[graph_id].image(i) if k != np.inf: node_labels.append(tuple(graph.nodes[k].items())) # @todo: sort else: node_labels.append(SpecialLabel.DUMMY) # Compute the median label and update the median. if len(node_labels) > 0: fi_min = np.inf median_label = tuple() for label1 in all_labels: fi = 0 for label2 in node_labels: fi += self._ged_env.get_node_cost(label1, label2) # @todo: check inside, this might be slow if fi < fi_min: # @todo: fi is too easy to be zero. use <= or consider multiple optimal labels. fi_min = fi median_label = label1 median_label = {kv[0]: kv[1] for kv in median_label} nx.set_node_attributes(median, {i: median_label}) # median_label = self._get_median_node_label(node_labels) # if self._ged_env.get_node_rel_cost(median.nodes[i], median_label) > self._epsilon: # nx.set_node_attributes(median, {i: median_label}) def _update_edges(self, graphs, median): # Print information about current iteration. if self._print_to_stdout == 2: print('edges ... ', end='') # Collect all possible edge labels. all_labels = self._ged_env.get_all_edge_labels() # @todo: what if edge is not labeled? # Iterate through all possible edges (i,j) of the median. for i in range(0, nx.number_of_nodes(median)): for j in range(i + 1, nx.number_of_nodes(median)): # Collect the labels of the edges to which (i,j) is mapped by the node maps. edge_labels = [] for graph_id, graph in graphs.items(): k = self._node_maps_from_median[graph_id].image(i) l = self._node_maps_from_median[graph_id].image(j) if k != np.inf and l != np.inf and graph.has_edge(k, l): edge_labels.append(tuple(graph.edges[(k, l)].items())) # @todo: sort else: edge_labels.append(SpecialLabel.DUMMY) # Compute the median edge label and the overall edge relabeling cost. if self._labeled_edges and len(edge_labels) > 0: fij1_min = np.inf median_label = tuple() # Compute f_ij^0. fij0 = 0 for label2 in edge_labels: fij0 += self._ged_env.get_edge_cost(SpecialLabel.DUMMY, label2) for label1 in all_labels: fij1 = 0 for label2 in edge_labels: fij1 += self._ged_env.get_edge_cost(label1, label2) if fij1 < fij1_min: fij1_min = fij1 median_label = label1 # Update the median. if median.has_edge(i, j): median.remove_edge(i, j) if fij1_min < fij0: # @todo: this never happens. median_label = {kv[0]: kv[1] for kv in median_label} median.add_edge(i, j, **median_label) # if self._ged_env.get_edge_rel_cost(median_label, new_median_label) > self._epsilon: # median_label = new_median_label def _update_node_maps(self): # Update the node maps. if self._parallel: # @todo: notice when parallel self._ged_env is not modified. node_maps_were_modified = False # xxx = self._node_maps_from_median.copy() len_itr = len(self._node_maps_from_median) itr = [item for item in self._node_maps_from_median.items()] n_jobs = multiprocessing.cpu_count() if len_itr < 100 * n_jobs: chunksize = int(len_itr / n_jobs) + 1 else: chunksize = 100 def init_worker(ged_env_toshare): global G_ged_env G_ged_env = ged_env_toshare nb_nodes_median = self._ged_env.get_graph_num_nodes(self._median_id) do_fun = partial(_update_node_maps_parallel, self._median_id, self._epsilon, self._sort_graphs, nb_nodes_median) pool = Pool(processes=n_jobs, initializer=init_worker, initargs=(self._ged_env,)) if self._print_to_stdout == 2: iterator = tqdm(pool.imap_unordered(do_fun, itr, chunksize), desc='Updating node maps', file=sys.stdout) else: iterator = pool.imap_unordered(do_fun, itr, chunksize) for g_id, node_map, nm_modified in iterator: self._node_maps_from_median[g_id] = node_map if nm_modified: node_maps_were_modified = True pool.close() pool.join() # yyy = self._node_maps_from_median.copy() else: # Print information about current iteration. if self._print_to_stdout == 2: progress = tqdm(desc='Updating node maps', total=len(self._node_maps_from_median), file=sys.stdout) node_maps_were_modified = False nb_nodes_median = self._ged_env.get_graph_num_nodes(self._median_id) for graph_id, node_map in self._node_maps_from_median.items(): nb_nodes_g = self._ged_env.get_graph_num_nodes(graph_id) if nb_nodes_median <= nb_nodes_g or not self._sort_graphs: self._ged_env.run_method(self._median_id, graph_id) if self._ged_env.get_upper_bound(self._median_id, graph_id) < node_map.induced_cost() - self._epsilon: # xxx = self._node_maps_from_median[graph_id] self._node_maps_from_median[graph_id] = self._ged_env.get_node_map(self._median_id, graph_id) node_maps_were_modified = True else: self._ged_env.run_method(graph_id, self._median_id) if self._ged_env.get_upper_bound(graph_id, self._median_id) < node_map.induced_cost() - self._epsilon: node_map_tmp = self._ged_env.get_node_map(graph_id, self._median_id) node_map_tmp.forward_map, node_map_tmp.backward_map = node_map_tmp.backward_map, node_map_tmp.forward_map self._node_maps_from_median[graph_id] = node_map_tmp node_maps_were_modified = True # Print information about current iteration. if self._print_to_stdout == 2: progress.update(1) # Print information about current iteration. if self._print_to_stdout == 2: print('\n') # Return true if the node maps were modified. return node_maps_were_modified def _decrease_order(self, graphs, median): # Print information about current iteration if self._print_to_stdout == 2: print('Trying to decrease order: ... ', end='') if nx.number_of_nodes(median) <= 1: if self._print_to_stdout == 2: print('median graph has only 1 node, skip decrease.') return False # Initialize ID of the node that is to be deleted. id_deleted_node = [None] # @todo: or np.inf decreased_order = False # Decrease the order as long as the best deletion delta is negative. while self._compute_best_deletion_delta(graphs, median, id_deleted_node) < -self._epsilon: decreased_order = True self._delete_node_from_median(id_deleted_node[0], median) if nx.number_of_nodes(median) <= 1: if self._print_to_stdout == 2: print('decrease stopped because median graph remains only 1 node. ', end='') break # Print information about current iteration. if self._print_to_stdout == 2: print('done.') # Return true iff the order was decreased. return decreased_order def _compute_best_deletion_delta(self, graphs, median, id_deleted_node): best_delta = 0.0 # Determine node that should be deleted (if any). for i in range(0, nx.number_of_nodes(median)): # Compute cost delta. delta = 0.0 for graph_id, graph in graphs.items(): k = self._node_maps_from_median[graph_id].image(i) if k == np.inf: delta -= self._node_del_cost else: delta += self._node_ins_cost - self._ged_env.get_node_rel_cost(median.nodes[i], graph.nodes[k]) for j, j_label in median[i].items(): l = self._node_maps_from_median[graph_id].image(j) if k == np.inf or l == np.inf: delta -= self._edge_del_cost elif not graph.has_edge(k, l): delta -= self._edge_del_cost else: delta += self._edge_ins_cost - self._ged_env.get_edge_rel_cost(j_label, graph.edges[(k, l)]) # Update best deletion delta. if delta < best_delta - self._epsilon: best_delta = delta id_deleted_node[0] = i # id_deleted_node[0] = 3 # @todo: return best_delta def _delete_node_from_median(self, id_deleted_node, median): # Update the median. mapping = {} for i in range(0, nx.number_of_nodes(median)): if i != id_deleted_node: new_i = (i if i < id_deleted_node else (i - 1)) mapping[i] = new_i median.remove_node(id_deleted_node) nx.relabel_nodes(median, mapping, copy=False) # Update the node maps. # xxx = self._node_maps_from_median for key, node_map in self._node_maps_from_median.items(): new_node_map = NodeMap(nx.number_of_nodes(median), node_map.num_target_nodes()) is_unassigned_target_node = [True] * node_map.num_target_nodes() for i in range(0, nx.number_of_nodes(median) + 1): if i != id_deleted_node: new_i = (i if i < id_deleted_node else (i - 1)) k = node_map.image(i) new_node_map.add_assignment(new_i, k) if k != np.inf: is_unassigned_target_node[k] = False for k in range(0, node_map.num_target_nodes()): if is_unassigned_target_node[k]: new_node_map.add_assignment(np.inf, k) # print(self._node_maps_from_median[key].forward_map, self._node_maps_from_median[key].backward_map) # print(new_node_map.forward_map, new_node_map.backward_map self._node_maps_from_median[key] = new_node_map # Increase overall number of decreases. self._num_decrease_order += 1 def _increase_order(self, graphs, median): # Print information about current iteration. if self._print_to_stdout == 2: print('Trying to increase order: ... ', end='') # Initialize the best configuration and the best label of the node that is to be inserted. best_config = {} best_label = self._ged_env.get_node_label(1, to_dict=True) increased_order = False # Increase the order as long as the best insertion delta is negative. while self._compute_best_insertion_delta(graphs, best_config, best_label) < - self._epsilon: increased_order = True self._add_node_to_median(best_config, best_label, median) # Print information about current iteration. if self._print_to_stdout == 2: print('done.') # Return true iff the order was increased. return increased_order def _compute_best_insertion_delta(self, graphs, best_config, best_label): # Construct sets of inserted nodes. no_inserted_node = True inserted_nodes = {} for graph_id, graph in graphs.items(): inserted_nodes[graph_id] = [] best_config[graph_id] = np.inf for k in range(nx.number_of_nodes(graph)): if self._node_maps_from_median[graph_id].pre_image(k) == np.inf: no_inserted_node = False inserted_nodes[graph_id].append((k, tuple(item for item in graph.nodes[k].items()))) # @todo: can order of label names be garantteed? # Return 0.0 if no node is inserted in any of the graphs. if no_inserted_node: return 0.0 # Compute insertion configuration, label, and delta. best_delta = 0.0 # @todo if len(self._label_names['node_labels']) == 0 and len(self._label_names['node_attrs']) == 0: # @todo best_delta = self._compute_insertion_delta_unlabeled(inserted_nodes, best_config, best_label) elif len(self._label_names['node_labels']) > 0: # self._constant_node_costs: best_delta = self._compute_insertion_delta_constant(inserted_nodes, best_config, best_label) else: best_delta = self._compute_insertion_delta_generic(inserted_nodes, best_config, best_label) # Return the best delta. return best_delta def _compute_insertion_delta_unlabeled(self, inserted_nodes, best_config, best_label): # @todo: go through and test. # Construct the nest configuration and compute its insertion delta. best_delta = 0.0 best_config.clear() for graph_id, node_set in inserted_nodes.items(): if len(node_set) == 0: best_config[graph_id] = np.inf best_delta += self._node_del_cost else: best_config[graph_id] = node_set[0][0] best_delta -= self._node_ins_cost # Return the best insertion delta. return best_delta def _compute_insertion_delta_constant(self, inserted_nodes, best_config, best_label): # Construct histogram and inverse label maps. hist = {} inverse_label_maps = {} for graph_id, node_set in inserted_nodes.items(): inverse_label_maps[graph_id] = {} for node in node_set: k = node[0] label = node[1] if label not in inverse_label_maps[graph_id]: inverse_label_maps[graph_id][label] = k if label not in hist: hist[label] = 1 else: hist[label] += 1 # Determine the best label. best_count = 0 for key, val in hist.items(): if val > best_count: best_count = val best_label_tuple = key # get best label. best_label.clear() for key, val in best_label_tuple: best_label[key] = val # Construct the best configuration and compute its insertion delta. best_config.clear() best_delta = 0.0 node_rel_cost = self._ged_env.get_node_rel_cost(self._ged_env.get_node_label(1, to_dict=False), self._ged_env.get_node_label(2, to_dict=False)) triangle_ineq_holds = (node_rel_cost <= self._node_del_cost + self._node_ins_cost) for graph_id, _ in inserted_nodes.items(): if best_label_tuple in inverse_label_maps[graph_id]: best_config[graph_id] = inverse_label_maps[graph_id][best_label_tuple] best_delta -= self._node_ins_cost elif triangle_ineq_holds and not len(inserted_nodes[graph_id]) == 0: best_config[graph_id] = inserted_nodes[graph_id][0][0] best_delta += node_rel_cost - self._node_ins_cost else: best_config[graph_id] = np.inf best_delta += self._node_del_cost # Return the best insertion delta. return best_delta def _compute_insertion_delta_generic(self, inserted_nodes, best_config, best_label): # Collect all node labels of inserted nodes. node_labels = [] for _, node_set in inserted_nodes.items(): for node in node_set: node_labels.append(node[1]) # Compute node label medians that serve as initial solutions for block gradient descent. initial_node_labels = [] self._compute_initial_node_labels(node_labels, initial_node_labels) # Determine best insertion configuration, label, and delta via parallel block gradient descent from all initial node labels. best_delta = 0.0 for node_label in initial_node_labels: # Construct local configuration. config = {} for graph_id, _ in inserted_nodes.items(): config[graph_id] = tuple((np.inf, self._ged_env.get_node_label(1, to_dict=False))) # Run block gradient descent. converged = False itr = 0 while not self._insertion_termination_criterion_met(converged, itr): converged = not self._update_config(node_label, inserted_nodes, config, node_labels) node_label_dict = dict(node_label) converged = converged and (not self._update_node_label([dict(item) for item in node_labels], node_label_dict)) # @todo: the dict is tupled again in the function, can be better. node_label = tuple(item for item in node_label_dict.items()) # @todo: watch out: initial_node_labels[i] is not modified here. itr += 1 # Compute insertion delta of converged solution. delta = 0.0 for _, node in config.items(): if node[0] == np.inf: delta += self._node_del_cost else: delta += self._ged_env.get_node_rel_cost(dict(node_label), dict(node[1])) - self._node_ins_cost # Update best delta and global configuration if improvement has been found. if delta < best_delta - self._epsilon: best_delta = delta best_label.clear() for key, val in node_label: best_label[key] = val best_config.clear() for graph_id, val in config.items(): best_config[graph_id] = val[0] # Return the best delta. return best_delta def _compute_initial_node_labels(self, node_labels, median_labels): median_labels.clear() if self._use_real_randomness: # @todo: may not work if parallelized. rng = np.random.randint(0, high=2**32 - 1, size=1) urng = np.random.RandomState(seed=rng[0]) else: urng = np.random.RandomState(seed=self._seed) # Generate the initial node label medians. if self._init_type_increase_order == 'K-MEANS++': # Use k-means++ heuristic to generate the initial node label medians. already_selected = [False] * len(node_labels) selected_label_id = urng.randint(low=0, high=len(node_labels), size=1)[0] # c++ test: 23 median_labels.append(node_labels[selected_label_id]) already_selected[selected_label_id] = True # xxx = [41, 0, 18, 9, 6, 14, 21, 25, 33] for c++ test # iii = 0 for c++ test while len(median_labels) < self._num_inits_increase_order: weights = [np.inf] * len(node_labels) for label_id in range(0, len(node_labels)): if already_selected[label_id]: weights[label_id] = 0 continue for label in median_labels: weights[label_id] = min(weights[label_id], self._ged_env.get_node_rel_cost(dict(label), dict(node_labels[label_id]))) # get non-zero weights. weights_p, idx_p = [], [] for i, w in enumerate(weights): if w != 0: weights_p.append(w) idx_p.append(i) if len(weights_p) > 0: p = np.array(weights_p) / np.sum(weights_p) selected_label_id = urng.choice(range(0, len(weights_p)), size=1, p=p)[0] # for c++ test: xxx[iii] selected_label_id = idx_p[selected_label_id] # iii += 1 for c++ test median_labels.append(node_labels[selected_label_id]) already_selected[selected_label_id] = True else: # skip the loop when all node_labels are selected. This happens when len(node_labels) <= self._num_inits_increase_order. break else: # Compute the initial node medians as the medians of randomly generated clusters of (roughly) equal size. # @todo: go through and test. shuffled_node_labels = [np.inf] * len(node_labels) #@todo: random? # @todo: std::shuffle(shuffled_node_labels.begin(), shuffled_node_labels.end(), urng);? cluster_size = len(node_labels) / self._num_inits_increase_order pos = 0.0 cluster = [] while len(median_labels) < self._num_inits_increase_order - 1: while pos < (len(median_labels) + 1) * cluster_size: cluster.append(shuffled_node_labels[pos]) pos += 1 median_labels.append(self._get_median_node_label(cluster)) cluster.clear() while pos < len(shuffled_node_labels): pos += 1 cluster.append(shuffled_node_labels[pos]) median_labels.append(self._get_median_node_label(cluster)) cluster.clear() # Run Lloyd's Algorithm. converged = False closest_median_ids = [np.inf] * len(node_labels) clusters = [[] for _ in range(len(median_labels))] itr = 1 while not self._insertion_termination_criterion_met(converged, itr): converged = not self._update_clusters(node_labels, median_labels, closest_median_ids) if not converged: for cluster in clusters: cluster.clear() for label_id in range(0, len(node_labels)): clusters[closest_median_ids[label_id]].append(node_labels[label_id]) for cluster_id in range(0, len(clusters)): node_label = dict(median_labels[cluster_id]) self._update_node_label([dict(item) for item in clusters[cluster_id]], node_label) # @todo: the dict is tupled again in the function, can be better. median_labels[cluster_id] = tuple(item for item in node_label.items()) itr += 1 def _insertion_termination_criterion_met(self, converged, itr): return converged or (itr >= self._max_itrs_increase_order if self._max_itrs_increase_order > 0 else False) def _update_config(self, node_label, inserted_nodes, config, node_labels): # Determine the best configuration. config_modified = False for graph_id, node_set in inserted_nodes.items(): best_assignment = config[graph_id] best_cost = 0.0 if best_assignment[0] == np.inf: best_cost = self._node_del_cost else: best_cost = self._ged_env.get_node_rel_cost(dict(node_label), dict(best_assignment[1])) - self._node_ins_cost for node in node_set: cost = self._ged_env.get_node_rel_cost(dict(node_label), dict(node[1])) - self._node_ins_cost if cost < best_cost - self._epsilon: best_cost = cost best_assignment = node config_modified = True if self._node_del_cost < best_cost - self._epsilon: best_cost = self._node_del_cost best_assignment = tuple((np.inf, best_assignment[1])) config_modified = True config[graph_id] = best_assignment # Collect the node labels contained in the best configuration. node_labels.clear() for key, val in config.items(): if val[0] != np.inf: node_labels.append(val[1]) # Return true if the configuration was modified. return config_modified def _update_node_label(self, node_labels, node_label): if len(node_labels) == 0: # @todo: check if this is the correct solution. Especially after calling _update_config(). return False new_node_label = self._get_median_node_label(node_labels) if self._ged_env.get_node_rel_cost(new_node_label, node_label) > self._epsilon: node_label.clear() for key, val in new_node_label.items(): node_label[key] = val return True return False def _update_clusters(self, node_labels, median_labels, closest_median_ids): # Determine the closest median for each node label. clusters_modified = False for label_id in range(0, len(node_labels)): closest_median_id = np.inf dist_to_closest_median = np.inf for median_id in range(0, len(median_labels)): dist_to_median = self._ged_env.get_node_rel_cost(dict(median_labels[median_id]), dict(node_labels[label_id])) if dist_to_median < dist_to_closest_median - self._epsilon: dist_to_closest_median = dist_to_median closest_median_id = median_id if closest_median_id != closest_median_ids[label_id]: closest_median_ids[label_id] = closest_median_id clusters_modified = True # Return true if the clusters were modified. return clusters_modified def _add_node_to_median(self, best_config, best_label, median): # Update the median. nb_nodes_median = nx.number_of_nodes(median) median.add_node(nb_nodes_median, **best_label) # Update the node maps. for graph_id, node_map in self._node_maps_from_median.items(): node_map_as_rel = [] node_map.as_relation(node_map_as_rel) new_node_map = NodeMap(nx.number_of_nodes(median), node_map.num_target_nodes()) for assignment in node_map_as_rel: new_node_map.add_assignment(assignment[0], assignment[1]) new_node_map.add_assignment(nx.number_of_nodes(median) - 1, best_config[graph_id]) self._node_maps_from_median[graph_id] = new_node_map # Increase overall number of increases. self._num_increase_order += 1 def _are_graphs_equal(self, g1, g2): """ Check if the two graphs are equal. Parameters ---------- g1 : NetworkX graph object Graph 1 to be compared. g2 : NetworkX graph object Graph 2 to be compared. Returns ------- bool True if the two graph are equal. Notes ----- This is not an identical check. Here the two graphs are equal if and only if their original_node_ids, nodes, all node labels, edges and all edge labels are equal. This function is specifically designed for class `MedianGraphEstimator` and should not be used elsewhere. """ # check original node ids. if not g1.graph['original_node_ids'] == g2.graph['original_node_ids']: return False # @todo: why check this? # check nodes. nlist1 = [n for n in g1.nodes(data=True)] # @todo: shallow? nlist2 = [n for n in g2.nodes(data=True)] if not nlist1 == nlist2: return False # check edges. elist1 = [n for n in g1.edges(data=True)] elist2 = [n for n in g2.edges(data=True)] if not elist1 == elist2: return False return True def compute_my_cost(g, h, node_map): cost = 0.0 for node in g.nodes: cost += 0 def set_label_names(self, node_labels=[], edge_labels=[], node_attrs=[], edge_attrs=[]): self._label_names = {'node_labels': node_labels, 'edge_labels': edge_labels, 'node_attrs': node_attrs, 'edge_attrs': edge_attrs} # def _get_median_node_label(self, node_labels): # if len(self._label_names['node_labels']) > 0: # return self._get_median_label_symbolic(node_labels) # elif len(self._label_names['node_attrs']) > 0: # return self._get_median_label_nonsymbolic(node_labels) # else: # raise Exception('Node label names are not given.') # # # def _get_median_edge_label(self, edge_labels): # if len(self._label_names['edge_labels']) > 0: # return self._get_median_label_symbolic(edge_labels) # elif len(self._label_names['edge_attrs']) > 0: # return self._get_median_label_nonsymbolic(edge_labels) # else: # raise Exception('Edge label names are not given.') # # # def _get_median_label_symbolic(self, labels): # f_i = np.inf # # for label in labels: # pass # # # Construct histogram. # hist = {} # for label in labels: # label = tuple([kv for kv in label.items()]) # @todo: this may be slow. # if label not in hist: # hist[label] = 1 # else: # hist[label] += 1 # # # Return the label that appears most frequently. # best_count = 0 # median_label = {} # for label, count in hist.items(): # if count > best_count: # best_count = count # median_label = {kv[0]: kv[1] for kv in label} # # return median_label # # # def _get_median_label_nonsymbolic(self, labels): # if len(labels) == 0: # return {} # @todo # else: # # Transform the labels into coordinates and compute mean label as initial solution. # labels_as_coords = [] # sums = {} # for key, val in labels[0].items(): # sums[key] = 0 # for label in labels: # coords = {} # for key, val in label.items(): # label_f = float(val) # sums[key] += label_f # coords[key] = label_f # labels_as_coords.append(coords) # median = {} # for key, val in sums.items(): # median[key] = val / len(labels) # # # Run main loop of Weiszfeld's Algorithm. # epsilon = 0.0001 # delta = 1.0 # num_itrs = 0 # all_equal = False # while ((delta > epsilon) and (num_itrs < 100) and (not all_equal)): # numerator = {} # for key, val in sums.items(): # numerator[key] = 0 # denominator = 0 # for label_as_coord in labels_as_coords: # norm = 0 # for key, val in label_as_coord.items(): # norm += (val - median[key]) ** 2 # norm = np.sqrt(norm) # if norm > 0: # for key, val in label_as_coord.items(): # numerator[key] += val / norm # denominator += 1.0 / norm # if denominator == 0: # all_equal = True # else: # new_median = {} # delta = 0.0 # for key, val in numerator.items(): # this_median = val / denominator # new_median[key] = this_median # delta += np.abs(median[key] - this_median) # median = new_median # # num_itrs += 1 # # # Transform the solution to strings and return it. # median_label = {} # for key, val in median.items(): # median_label[key] = str(val) # return median_label def _compute_medoid_parallel(graph_ids, sort, itr): g_id = itr[0] i = itr[1] # @todo: timer not considered here. # if timer.expired(): # self._state = AlgorithmState.CALLED # break nb_nodes_g = G_ged_env.get_graph_num_nodes(g_id) sum_of_distances = 0 for h_id in graph_ids: nb_nodes_h = G_ged_env.get_graph_num_nodes(h_id) if nb_nodes_g <= nb_nodes_h or not sort: G_ged_env.run_method(g_id, h_id) sum_of_distances += G_ged_env.get_upper_bound(g_id, h_id) else: G_ged_env.run_method(h_id, g_id) sum_of_distances += G_ged_env.get_upper_bound(h_id, g_id) return i, sum_of_distances def _compute_init_node_maps_parallel(gen_median_id, sort, nb_nodes_median, itr): graph_id = itr nb_nodes_g = G_ged_env.get_graph_num_nodes(graph_id) if nb_nodes_median <= nb_nodes_g or not sort: G_ged_env.run_method(gen_median_id, graph_id) node_map = G_ged_env.get_node_map(gen_median_id, graph_id) # print(self._node_maps_from_median[graph_id]) else: G_ged_env.run_method(graph_id, gen_median_id) node_map = G_ged_env.get_node_map(graph_id, gen_median_id) node_map.forward_map, node_map.backward_map = node_map.backward_map, node_map.forward_map sum_of_distance = node_map.induced_cost() # print(self._sum_of_distances) return graph_id, sum_of_distance, node_map def _update_node_maps_parallel(median_id, epsilon, sort, nb_nodes_median, itr): graph_id = itr[0] node_map = itr[1] node_maps_were_modified = False nb_nodes_g = G_ged_env.get_graph_num_nodes(graph_id) if nb_nodes_median <= nb_nodes_g or not sort: G_ged_env.run_method(median_id, graph_id) if G_ged_env.get_upper_bound(median_id, graph_id) < node_map.induced_cost() - epsilon: node_map = G_ged_env.get_node_map(median_id, graph_id) node_maps_were_modified = True else: G_ged_env.run_method(graph_id, median_id) if G_ged_env.get_upper_bound(graph_id, median_id) < node_map.induced_cost() - epsilon: node_map = G_ged_env.get_node_map(graph_id, median_id) node_map.forward_map, node_map.backward_map = node_map.backward_map, node_map.forward_map node_maps_were_modified = True return graph_id, node_map, node_maps_were_modified