Use of a Neural Network to determine the Normal Boiling Points of Acyclic Ethers, Peroxides, Acetals and their Sulfur Analogues

Driss Cherqaoui, Didier Villemin* and Abdelhalim Mesbah

Ecole Nationale Supérieure d'Ingénieurs de Caen (E.N.S.I. de Caen), I.S.M.R.A., U.R.A. 480 CNRS, 6 boulevard du Maréchal Juin, 14050 Caen Cedex, France

Jean-Michel Cense

Ecole Nationale Supérieure de Chimie de Paris, 11 rue P. et M. Curie, 75005 Paris, France

Vladimir Kvasnicka

Department of Mathematics, Faculty of Chemical Technology, Slovak Technical University, 81237 Bratislava, Slovakia

Models of relationships between structure and boiling point (bp) of 185 acyclic ethers, peroxides, acetals and their sulfur analogues have been constructed by means of a multilayer neural network (NN) using the backpropagation algorithm. The ability of a neural network to predict the boiling point of acyclic molecules containing polar atoms is outlined. The usefulness of the so-called embedding frequencies for the characterization of chemical structures in quantitative structure-property studies has been shown. NNs proved to give better results than multiple linear regression and other models in the literature.

NNs have recently^{1,2} become the focus of much attention, largely owing to their wide range of applicability and the ease with which they can handle complex and non-linear problems. A leading reference book³ on the application and the meaning of NN in chemistry has recently been published in which an extensive list of references can be found. NNs have been applied to the identification of proton-NMR spectra,⁴ to the interpretation of IR spectra,^{5,6} to the prediction of ¹³C chemical shifts,⁷ to the classification of mass spectra,⁸ to the estimation of aqueous solubilities,⁹ to the determination of protein structure,^{10,11} to the investigation of quantitative structure-activity relationships (QSAR)¹²⁻¹⁴ and to the prediction of chemical reactivity.^{15,16}

Boiling point (bp) is one of the properties used to characterize organic compounds. However, it may happen that this property is not available in the literature or difficult to evaluate experimentally. It appears obvious that the usefulness of quantitative structure-property relationships (QSPR) cannot be denied in those cases. Several methods^{17,18} for prediction of the bp of organic compounds have been described in the literature. We have recently used NNs to predict the bp of alkanes.¹⁹ These compounds were chosen because they are simple, easy to code and do not have polarized atoms nor intramolecular bonds.

The goals of the current work are: (a) To provide an application of the NN theory (developed in our earlier paper¹⁹) to acyclic ethers, peroxides, acetals and their sulfur analogues.

(b) To show the NNs ability to predict the bp of acyclic molecules containing heteroatoms.

(c) To call attention to the interest of molecular descriptors such as the embedding frequencies in the presence of heteroatoms.

(d) To compare the results obtained by an NN to those given by multiple linear regression (MLR) and to those given in the literature.

Neural Networks

Artificial NNs are mathematical models of biological neural systems. Three components constitute an NN: the processing elements, the topology of the connections between the nodes (vertices),²⁰ and the learning rule. In this paper, the specific algorithm used is the back-propagation (BP) system. Its

goal is to minimize an error function. A description of the BP algorithm was given previously¹⁹ with a simple example of application and a more extensive description can be found in other works.^{21,22}

Embedding Frequencies

In a BP NN the input layer contains information concerning the data samples under study. In chemistry this information is represented by molecular codes (molecular descriptors). In our study the molecular codes correspond to the embedding frequencies.²³ These integer entities determine to some extent the structure of acyclic compounds composed of carbon, oxygen and sulfur atoms (hydrogen atoms are ignored). Their simple graph-theoretical construction has been described in our recent publication.²⁴ Let T be a tree with vertices evaluated by symbols C, O or S. T is assigned to any acyclic molecule with skeleton composed of carbon, oxygen, and sulfur atoms. Let T' be a subtree of the tree T. T' corresponds to a connected cluster of atoms. The embedding frequency^{24,25} of T' in T, denoted by n(T, T'), is then defined as the number of appearance of the cluster T' in the treemolecule T. In Table 1, 20 clusters used in the construction of input activities, are listed. The input activities correspond to 20 embedding frequencies assigned to these clusters, $d_i =$ $n(T, T_i)$, for i = 1, 2, ..., 20, where T formally treated as a tree corresponds to a molecule determined by these 20 descriptors. Examples of descriptors for three molecules are listed in Table 2.

 Table 1
 List of 20 clusters used for the construction of embedding frequencies

no.	cluster	no.	cluster	no.	cluster
1	С	2	0	3	S
4	С-С	5	C-O	6	C-S
7	0-0	8	s-s	9	C-C-C
10	С-С-О	11	C - O - C	12	0-C-0
13	C-C-S	14	C-S-C	15	S-C-S
16	C-C-C-C	17	C-(C)3 ^a	18	С-С-С-С-С
19	$C - C - (C)3^a$	20	$C - (C)4^a$		

^a 17: isobutyl; 19: isopentyl; 20: neopentyl.

 Table 2
 Three examples of 20 descriptors assigned to acyclic molecules

molecule	d_1	d ₂	d ₃	d ₄	d5	d ₆	d7	d ₈	d9	d ₁₀
	d_{11}	d ₁₂	d ₁₃	d ₁₄	d15	d ₁₆	d17	d ₁₈	d19	d ₂₀
dimethyl	2	2	0	0	2	0	1	0	0	0
peroxide	0	0	0	0	0	0	0	0	0	0
dipropyl	6	0	1	4	0	2	0	0	2	0
sulfide	0	0	2	1	0	0	0	0	0	0
dibutyl	8	0	2	6	0	2	0	1	4	0
disulfide	0	0	2	0	0	2	0	0	0	0

Method

The set of 185 compounds (Table 3) used in the present paper has been studied by Balaban *et al.*²⁶ This set essentially consists of two basic types of molecules: (1) Acyclic ethers, peroxides and acetals (73 ethers, 17 diethers, 21 acetals and 6 peroxides). (2) Acyclic sulfide, disulfide and thioacetal (45 sulfides, 6 bis-sulfides, 4 thioacetals and 13 disulfides).

Table 3 Compounds studied with their experimental (exp) bps, predicted (pred) bps and corresponding residuals (res) (all in $^{\circ}C$)

no.	name	bp _{exp}	bp _{pred}	res
1	dimethyl ether	-23.70	-4.80	-18.90
2	dimethyl peroxide	14.00	9.81	4.19
3	dimethyl sulfide	37.30	40.64	- 3.34
4	dimethyl disulfide	109.70	112.31	-2.61
5	ethyl methyl ether	10.80	7.50	3.30
6	ethyl methyl peroxide	39.00	39.24	-0.24
7	dimethoxymethane	42.00	36.41	5.59
8	ethyl methyl sulfide	66.60	66.95	-0.35
9	ethyl methyl disulfide	135.00	134.93	0.07
10	bis(methylthio)methane	148.50	150.48	-1.98
11	methyl propyl ether	40.00	35.63	4.37
12	diethyl ether	34.60	34.98	-0.38
13	isopropyl methyl ether	32.00	31.41	0.50
13	diethyl peroxide	63.00	58.15	4.85
15	isopropyl methyl peroxide	53.50	59.66	6.16
16	ethoxymethoxyethane	67.00	69.19	-2.19
17	1,1-dimethoxyethane	64.40	64.48	-0.08
18	1,2-dimethoxyethane	84.70	74.53	10.17
18	methyl propyl sulfide	95.50	94.82	0.68
20	diethyl sulfide	93.50	94.82 90.89	1.11
20 21	isopropyl methyl sulfide	92.00 84.40	90.89 88.01	- 3.61
21	diethyl disulfide	154.00	152.98	- 3.61
22		156.00	152.98	3.03
23 24	1,1-bis(methylthio)ethane ethylthiomethylthiomethane	166.00	167.16	- 1.16
		183.00	187.30	-4.30
25	1,2-bis(methylthio)ethane	70.30	72.38	2.08
26	butyl methyl ether		62.14	
27	ethyl propyl ether	63.60		1.46
28	ethyl isopropyl ether	52.50	54.75	-2.25
29	isobutyl methyl ether	59.00	61.79	-2.79
30	sec-butyl methyl ether	59.50	65.29	- 5.79
31	tert-butyl methyl ether	55.20	53.56	1.64
32	diethoxymethane	88.00	92.65	- 4.65
33	2,2-dimethoxypropane	83.00	77.85	5.15
34	1,3-dimethoxypropane	104.50	105.09	-0.59
35	1-ethoxy-2-methoxyethane	102.00	104.25	-2.25
36	1,2-dimethoxypropane	92.00	99.99	~7.99
37	ethyl isopropyl sulfide	107.40	106.47	0.93
38	butyl methyl sulfide	123.20	124.26	-1.06
39	isobutyl methyl sulfide	112.50	114.89	-2.39
40	ethyl propyl sulfide	118.50	116.96	1.54
41	tert-butyl methyl sulfide	101.50	102.34	-0.84
42	ethyl propyl disulfide	173.70	174.22	-0.52
43	ethyl isopropyl disulfide	165.50	165.57	-0.07
44	bis(ethylthio)methane	181.00	183.98	-2.98
45	methyl pentyl ether	99.50	97.25	2.25
46	ethyl butyl ether	92.30	93.88	-1.58
47	dipropyl ether	90.10	89.07	1.03
48	isopropyl propyl ether	80.20	79.21	0.99
49	ethyl isobutyl ether	82.00	84.03	-2.03
50	isopentyl methyl ether	91.20	86.77	4.43
51	methyl 2-methylbutyl ether	91.50	87.01	4.49
52	ethyl sec-butyl ether	81.20	83.83	- 2.63
53	methyl 1-methylbutyl ether	93.00	85.81	7.19
54	methy: I methyloutyl ether	69.00	69.74	1.12

J. CHEM. SOC. FARADAY TRANS., 1994, VOL. 90

Table 3 (continued)

10.	name	bp _{exp}	bp _{pred}	res
55	methyl tert-pentyl ether	86.30	80.03	6.2
56	1,2-dimethylpropyl methyl ether	82.00	85.08	-3.0
57 58	1,1-diethoxyethane 1,1-dimethoxy-2-methylpropane	103.00 103.50	103.38 103.49	-0.3 0.0
59	2-ethoxy-2-methoxypropane	96.00	96.67	-0.6
60	1,1-dimethoxybutane	112.00	114.82	- 2.8
61	1-methoxy-1-propoxyethane	104.00	107.02	- 3.0
62 63	1,4-dimethoxybutane 1,2-diethoxyethane	132.50 123.50	131.04 120.49	1.4 3.0
64	1,3-dimethoxybutane	120.30	123.54	-3.2
65	methyl pentyl sulfide	145.00	146.94	- 1.9
66	butyl ethyl sulfide	144.20	143.05	1.1
67 68	dipropyl sulfide isopropyl propyl sulfide	142.80 132.00	142.02 131.01	0.7 0.9
69	ethyl isobutyl sulfide	132.00	132.84	1.3
70	isopentyl methyl sulfide	137.00	138.59	1.
71	methyl 2-methylbutyl sulfide	139.00	138.21	0.1
72 72	sec-butyl ethyl sulfide	133.60	131.66	1.9
73 74	tert-butyl ethyl sulfide diisopropyl sulfide	120.40 120.00	116.57 119.84	3.8 0.1
75	1-ethylpropyl methyl sulfide	137.00	135.40	1.0
76	dipropyl disulfide	195.80	191.77	4.0
77	diisopropyl disulfide	177.20	176.05	1.1
78	sec-butyl ethyl disulfide	181.00	185.93	4.9
79 80	isopropyl propyl disulfide tert-butyl ethyl disulfide	185.90 175.70	185.14 172.93	0.1 2.1
81	1,1-bis(ethylthio)ethane	186.00	185.68	0.3
82	1,2-bis(ethylthio)ethane	211.00	210.96	0.0
83	hexyl methyl ether	125.00	122.66	2.
84	ethyl pentyl ether	118.00	115.99	2.0
85 86	butyl propyl ether butyl isopropyl ether	117.10 107.00	117.97 106.03	0.8 0.9
87	isobutyl propyl ether	107.50	106.13	3.0
88	ethyl isopentyl ether	112.00	108.48	3.
89	tert-butyl propyl ether	97.40	92.68	4.′
90	2,2-dimethylpropyl ethyl ether	91.50	97.97	6.4
91 92	tert-butyl isopropyl ether ethyl 1-methylbutyl ether	87.60 106.50	87.88 103.06	-0.1 3.4
93	ethyl tert-pentyl ether	100.50	98.75	2.
94	1,2-dimethylpropyl ethyl ether	99.30	104.49	-5.
95	ethyl 1-ethylpropyl ether	90.00	105.45	-15.
96 07	dipropoxymethane	137.00	134.89	2.
97 98	2,2-diethoxypropane 1-ethoxy-1-propoxyethane	114.00 126.00	109.58 122.16	4.4 3.1
99	1,1-diethoxypropane	120.00	122.39	1.0
00	1,3-diethoxypropane	140.50	139.22	1.
.01	1,5-dimethoxypentane	157.50	152.06	5.
.02 .03	1-ethoxy-4-methoxybutane	146.00	146.66	0.
.03	1,4-dimethoxypentane 1,3-dimethoxypentane	145.00 141.00	143.88 144.78	1. 3.
05	hexyl methyl sulfide	171.00	169.07	1.
.06	butyl propyl sulfide	166.00	166.13	-0.
07	isobutyl propyl sulfide	155.00	155.18	-0.
.08	isobutyl isopropyl sulfide	145.00	147.67	2.
09 10	ethyl 2-methylbutyl sulfide tert-butyl propyl sulfide	159.00 138.00	153.68 139.41	5. -1.
11	sec-butyl isopropyl sulfide	142.00	144.81	-2.
12	ethyl isopentyl sulfide	159.00	154.27	4.
13	butyl isopropyl sulfide	163.50	154.47	9.
14 15	1,3-bis(ethylthio)propane dibutyl ether	229.50 142.00	225.03	4.
16	isopentyl propyl ether	142.00	142.18 130.53	-0. -5.
17	butyl isobutyl ether	132.00	129.77	- 3.
18	butyl sec-butyl ether	130.50	130.10	0 .
19	butyl tert-butyl ether	125.00	115.23	9.
20	sec-butyl isobutyl ether	122.00	122.66	-0.
21 22	1,3-dimethylpentyl methyl ether diisobutyl ether	121.00 122.20	133.12 119.50	-12. 2.
23	isobutyl tert-butyl ether	112.00	115.69	-3.
24	di-tert-butyl ether	106.00	113.24	7.
25	isopropyl tert-pentyl ether	114.50	114.79	-0.
26 27	heptyl methyl ether 1-ethylpropyl propyl ether	151.00 128.50	148.31 126.77	2.
28	di- <i>tert</i> -butyl peroxide	128.50	126.77	1. 8.
29	1,1-diisopropoxyethane	126.00	130.91	4.
130	1,1-dipropoxyethane	147.00	141.33	5.
31	1,3-dimethoxyethane	158.00	157.66	0.
132 133	2,4-dimethoxy-2-methylpentane	147.00	146.48	0.
34	1,4-diethoxybutane dibutylsulfide	165.00 188.90	157.69 187.68	7. 1.
	diisobutyl sulfide	170.00	169.06	1. 0.
135				
36	butyl isobutyl sulfide	178.00	177.68	0.
135 136 137 138	di- <i>tert</i> -butyl sulfide di- <i>tert</i> -butyl sulfide di- <i>sec</i> -butyl sulfide	148.50 165.00	147.73 167.32	0. 0. -2.

Table 3 (continued)

no.	name	bp _{exp}	bp _{pred}	res
140	sec-butyl isobutyl sulfide	167.00	170.87	- 3.87
141	heptyl methyl sulfide	195.00	191.54	3.46
142	dibutyl disulfide	226.00	225.07	0.93
143	diisobutyl disulfide	215.00	216.22	-1.22
144	di-tert-butyl disulfide	201.00	202.29	-1.29
145	1,1-bis(isopropylthio)ethane	205.00	215.31	- 10.31
146	1-ethyl-1,3-dimethylbutyl methyl			
	ether	151.50	154.31	-2.81
147	ethyl heptyl ether	165.50	161.94	3.56
148	butyl isopentyl ether	157.00	151.68	5.32
149	tert-butyl isopentyl ether	139.00	142.02	-3.02
150	butyl pentyl ether	163.00	163.76	-0.76
151	1,5-dimethylhexyl methyl ether	153.50	155.94	-2.44
152	isobutyl isopentyl ether	139.00	148.07	-9.02
153	methyl 1-methylheptyl ether	162.00	160.11	1.89
154	methyl octyl ether	173.00	175.51	-2.51
155	2-ethylhexyl methyl ether	159.50	162.75	-3.25
156	methyl 1,1,4-trimethylpentyl ether	159.50	144.30	15.20
157	3,5-dimethylhexyl methyl ether	155.50	165.14	-9.64
158	ethyl 1,1,3-trimethylbutyl ether	141.00	142.65	-1.65
159	tert-butyl tert-pentyl peroxide	126.00	136.20	-10.20
160	1,1-dimethoxy-2,2-			
	dimethylpentane	164.00	145.47	18.5
161	1,1-diethoxypentane	163.00	175.06	-12.0
162	1,1-dipropoxypropane	166.50	158.68	7.82
163	1,1-diisopropoxypropane	146.00	149.80	- 3.80
164	1,3-dipropoxypropane	165.00	185.08	-20.03
165	1,3-diisopropoxypropane	159.00	152.69	6.8
166	ethyl heptyl sulfide	195.00	211.74	-16.74
167	methyl octyl sulfide	218.00	215.22	2.7
168	bis(butylthio)methane	250.00	257.62	-7.6
169	2,2-bis(propylthio)propane	235.00	225.10	9.9
170	ethyl octyl ether	186.50	187.80	- 1.3
171	ethyl 1,1,3,3-tetramethylbutyl			
	ether	156.50	161.80	- 5.3
172	bis(1-ethylpropyl) ether	162.00	160.46	1.5
173	bis(1-methylbutyl) ether	162.00	160.46	1.54
174	butyl 1-methylpropyl ether	170.00	173.67	- 3.6
175	diisopentyl ether	173.20	168.25	4.9
176	dipentyl ether	186.80	185.45	1.3
177	isopropyl heptyl ether	173.00	172.71	0.2
178	heptyl propyl ether	187.00	185.97	1.0
179	isopentyl pentyl ether	174.00	176.40	-2.4
180	methyl 1-methyloctyl ether	188.50	186.00	2.5
181	di-tert-pentyl sulfide	199.00	195.40	3.6
182	dipentyl sulfide	228.00	227.28	0.7
183	disopentyl sulfide	215.00	210.35	4.6
184	isobutyl 4-methylpentyl sulfide	216.00	216.52	-0.5
185	methyl nonyl sulfide	240.00	232.63	7.3

We used a network with 20 units and a bias in the input layer, a variable hidden layer including bias, and one unit in the output layer. Input and output data were normalized between 0.1 and 0.9. The weights were initialized to random values between -0.5 and +0.5 and no momentum was added. The learning rate was initially set to 1 and was gradually decreased until the error function could no longer be minimized.

All computations were performed on an Iris Indigo (Silicon Graphics) workstation using our own programs, written in C language.

Results and Discussion

In a BP NN the input and output neurons are known since they present, respectively, the embedding frequencies and the bp of the molecules. Unfortunately, there are neither theoretical results available, nor satisfying empirical rules that would enable us to determine the number of hidden layers and of neurons contained in these layers. However, for most of the applications of NNs to chemistry, one hidden layer seems to be sufficient. For the determination of the number of hidden neurons, we have recently¹⁹ discussed the usefulness of the ρ parameter, defined as:

Table 4 Comparison of standard error of learning (SEL) and correlation coefficient (R) of NNs, MLR, eqn. (1), eqn. (2) and eqn. (3)

method	SEL	R
NN3	3.507	0.997
NN4	3.311	0.998
NN5	2.942	0.998
NN6	2.685	0.998
NN7	2.800	0.998
NN8	2.948	0.998
MLR	6.350	0.992
eqn. (1)	9.0	0.982
eqn. (2)	10.5	0.977
eqn. (3)	8.2	0.986

NN3 ... NN8 is for 3 ... 8 neurons in the hidden layer.

According to Zupan and Gasteiger²⁷ 'a good rule of thumb is that the number of data values taken for training should be equal to or greater than the number of weights to be determined in the network' (*i.e.* $\rho \ge 1$). In this paper, six architectures of NN (20-x-1; x = 3, 4, 5, 6, 7, 8; *i.e.* $\rho \in [1.05, 2.76]$) have been tried, and two studies have been achieved: learning and prediction. The term learning is used when the NN estimates bp values for molecules in the training set. When it estimates bp values for molecules not included in the training set, this is prediction.

Learning

NNs

In order to determine the best architecture, six different ones have been tried (20-x-1; x = 3, 4, 5, 6, 7, 8). The criteria used for the comparison of the six architectures are the correlation coefficient (R) and the standard error of learning (SEL) defined by:

$$SEL^{2} = \frac{\sum (bp_{exp} - bp_{calc})^{2}}{N}$$
$$R^{2} = 1 - \frac{\sum (bp_{exp} - bp_{calc})^{2}}{\sum (bp_{exp} - bp_{mean})^{2}}$$

where bp_{mean} stands for the arithmetic mean of all N observed values of the bp.

The results obtained are given in Table 4. Fig. 1 clearly indicates that the SEL goes down to a minimum corresponding to six neurons in the hidden layer. It can be seen that the SEL increases slightly (*i.e.* the learning performance decreases) for seven and eight neurons. That is due to the fact that the number of weights is nearly equal to the number of molecules in the training set. Thus, the information brought

Fig. 1 SEL as a function of the number of neurons in the hidden layer

to the training set is not sufficient to train correctly the NN with the architecture 20-x-1 (x = 7 and 8).

MLR

The most widely used mathematical method in QSAR or QSPR is MLR. The objective of such an analysis is to find an equation that relates a dependent variable (such as the bp property) to one or more independent variables (such as molecular descriptors). The solution to the problem consists in determining the coefficients a_i and the constant term a_0 of the following equation:

$$bp = a_0 + \sum a_i d_i$$

It is helpful to note some inherent difficulties of MLR in particular, arising from the interdependence of molecular descriptors. In this study MLR was used to correlate bp with only 15 independent molecular descriptors (d_6 , d_7 , d_8 , d_{11} and d_{15} are removed). The correlation coefficient and the standard error of learning are 0.992 and 6.350, respectively.

Other Models in the Literature

Bps of the 185 compounds studied were correlated by Balaban *et al.*²⁶ with chemical structures using two or three topological descriptors. Three equations were found:

$$bp = -59.10 + 44.30^{1}\chi + 42.88N_{s};$$

$$R = 0.982; \quad S = 9.0 \tag{1}$$

$$bp = -11.23 - 7.21S_{het} + 35.04^{\circ}\chi^{v} - 18.30T_{Me};$$

$$R = 0.977; \qquad S = 10.5 \qquad (2)$$

$$bp = -41.75 + 43.79^{1}\chi + 45.03N_{s} - 2.90J_{het};$$

$$R = 0.986; \quad S = 8.2 \quad (3)$$

All the results given by NNs, MLR, eqn. (1), eqn. (2) and eqn. (3) are shown in Table 4. We see that in all cases the NN approach gives the best results. However, the learning abilities of the models are not completely comparable since the descriptors used are not the same. In this study NNs show an interesting ability to extract information about cyclic compounds directly from the embedding frequencies.

Prediction

The predictive ability of an NN is its ability to give a satisfying output to a molecule not included in the examples the NN learned. To determine that predictive ability, cross-validation has been used. In this procedure one compound is removed from the data set, the network is trained with the remaining compounds and used to predict the discarded compound. The process is repeated in turn for each compound in the data set. After cross-validation, the predictive ability of different networks was assessed by the standard error of prediction (SEP) and the cross-validated $R^2(R_{ev}^2)$.

$$SEP^{2} = \frac{\sum (bp_{exp} - bp_{pred})^{2}}{N}$$
$$R_{ev}^{2} = 1 - \frac{\sum (bp_{exp} - bp_{pred})^{2}}{\sum (bp_{exp} - bp_{mean})^{2}}$$

 Table 5
 Comparison of predictive ability for NNs and MLR

method	SEP	R_{cv}^2
NN3	5.223	0.988
NN4	5.152	0.988
NN5	5.102	0.989
NN6	5.946	0.985
NN7	6.215	0.983
MLR	6.710	0.981

Fig. 2 Architecture of a BP network with three layers. The configuration shown is 20-5-1.

Table 5 shows the results obtained with five different architectures and with MLR. This table shows that the NN performance is a function of the number of hidden neurons. NNs give a superior performance to that given by MLR. In MLR the relationship between bp and molecular descriptors is expressed by a linear combination of the contributing terms. On the contrary the NN owes its predictive ability to its nonlinear power. This does not mean that the NN is a polynomial model but it is able to learn by example how to make predictions for cases not belonging to the training set. It can be seen that the best architecture is 20-5-1 ($\rho = 1.67$; Fig. 2). It is interesting to note the variation of the SEP according to the number of iterations. Fig. 3 shows this variation for the NN with an architecture 20-5-1. The learning performance of the NN increases with the number of iterations, but its predictive ability slowly decreases after 4000 iterations. This is known as the overtraining effect, due to a too long learning time. Indeed, the weights obtained after the overtraining contain more information specific to the training set. Therefore, prediction on the test set will not really be satisfying. Thus, when a very low error in the training set is

Fig. 3 Predictive ability of NN (top curve). Learning ability of NN (bottom curve).

sought, the predictive ability of an NN is less successful. The ability to predict being an essential quality of an NN, the overtraining effect must be avoided. The full results of cross-validation for 4000 iterations and with the NN architecture 20-5-1 are gathered in Table 3. Those results are satisfying and show that the embedding frequencies are very useful descriptors for the compounds studied. Nevertheless, six outliers can be seen (compounds 1, 95, 156, 160, 164 and 166 with residuals between 15 and 20 °C). For dimethyl ether, a large deviation is expected because it is the only one to have a negative experimental bp. It should be noted that the NN predicted a negative value for this compound. Since the bp is one of the physical properties that are difficult to measure,²⁸ the experimental bps of the other outliers may be in error.

Conclusion

This paper has discussed the use of BP NN to predict the boiling point of acyclic ethers, peroxides, acetals and their sulfur analogues. The performances of NN were compared with those given by MLR and those of other models in the literature, and proved to be better. It is interesting to note that the performances of the NNs decrease when overtraining occurs. The embedding frequencies provide enough information to an NN for prediction of the bp of the compounds studied. The approach using the embedding frequencies is adapted to the modelling of compounds containing heteroatoms, which is not the case for descriptors based on topological indices.²⁹

References

- 1 J. Zupan and J. Gasteiger, Anal. Chim. Acta, 1991, 248, 1.
- 2 M. Tusar, J. Zupan and J. Gasteiger, J. Chim. Phys., 1992, 89, 1517.
- 3 J. Zupan and J. Gasteiger, in Neural Networks for Chemists, VCH, New York, 1993.
- 4 J. U. Thomsen and B. Meyer, J. Magn. Reson., 1989, 84, 212.
- 5 E. W. Robb and M. E. Munk, Mikrochim Acta (Wien), 1990, I, 131.

- 6 M. E. Munk, M. S. Madison and E. W. Robb, Mikrochim Acta (Wien), 1991, II, 505.
- 7 V. Kvasnicka, J. Math. Chem., 1991, 6, 63.
- 8 B. Curry and D. E. Rumelhart, Tetrahedron Comput. Methodol., 1990, 3, 213.
- 9 N. Bodor, A. Harget and M. J. Huang, J. Am. Chem. Soc., 1991, 113, 9480.
- 10 L. H. Holley and M. Karplus, Proc. Natl. Acad. Sci. USA, 1989, 86, 152.
- 11 N. Qian and T. J. Sejnowski, J. Mol. Biol., 1988, 202, 865.
- 12 D. Villemin, D. Cherqaoui and J-M. Cense, J. Chim. Phys., 1993, 90, 1505.
- 13 T. Aoyama and H. Ichikawa, Chem. Pharm. Bull., 1991, 39, 358.
- 14 T. Aoyama and H. Ichikawa, Chem. Pharm. Bull., 1991, 39, 372.
- 15 V. Simon, J. Gasteiger and J. Zupan, J. Am. Chem. Soc., 1993, 115, 9148.
- 16 D. W. Elrod, G. M. Maggiora and R. G. Trenary, J. Chem. Inf. Comput. Sci., 1990, 30, 477.
- 17 D. E. Pearson, J. Chem. Educ., 1957, 28, 60.
- 18 R. D. Cramer, J. Am. Chem. Soc., 1980, 102, 1837.
- 19 D. Cherqaoui and D. Villemin, J. Chem. Soc., Faraday Trans., 1994, 90, 97.
- 20 N. Trinajstic, in Chemical Graph Theory, CRC Press, Boca Raton, FL, 1992.
- 21 J. L. McClelland, D. E. Rumelhart and the PDP Research Group, in *Parallel Distributed Processing*, ed. J. L. McClelland and D. E. Rumelhart, MIT Press, Cambridge, MA, 1988, vol. I, p. 319.
- 22 J. A. Freeman and D. M. Skapura, in Neural Networks Algorithms, Applications, and Programming Techniques, Addison-Wesley, Reading, 1991, p. 89.
- 23 R. D. Poshusta and M. C. McHugues, J. Math. Chem., 1989, 3, 193.
- 24 D. Cherqaoui, D. Villemin and V. Kvasnicka, Chemom. Intell. Lab. Syst., in the press.
- 25 V. Kvasnicka, D. Cherqaoui and D. Villemin, J. Comput. Chem., in the press.
- 26 A. T. Balaban, L. B. Kier and N. Joshi, J. Chem. Inf. Comput. Sci., 1992, 32, 237.
- 27 Ref. 3, p. 263.
- 28 M. Randic, Croat. Chem. Acta, 1993, 66, 289.
- 29 M. Randic and N. Trinajstic, J. Mol. Struct. (Theochem), 1993, 284, 209.

Paper 3/07329G; Received 13th December, 1993