#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue May 12 12:52:15 2020 @author: ljia """ import numpy as np import csv import os import os.path from gklearn.utils import Dataset from sklearn.model_selection import ShuffleSplit from gklearn.preimage import MedianPreimageGenerator from gklearn.utils import normalize_gram_matrix, compute_distance_matrix from gklearn.preimage.utils import get_same_item_indices from gklearn.utils.knn import knn_classification from gklearn.preimage.utils import compute_k_dis def kernel_knn_cv(ds_name, train_examples, knn_options, mpg_options, kernel_options, ged_options, mge_options, save_results=True, load_gm='auto', dir_save='', irrelevant_labels=None, edge_required=False, cut_range=None): # 1. get dataset. print('1. getting dataset...') dataset_all = Dataset() dataset_all.load_predefined_dataset(ds_name) dataset_all.trim_dataset(edge_required=edge_required) if irrelevant_labels is not None: dataset_all.remove_labels(**irrelevant_labels) if cut_range is not None: dataset_all.cut_graphs(cut_range) if save_results: # create result files. print('creating output files...') fn_output_detail, fn_output_summary = _init_output_file_knn(ds_name, kernel_options['name'], mpg_options['fit_method'], dir_save) else: fn_output_detail, fn_output_summary = None, None # 2. compute/load Gram matrix a priori. print('2. computing/loading Gram matrix...') gram_matrix_unnorm, time_precompute_gm = _get_gram_matrix(load_gm, dir_save, ds_name, kernel_options, dataset_all) # 3. perform k-nn CV. print('3. performing k-nn CV...') if train_examples == 'k-graphs' or train_examples == 'expert' or train_examples == 'random': _kernel_knn_cv_median(dataset_all, ds_name, knn_options, mpg_options, kernel_options, mge_options, ged_options, gram_matrix_unnorm, time_precompute_gm, train_examples, save_results, dir_save, fn_output_detail, fn_output_summary) elif train_examples == 'best-dataset': _kernel_knn_cv_best_ds(dataset_all, ds_name, knn_options, kernel_options, gram_matrix_unnorm, time_precompute_gm, train_examples, save_results, dir_save, fn_output_detail, fn_output_summary) elif train_examples == 'trainset': _kernel_knn_cv_trainset(dataset_all, ds_name, knn_options, kernel_options, gram_matrix_unnorm, time_precompute_gm, train_examples, save_results, dir_save, fn_output_detail, fn_output_summary) print('\ncomplete.\n') def _kernel_knn_cv_median(dataset_all, ds_name, knn_options, mpg_options, kernel_options, mge_options, ged_options, gram_matrix_unnorm, time_precompute_gm, train_examples, save_results, dir_save, fn_output_detail, fn_output_summary): Gn = dataset_all.graphs y_all = dataset_all.targets n_neighbors, n_splits, test_size = knn_options['n_neighbors'], knn_options['n_splits'], knn_options['test_size'] # get shuffles. train_indices, test_indices, train_nums, y_app = _get_shuffles(y_all, n_splits, test_size) accuracies = [[], [], []] for trial in range(len(train_indices)): print('\ntrial =', trial) train_index = train_indices[trial] test_index = test_indices[trial] G_app = [Gn[i] for i in train_index] G_test = [Gn[i] for i in test_index] y_test = [y_all[i] for i in test_index] gm_unnorm_trial = gram_matrix_unnorm[train_index,:][:,train_index].copy() # compute pre-images for each class. medians = [[], [], []] train_nums_tmp = [0] + train_nums print('\ncomputing pre-image for each class...\n') for i_class in range(len(train_nums_tmp) - 1): print(i_class + 1, 'of', len(train_nums_tmp) - 1, 'classes:') i_start = int(np.sum(train_nums_tmp[0:i_class + 1])) i_end = i_start + train_nums_tmp[i_class + 1] median_set = G_app[i_start:i_end] dataset = dataset_all.copy() dataset.load_graphs([g.copy() for g in median_set], targets=None) mge_options['update_order'] = True mpg_options['gram_matrix_unnorm'] = gm_unnorm_trial[i_start:i_end,i_start:i_end].copy() mpg_options['runtime_precompute_gm'] = 0 set_median, gen_median_uo = _generate_median_preimages(dataset, mpg_options, kernel_options, ged_options, mge_options) mge_options['update_order'] = False mpg_options['gram_matrix_unnorm'] = gm_unnorm_trial[i_start:i_end,i_start:i_end].copy() mpg_options['runtime_precompute_gm'] = 0 _, gen_median = _generate_median_preimages(dataset, mpg_options, kernel_options, ged_options, mge_options) medians[0].append(set_median) medians[1].append(gen_median) medians[2].append(gen_median_uo) # for each set of medians. print('\nperforming k-nn...') for i_app, G_app in enumerate(medians): # compute dis_mat between medians. dataset = dataset_all.copy() dataset.load_graphs([g.copy() for g in G_app], targets=None) gm_app_unnorm, _ = _compute_gram_matrix_unnorm(dataset, kernel_options.copy()) # compute the entire Gram matrix. graph_kernel = _get_graph_kernel(dataset.copy(), kernel_options.copy()) kernels_to_medians = [] for g in G_app: kernels_to_median, _ = graph_kernel.compute(g, G_test, **kernel_options.copy()) kernels_to_medians.append(kernels_to_median) kernels_to_medians = np.array(kernels_to_medians) gm_all = np.concatenate((gm_app_unnorm, kernels_to_medians), axis=1) gm_all = np.concatenate((gm_all, np.concatenate((kernels_to_medians.T, gram_matrix_unnorm[test_index,:][:,test_index].copy()), axis=1)), axis=0) gm_all = normalize_gram_matrix(gm_all.copy()) dis_mat, _, _, _ = compute_distance_matrix(gm_all) N = len(G_app) d_app = dis_mat[range(N),:][:,range(N)].copy() d_test = np.zeros((N, len(test_index))) for i in range(N): for j in range(len(test_index)): d_test[i, j] = dis_mat[i, j] accuracies[i_app].append(knn_classification(d_app, d_test, y_app, y_test, n_neighbors, verbose=True, text=train_examples)) # write result detail. if save_results: f_detail = open(dir_save + fn_output_detail, 'a') print('writing results to files...') for i, median_type in enumerate(['set-median', 'gen median', 'gen median uo']): csv.writer(f_detail).writerow([ds_name, kernel_options['name'], train_examples + ': ' + median_type, trial, knn_options['n_neighbors'], len(gm_all), knn_options['test_size'], accuracies[i][-1][0], accuracies[i][-1][1]]) f_detail.close() results = {} results['ave_perf_train'] = [np.mean([i[0] for i in j], axis=0) for j in accuracies] results['std_perf_train'] = [np.std([i[0] for i in j], axis=0, ddof=1) for j in accuracies] results['ave_perf_test'] = [np.mean([i[1] for i in j], axis=0) for j in accuracies] results['std_perf_test'] = [np.std([i[1] for i in j], axis=0, ddof=1) for j in accuracies] # write result summary for each letter. if save_results: f_summary = open(dir_save + fn_output_summary, 'a') for i, median_type in enumerate(['set-median', 'gen median', 'gen median uo']): csv.writer(f_summary).writerow([ds_name, kernel_options['name'], train_examples + ': ' + median_type, knn_options['n_neighbors'], knn_options['test_size'], results['ave_perf_train'][i], results['ave_perf_test'][i], results['std_perf_train'][i], results['std_perf_test'][i], time_precompute_gm]) f_summary.close() def _kernel_knn_cv_best_ds(dataset_all, ds_name, knn_options, kernel_options, gram_matrix_unnorm, time_precompute_gm, train_examples, save_results, dir_save, fn_output_detail, fn_output_summary): Gn = dataset_all.graphs y_all = dataset_all.targets n_neighbors, n_splits, test_size = knn_options['n_neighbors'], knn_options['n_splits'], knn_options['test_size'] # get shuffles. train_indices, test_indices, train_nums, y_app = _get_shuffles(y_all, n_splits, test_size) accuracies = [] for trial in range(len(train_indices)): print('\ntrial =', trial) train_index = train_indices[trial] test_index = test_indices[trial] G_app = [Gn[i] for i in train_index] G_test = [Gn[i] for i in test_index] y_test = [y_all[i] for i in test_index] gm_unnorm_trial = gram_matrix_unnorm[train_index,:][:,train_index].copy() # get best graph from trainset according to distance in kernel space for each class. best_graphs = [] train_nums_tmp = [0] + train_nums print('\ngetting best graph from trainset for each class...') for i_class in range(len(train_nums_tmp) - 1): print(i_class + 1, 'of', len(train_nums_tmp) - 1, 'classes.') i_start = int(np.sum(train_nums_tmp[0:i_class + 1])) i_end = i_start + train_nums_tmp[i_class + 1] G_class = G_app[i_start:i_end] gm_unnorm_class = gm_unnorm_trial[i_start:i_end,i_start:i_end] gm_class = normalize_gram_matrix(gm_unnorm_class.copy()) k_dis_list = [] for idx in range(len(G_class)): k_dis_list.append(compute_k_dis(idx, range(0, len(G_class)), [1 / len(G_class)] * len(G_class), gm_class, withterm3=False)) idx_k_dis_min = np.argmin(k_dis_list) best_graphs.append(G_class[idx_k_dis_min].copy()) # perform k-nn. print('\nperforming k-nn...') # compute dis_mat between medians. dataset = dataset_all.copy() dataset.load_graphs([g.copy() for g in best_graphs], targets=None) gm_app_unnorm, _ = _compute_gram_matrix_unnorm(dataset, kernel_options.copy()) # compute the entire Gram matrix. graph_kernel = _get_graph_kernel(dataset.copy(), kernel_options.copy()) kernels_to_best_graphs = [] for g in best_graphs: kernels_to_best_graph, _ = graph_kernel.compute(g, G_test, **kernel_options.copy()) kernels_to_best_graphs.append(kernels_to_best_graph) kernels_to_best_graphs = np.array(kernels_to_best_graphs) gm_all = np.concatenate((gm_app_unnorm, kernels_to_best_graphs), axis=1) gm_all = np.concatenate((gm_all, np.concatenate((kernels_to_best_graphs.T, gram_matrix_unnorm[test_index,:][:,test_index].copy()), axis=1)), axis=0) gm_all = normalize_gram_matrix(gm_all.copy()) dis_mat, _, _, _ = compute_distance_matrix(gm_all) N = len(best_graphs) d_app = dis_mat[range(N),:][:,range(N)].copy() d_test = np.zeros((N, len(test_index))) for i in range(N): for j in range(len(test_index)): d_test[i, j] = dis_mat[i, j] accuracies.append(knn_classification(d_app, d_test, y_app, y_test, n_neighbors, verbose=True, text=train_examples)) # write result detail. if save_results: f_detail = open(dir_save + fn_output_detail, 'a') print('writing results to files...') csv.writer(f_detail).writerow([ds_name, kernel_options['name'], train_examples, trial, knn_options['n_neighbors'], len(gm_all), knn_options['test_size'], accuracies[-1][0], accuracies[-1][1]]) f_detail.close() results = {} results['ave_perf_train'] = np.mean([i[0] for i in accuracies], axis=0) results['std_perf_train'] = np.std([i[0] for i in accuracies], axis=0, ddof=1) results['ave_perf_test'] = np.mean([i[1] for i in accuracies], axis=0) results['std_perf_test'] = np.std([i[1] for i in accuracies], axis=0, ddof=1) # write result summary for each letter. if save_results: f_summary = open(dir_save + fn_output_summary, 'a') csv.writer(f_summary).writerow([ds_name, kernel_options['name'], train_examples, knn_options['n_neighbors'], knn_options['test_size'], results['ave_perf_train'], results['ave_perf_test'], results['std_perf_train'], results['std_perf_test'], time_precompute_gm]) f_summary.close() def _kernel_knn_cv_trainset(dataset_all, ds_name, knn_options, kernel_options, gram_matrix_unnorm, time_precompute_gm, train_examples, save_results, dir_save, fn_output_detail, fn_output_summary): y_all = dataset_all.targets n_neighbors, n_splits, test_size = knn_options['n_neighbors'], knn_options['n_splits'], knn_options['test_size'] # compute distance matrix. gram_matrix = normalize_gram_matrix(gram_matrix_unnorm.copy()) dis_mat, _, _, _ = compute_distance_matrix(gram_matrix) # get shuffles. train_indices, test_indices, _, _ = _get_shuffles(y_all, n_splits, test_size) accuracies = [] for trial in range(len(train_indices)): print('\ntrial =', trial) train_index = train_indices[trial] test_index = test_indices[trial] y_app = [y_all[i] for i in train_index] y_test = [y_all[i] for i in test_index] N = len(train_index) d_app = dis_mat[train_index,:][:,train_index].copy() d_test = np.zeros((N, len(test_index))) for i in range(N): for j in range(len(test_index)): d_test[i, j] = dis_mat[train_index[i], test_index[j]] accuracies.append(knn_classification(d_app, d_test, y_app, y_test, n_neighbors, verbose=True, text=train_examples)) # write result detail. if save_results: print('writing results to files...') f_detail = open(dir_save + fn_output_detail, 'a') csv.writer(f_detail).writerow([ds_name, kernel_options['name'], train_examples, trial, knn_options['n_neighbors'], len(gram_matrix), knn_options['test_size'], accuracies[-1][0], accuracies[-1][1]]) f_detail.close() results = {} results['ave_perf_train'] = np.mean([i[0] for i in accuracies], axis=0) results['std_perf_train'] = np.std([i[0] for i in accuracies], axis=0, ddof=1) results['ave_perf_test'] = np.mean([i[1] for i in accuracies], axis=0) results['std_perf_test'] = np.std([i[1] for i in accuracies], axis=0, ddof=1) # write result summary for each letter. if save_results: f_summary = open(dir_save + fn_output_summary, 'a') csv.writer(f_summary).writerow([ds_name, kernel_options['name'], train_examples, knn_options['n_neighbors'], knn_options['test_size'], results['ave_perf_train'], results['ave_perf_test'], results['std_perf_train'], results['std_perf_test'], time_precompute_gm]) f_summary.close() def _get_shuffles(y_all, n_splits, test_size): rs = ShuffleSplit(n_splits=n_splits, test_size=test_size, random_state=0) train_indices = [[] for _ in range(n_splits)] test_indices = [[] for _ in range(n_splits)] idx_targets = get_same_item_indices(y_all) train_nums = [] keys = [] for key, item in idx_targets.items(): i = 0 for train_i, test_i in rs.split(item): # @todo: careful when parallel. train_indices[i] += [item[idx] for idx in train_i] test_indices[i] += [item[idx] for idx in test_i] i += 1 train_nums.append(len(train_i)) keys.append(key) return train_indices, test_indices, train_nums, keys def _generate_median_preimages(dataset, mpg_options, kernel_options, ged_options, mge_options): mpg = MedianPreimageGenerator() mpg.dataset = dataset.copy() mpg.set_options(**mpg_options.copy()) mpg.kernel_options = kernel_options.copy() mpg.ged_options = ged_options.copy() mpg.mge_options = mge_options.copy() mpg.run() return mpg.set_median, mpg.gen_median def _get_gram_matrix(load_gm, dir_save, ds_name, kernel_options, dataset_all): if load_gm == 'auto': gm_fname = dir_save + 'gram_matrix_unnorm.' + ds_name + '.' + kernel_options['name'] + '.gm.npz' gmfile_exist = os.path.isfile(os.path.abspath(gm_fname)) if gmfile_exist: gmfile = np.load(gm_fname, allow_pickle=True) # @todo: may not be safe. gram_matrix_unnorm = gmfile['gram_matrix_unnorm'] time_precompute_gm = float(gmfile['run_time']) else: gram_matrix_unnorm, time_precompute_gm = _compute_gram_matrix_unnorm(dataset_all, kernel_options) np.savez(dir_save + 'gram_matrix_unnorm.' + ds_name + '.' + kernel_options['name'] + '.gm', gram_matrix_unnorm=gram_matrix_unnorm, run_time=time_precompute_gm) elif not load_gm: gram_matrix_unnorm, time_precompute_gm = _compute_gram_matrix_unnorm(dataset_all, kernel_options) np.savez(dir_save + 'gram_matrix_unnorm.' + ds_name + '.' + kernel_options['name'] + '.gm', gram_matrix_unnorm=gram_matrix_unnorm, run_time=time_precompute_gm) else: gm_fname = dir_save + 'gram_matrix_unnorm.' + ds_name + '.' + kernel_options['name'] + '.gm.npz' gmfile = np.load(gm_fname, allow_pickle=True) gram_matrix_unnorm = gmfile['gram_matrix_unnorm'] time_precompute_gm = float(gmfile['run_time']) return gram_matrix_unnorm, time_precompute_gm def _get_graph_kernel(dataset, kernel_options): from gklearn.utils.utils import get_graph_kernel_by_name graph_kernel = get_graph_kernel_by_name(kernel_options['name'], node_labels=dataset.node_labels, edge_labels=dataset.edge_labels, node_attrs=dataset.node_attrs, edge_attrs=dataset.edge_attrs, ds_infos=dataset.get_dataset_infos(keys=['directed']), kernel_options=kernel_options) return graph_kernel def _compute_gram_matrix_unnorm(dataset, kernel_options): from gklearn.utils.utils import get_graph_kernel_by_name graph_kernel = get_graph_kernel_by_name(kernel_options['name'], node_labels=dataset.node_labels, edge_labels=dataset.edge_labels, node_attrs=dataset.node_attrs, edge_attrs=dataset.edge_attrs, ds_infos=dataset.get_dataset_infos(keys=['directed']), kernel_options=kernel_options) gram_matrix, run_time = graph_kernel.compute(dataset.graphs, **kernel_options) gram_matrix_unnorm = graph_kernel.gram_matrix_unnorm return gram_matrix_unnorm, run_time def _init_output_file_knn(ds_name, gkernel, fit_method, dir_output): if not os.path.exists(dir_output): os.makedirs(dir_output) fn_output_detail = 'results_detail_knn.' + ds_name + '.' + gkernel + '.csv' f_detail = open(dir_output + fn_output_detail, 'a') csv.writer(f_detail).writerow(['dataset', 'graph kernel', 'train examples', 'trial', 'num neighbors', 'num graphs', 'test size', 'perf train', 'perf test']) f_detail.close() fn_output_summary = 'results_summary_knn.' + ds_name + '.' + gkernel + '.csv' f_summary = open(dir_output + fn_output_summary, 'a') csv.writer(f_summary).writerow(['dataset', 'graph kernel', 'train examples', 'num neighbors', 'test size', 'ave perf train', 'ave perf test', 'std perf train', 'std perf test', 'time precompute gm']) f_summary.close() return fn_output_detail, fn_output_summary