import sys import pathlib sys.path.insert(0, "../") import networkx as nx import numpy as np import time from pygraph.kernels.deltaKernel import deltakernel def marginalizedkernel(*args, node_label = 'atom', edge_label = 'bond_type'): """Calculate marginalized graph kernels between graphs. Parameters ---------- Gn : List of NetworkX graph List of graphs between which the kernels are calculated. / G1, G2 : NetworkX graphs 2 graphs between which the kernel is calculated. p_quit : integer the termination probability in the random walks generating step itr : integer time of iterations to calculate R_inf node_label : string node attribute used as label. The default node label is atom. edge_label : string edge attribute used as label. The default edge label is bond_type. Return ------ Kmatrix/Kernel : Numpy matrix/int Kernel matrix, each element of which is the marginalized kernel between 2 praphs. / Marginalized Kernel between 2 graphs. References ---------- [1] H. Kashima, K. Tsuda, and A. Inokuchi. Marginalized kernels between labeled graphs. In Proceedings of the 20th International Conference on Machine Learning, Washington, DC, United States, 2003. """ if len(args) == 3: # for a list of graphs Gn = args[0] Kmatrix = np.zeros((len(Gn), len(Gn))) start_time = time.time() for i in range(0, len(Gn)): for j in range(i, len(Gn)): Kmatrix[i][j] = _marginalizedkernel_do(Gn[i], Gn[j], node_label, edge_label, args[1], args[2]) Kmatrix[j][i] = Kmatrix[i][j] run_time = time.time() - start_time print("\n --- marginalized kernel matrix of size %d built in %s seconds ---" % (len(Gn), run_time)) return Kmatrix, run_time else: # for only 2 graphs start_time = time.time() kernel = _marginalizedkernel_do(args[0], args[1], node_label, edge_label, args[2], args[3]) run_time = time.time() - start_time print("\n --- marginalized kernel built in %s seconds ---" % (run_time)) return kernel, run_time def _marginalizedkernel_do(G1, G2, node_label = 'atom', edge_label = 'bond_type', p_quit, itr): """Calculate marginalized graph kernels between 2 graphs. Parameters ---------- G1, G2 : NetworkX graphs 2 graphs between which the kernel is calculated. node_label : string node attribute used as label. The default node label is atom. edge_label : string edge attribute used as label. The default edge label is bond_type. p_quit : integer the termination probability in the random walks generating step itr : integer time of iterations to calculate R_inf Return ------ Kernel : int Marginalized Kernel between 2 graphs. """ # init parameters kernel = 0 num_nodes_G1 = nx.number_of_nodes(G1) num_nodes_G2 = nx.number_of_nodes(G2) p_init_G1 = 1 / num_nodes_G1 # the initial probability distribution in the random walks generating step (uniform distribution over |G|) p_init_G2 = 1 / num_nodes_G2 q = p_quit * p_quit r1 = q # initial R_inf R_inf = np.zeros([num_nodes_G1, num_nodes_G2]) # matrix to save all the R_inf for all pairs of nodes # calculate R_inf with a simple interative method for i in range(1, itr): R_inf_new = np.zeros([num_nodes_G1, num_nodes_G2]) R_inf_new.fill(r1) # calculate R_inf for each pair of nodes for node1 in G1.nodes(data = True): neighbor_n1 = G1[node1[0]] p_trans_n1 = (1 - p_quit) / len(neighbor_n1) # the transition probability distribution in the random walks generating step (uniform distribution over the vertices adjacent to the current vertex) for node2 in G2.nodes(data = True): neighbor_n2 = G2[node2[0]] p_trans_n2 = (1 - p_quit) / len(neighbor_n2) for neighbor1 in neighbor_n1: for neighbor2 in neighbor_n2: t = p_trans_n1 * p_trans_n2 * \ deltakernel(G1.node[neighbor1][node_label] == G2.node[neighbor2][node_label]) * \ deltakernel(neighbor_n1[neighbor1][edge_label] == neighbor_n2[neighbor2][edge_label]) R_inf_new[node1[0]][node2[0]] += t * R_inf[neighbor1][neighbor2] # ref [1] equation (8) R_inf[:] = R_inf_new # add elements of R_inf up and calculate kernel for node1 in G1.nodes(data = True): for node2 in G2.nodes(data = True): s = p_init_G1 * p_init_G2 * deltakernel(node1[1][node_label] == node2[1][node_label]) kernel += s * R_inf[node1[0]][node2[0]] # ref [1] equation (6) return kernel