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Abstract. In the present paper we address the fingerprint classifica-
tion problem with a structural pattern recognition approach. Our main
contribution is the definition of modified directional variance in orien-
tation vector fields. The new directional variance allows us to extract
regions from fingerprints that are relevant for the classification in the
Henry scheme. After processing the regions of interest, the resulting
structures are converted into attributed graphs. The classification is fi-
nally performed with an efficient graph edit distance algorithm. The
performance of the proposed classification method is evaluated on the
NIST-4 database of fingerprints.

1 Introduction

Fingerprint classification refers to the process of assigning fingerprints in a con-
sistent and reliable way to classes. The main objective is to reduce the com-
plexity of the general fingerprint identification problem, where a fingerprint is to
be matched against large databases of fingerprints. The fingerprint classification
problem is considered to be difficult because of the large within-class variability
and the small between-class separation. For many years, classification methods
from various pattern recognition areas have been proposed, commonly divided
into rule-based, syntactic, statistical, and neural network based approaches [1,
2]. Although the classification problem is intrinsically of structural nature, it
was not until recently that classification systems based on structural pattern
recognition methods have been developed [3–5]. In comparison to state-of-the-
art classification methods, structural approaches often fall behind in terms of
performance. Yet, in the context of multiple classifier combination, structural
algorithms have proven effective in improving existing classification methods [5,
6]. We furthermore believe that the strength of structural algorithms has not yet
been fully exploited in fingerprint recognition.

In fingerprint identification or verification, where identical fingerprints are
to be matched, one usually focuses on local characteristics, such as minutiae
points. Conversely, in fingerprint classification, the problem is often addressed
by extracting and representing global characteristics, such as the ridge flow or
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singular points [1, 2]. In the present paper, we propose an image filter based on a
new definition of directional variance. Following the Galton-Henry classification
scheme of five classes, we use the filter to extract regions that are relevant for the
classification. Our second contribution consists in applying edit distance based
graph matching to the classification problem after extracting the characteristic
regions.

In Section 2, the directional variance filter on orientation vector fields is
described. A brief review of error-tolerant graph matching follows in Section 3.
Section 4 gives a number of experimental results, and some concluding remarks
are provided in Section 5.

2 A Directional Variance Algorithm

The key procedure of a large number of fingerprint classification algorithms is
based on the robust detection of singular points of the ridge orientation vector
field [2]. To assign fingerprints to one of the five classic Henry classes, it is in
most cases sufficient to know the number and position of singular points [7, 8]. In
this paper, we propose an algorithm for the reliable computation of a directional
variance value measured at every position of the ridge orientation field. The
variance is defined such that high variance regions correspond to relevant regions
for the fingerprint classification task, including singular points.

Weakly related to the statistical variance, we define the directional variance
of the ridge orientation field at position (x, y) by

σ2
x,y =

1

1 − n

∑

i,j

sin2(αi,j − ᾱx,y) , (1)

where αi,j denotes the vector at position (i, j) of the vector field and the sum-
mation is performed over a window of size n around (x, y). The average orienta-
tion ᾱx,y of the local window around position (x, y) is computed by taking into
account that two vectors pointing in opposite directions represent the same ori-
entation [9, 10]. The circular nature of the orientation vectors is also accounted
for in the sine term; vectors αi,j that are orthogonal to the local average ᾱx,y

contribute maximally and vectors close to the local average contribute minimally
to the variance.

From Eq. 1 it follows that the directional variance is expected to be low
everywhere in smooth orientation fields. But in the local neighborhood of sin-
gular points, orientations do not follow a single predominant direction, which is
equivalent to a high directional variance. In experiments we could confirm this
behavior.

Our objective in this paper is not to detect singular points, but rather to
extract regions that allow us to discriminate between fingerprint classes. For this
purpose, we propose to use a modified directional variance measure, which differs
from the directional variance in Eq. 1 in the computation of the local average
orientation ᾱx,y. In a first step, all orientations are normalized to an angle range
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Fig. 1. a) Two vectors representing two ridge orientations, b) the corresponding nor-
malized vectors, and c) their vector sum

of I = [−π/2, π/2], which corresponds to a vector range of I ′ = R+
0 × R. The

normalization of two orientation vectors and the normalization range I (see
the shaded area) is illustrated in Fig. 1a,b. Normalization consists in reversing
any vector that is located outside the shaded area. We proceed by defining
the average direction of a number of normalized orientation vectors by their
vector sum. In Fig. 1c, the sum of two normalized vectors is illustrated. For
a set of vectors in horizontal direction, the vector sum will clearly point in a
horizontal direction as well. For a set of vectors in vertical direction, however,
the vector sum will not point in vertical direction, but be close to the horizontal
direction, as some vectors will point upwards and some will point downwards due
to the normalization procedure. In this case, the mean direction ᾱx,y does not
correspond to the local orientations, which results in a high directional variance.
Hence in addition to singular points, the modified directional variance is also
responsive to vertical orientation regions. In other words, the proposed new
directional variance can be used as a filter that will emphasize not only singular
points, but also areas with vertical ridge orientation.

d

c

a) b)

Fig. 2. Left loop fingerprint image a) with core point (c), delta point (d), and marked
vertical orientations and b) visualization of the modified directional variance
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Fig. 3. a) Original fingerprint image, b) visualization of the modified directional vari-
ance (bright colors indicate high variance), c) binarized image

A closer examination reveals that different fingerprint classes exhibit different
characteristics of singular points and vertical orientation regions. Arch finger-
prints, for instance, contain no singular points and no vertical ridges, except
for strongly rotated fingerprints. Loop fingerprints, on the other hand, are char-
acterized by a global ridge loop, a core point, and a delta point [7]. The key
observation is that one can reach the core point from the delta point via locally
almost vertical ridge segments, which is due to the nature of the ridge flow around
the delta point and the core point. An illustration of this observation is provided
in Fig. 2, where the vertical orientation segments are clearly visible in the loop
fingerprint image and in the image resulting from applying the directional vari-
ance filter. The same properties are also present in right loop, whorl, and tented
arch fingerprints. In a number of experiments, it turns out that the directional
variance filter detects the connection between core and delta point much more
reliably than a filter simply enhancing vertical orientations. In contrast to other
classification methods, the directional variance approach does not solely rely on
the detection of singular points, but can also be employed if singular points are
not present in the image or distorted by noise.

After filtering the fingerprint, the resulting image is binarized and under-
goes a noise removal procedure. The extracted regions can then be used for the
purpose of classification. Possible classification criteria include the number of
extracted regions and the position and main direction of the regions. An illus-
tration of the extraction of the characteristic regions in a whorl image is shown
in Fig. 3. It is easy to verify that the ending points of the two extracted regions
correspond to the four singular points, and the regions to the vertical orienta-
tion areas of the ridge orientation field. Further examples from the left loop, right

loop, and whorl class are shown in Fig. 4. To perform the actual classification
based on the extracted regions, various classifiers could potentially be employed.
One such method based on graph matching is described in the following sections.

3 Error-tolerant Graph Matching

Graph matching refers to the process of evaluating the structural similarity of
attributed graphs, that is, the similarity with respect to nodes, edges and at-
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Fig. 4. Visualization of the modified directional variance for left loop (L), right loop

(R), and whorl (W) fingerprints
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Fig. 5. Sample prototype graphs for the left loop (L), right loop (R), whorl (W), and
tented arch (T) class
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tributes attached to nodes and edges. A large number of graph matching methods
from various research fields have been proposed in recent years [11], ranging from
isomorphism-based systems to algorithms based on the spectral decomposition of
graph matrices and the definition of positive definite kernel functions on graphs.

3.1 Graph Edit Distance

One of the most intuitive error-tolerant graph matching approaches consists in
the computation of the graph edit distance [12, 13]. The graph edit distance is
defined in the context of a basic distortion model, where structural distortions
are performed by edit operations on graphs. The standard set of edit operations
comprises a node insertion, a node deletion, a node substitution, an edge inser-
tion, an edge deletion, and an edge substitution operation. A sequence of edit
operations (e1, . . . , el) transforming graph g into graph g′ is termed an edit path
from g to g′, and E(g, g′) denotes the set of edit paths from g to g′. Given a cost
function c : E(g, g′) → R+ ∪ {0} assigning non-negative costs to edit paths, we
can then define the edit distance of g and g′ by

d(g, g′) = min
p∈E(g,g′)

c(p) . (2)

The edit distance of two graphs is thus given by the least expensive transforma-
tion of the first graph into the second graph in the underlying distortion model.
The cost function is usually defined on single edit operations with respect to the
attributes attached to nodes and edges.

An edit distance based system can be tailored to a specific application by
adjusting the cost functions accordingly. The basic idea is that weak distortions
should result in low costs, whereas strong distortions should correspond to higher
costs. The cost functions implicitly define, for instance, when the removal of a
node n followed by the insertion of another node n′ is less expensive than the
substitution of n with n′, and therefore preferred in an optimal edit path. In
other words, the edit distance is derived from the most reasonable explanation
of the structural differences of two graphs in the edit operation framework.

The actual computation of the edit distance is performed by constructing
and traversing a search tree. In spite of pruning criteria and look-ahead tech-
niques, however, the computational complexity both in terms of running time
and memory requirements is high — in fact, it is exponential in the number
of nodes of both graphs. For unconstrained graphs of arbitrary size, the edit
distance approach is largely unfeasible. Therefore, a fast approximate version of
the edit distance algorithm for large graphs is employed in the experiments of
this paper. A brief description of the algorithm follows in the next section.

3.2 Approximate Graph Edit Distance

The development of efficient graph matching algorithms for special classes of
graphs, for instance bounded-valence graphs, trees, or planar graphs, has been
an issue in the graph matching literature for years [11]. In the graph edit distance
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context an efficient approximate algorithm has recently been proposed that turns
out to be very fast and sufficiently accurate for certain graph problems [14].
This approximate algorithm requires the graph nodes to be embedded in the
plane. That is, for every node a meaningful position attribute providing a spatial
context needs to be present. For graphs extracted from images it is usually easy
to derive such a node embedding. Examples include graphs representing interest
points and their relations, or region adjacency graphs.

Instead of exploring the full search space, only a subset of all edit paths is
considered in the approximate algorithm. Starting from an initial node substi-
tution n → n′, the least costly transformation from the neighborhood of n to
the neighborhood of n′ is computed by optimizing local minimum-cost criteria.
The computation is performed by means of an efficient cyclic string match-
ing algorithm based on dynamic programming. The result is a valid edit path
between two graphs, but not necessarily the optimal one. To account for the
dependence on the initialization, the computation is carried out for a number
of initial substitutions, and the minimum cost edit path among them is kept. In
contrast to the exponential computational complexity of the exact edit distance,
the approximate algorithm runs in polynomial time. In practical experiments,
the approximation has shown to be feasible and fast, even for large graphs with
more than 200 nodes and edges, whereas the exact edit distance algorithm can
only be computed for graphs with a size of about 10 nodes [14]. In the following,
the approximate edit distance will be used to obtain distance values between
fingerprint graphs and subsequently perform the classification.

3.3 Fingerprint Graph Representation and Edit Cost Function

From the results of the region extraction process based on the modified direc-
tional variance filter described in Section 2, an attributed graph can be extracted
in various ways. In this paper, we follow a simple method to generate structural
skeletons. We proceed by applying a one-pass thinning operator [15] to the ex-
tracted regions and represent ending points and bifurcation points of the result-
ing skeleton by graph nodes. Additional nodes are inserted along the skeleton at
regular intervals. An attribute giving the position of the corresponding pixel is
attached to each node. Edges containing an angle attribute are used to connect
nodes that are directly connected through a ridge in the skeleton. An illustration
of several graphs of this kind is given in Fig. 5. The simple edit cost function we
employ assigns constant costs to insertions and deletions independent of involved
attributes; substitution costs are defined proportional to the Euclidean distance
of attributes.

4 Experimental Results

The NIST-4 database [16] consists of 4,000 grayscale images of fingerprints with
class labels according to the five most common classes of the Galton-Henry clas-
sification scheme: arch, tented arch, left loop, right loop, and whorl. We proceed
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by extracting an attributed graph from every image as described previously to
obtain 4,000 graphs. On the average, these graphs contain 6.1 nodes and 10.3
edges. To classify fingerprint graphs by means of the edit distance, a set of refer-
ence graphs for each class needs to be defined. Although an automatic method
would be desirable, it proved efficient in recent studies [17, 18] to use a manual
construction procedure for this purpose. Adopting a similar approach, we define
prototype graphs by manually selecting promising candidates from a training
set of graphs. Where appropriate, a few nodes are deleted from prototype can-
didates to provide for class representatives as general as possible. By means
of this procedure we obtain about 60 prototypes overall. The classification can
then be performed based on the nearest-neighbor paradigm: An input graph is
assigned the class of the most similar prototype graph. The structural similar-
ity is derived from the corresponding approximate graph edit distance between
prototype graph and input graph. An illustration of some prototype graphs is
provided in Fig. 5.

The first 1,000 fingerprints from the database are used for the development of
the class prototypes and are therefore considered a Training set. The remaining
3,000 fingerprints constitute the independent Test set 1, and the subset of Test

set 1 consisting of the last 2,000 fingerprints of the database is termed Test

set 2. The classification rates obtained on the various data sets are summarized
in Table 1, where GED refers to the graph edit distance approach proposed in
this paper, MASKS, RNN, and GM refer to graph matching approaches reported
in [18] using dynamic masks, recursive neural networks, and graph edit distance,
respectively, whereas MLP refers to a non-structural neural network approach
[19].

From the experimental results we find that the proposed method performs
clearly better than the best graph matching approach reported in [18]. A com-
parison of the training error and test error reveals that a slight overfitting occurs.
However, the ability of the graph matching approach to generalize well on unseen
data seems to be sufficiently strong. Using the approximate matching algorithm,
the classification runs very fast in comparison to other graph edit distance meth-
ods. On a regular workstation it takes 27 minutes to conduct a (non-optimized)
graph classification of all 4,000 fingerprints of the NIST-4 database. Although the
exact edit distance computation would be feasible for these graphs, experiments
indicate that the classification takes by far longer (100h instead of 3 minutes for
500 graphs) and results in a lower classification rate.

It is well known that the definition of adequate cost functions is crucial for
the performance of a graph edit distance based classification system. In our ex-
periments, we used simple edit costs based on constant costs and Euclidean dis-
tances. One major drawback of this edit cost function, and thus a shortcoming of
our classification approach, is that all costs are defined in a location-independent
way; that is, the information where in the attribute space an edit operation oc-
curs is not taken into account. For a number of graph matching problems, it
turns out that location-dependent edit cost functions automatically learned be-
forehand from a sample set of graphs can significantly improve the recognition
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performance [20], which may also be of interest in future investigations in the
context of fingerprint graph classification.

Data set Classifier 5 classes

Training set GED 82.6
Test set 1 GED 80.27
Full database GED 80.85

Test set 2 GED 80.25
RNN [5, 18] 76.75
MASKS [17, 18] 71.45
GM [18] 65.15
MLP [19, 18] 86.01

Table 1. Fingerprint classification rate on the NIST-4 database

5 Conclusions

In the present paper we propose a fingerprint classification system by means
of error-tolerant graph matching. Our main contribution is an algorithm for
the extraction of regions in the ridge orientation field that are relevant for the
classification. Extracted regions correspond to singular points and characteris-
tic connections between core and delta points. To assign one of the five most
common Henry classes to fingerprints, we use a graph edit distance approach. In
experiments on the NIST-4 fingerprint database, the proposed method is found
to outperform graph matching systems reported in recent years. In the future
we intend to address the classification problem based on the proposed direc-
tional variance with non-structural classifiers and study whether combinations
of classifiers may lead to more robust performance results. In addition we plan
to investigate if more complex edit cost functions than the one used in this paper
could further improve the classification accuracy.
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