# -*- coding: utf-8 -*- """model_selection_old.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1uVkl7scNgEPrimX8ks6iEC5ijuhB8L_D **This script demonstrates how to compute a graph kernel.** --- **0. Install `graphkit-learn`.** """ """**1. Perform model seletion and classification.**""" from gklearn.utils import model_selection_for_precomputed_kernel from gklearn.kernels import untilhpathkernel import numpy as np # Set parameters. datafile = '../../../datasets/MUTAG/MUTAG_A.txt' param_grid_precomputed = {'depth': np.linspace(1, 10, 10), 'k_func': ['MinMax', 'tanimoto'], 'compute_method': ['trie']} param_grid = {'C': np.logspace(-10, 10, num=41, base=10)} # Perform model selection and classification. model_selection_for_precomputed_kernel( datafile, # The path of dataset file. untilhpathkernel, # The graph kernel used for estimation. param_grid_precomputed, # The parameters used to compute gram matrices. param_grid, # The penelty Parameters used for penelty items. 'classification', # Or 'regression'. NUM_TRIALS=30, # The number of the random trials of the outer CV loop. ds_name='MUTAG', # The name of the dataset. n_jobs=1, verbose=True)