import numpy as np from scipy.optimize import linear_sum_assignment class BasicCostFunction: def __init__(self, cns, cni, ces, cei): self.cns_ = cns self.cni_ = self.cnd_ = cni self.ces_ = ces self.cei_ = self.ced_ = cei def cns(self, u, v, G1, G2): return (G1.node[u]['label'] != G2.node[v]['label'])*self.cns_ def cnd(self, u, G1): return self.cnd_ def cni(self, v, G2): return self.cni_ def ces(self, e1, e2, G1, G2): """tester avec des attributs autres que symboliques en testant l'operateur __eq__""" return (e1[2]['label'] != e2[2]['label'])*self.ces_ def ced(self, e1, G1): return self.ced_ def cei(self, e2, G2): return self.cei_ class RiesenCostFunction(BasicCostFunction): def __init__(self, cf): BasicCostFunction.__init__(self, cf.cns_, cf.cni_, cf.ces_, cf.cei_) def cns(self, u, v, G1, G2): """ u et v sont des id de noeuds """ n = len(G1[u]) m = len(G2[v]) sub_C = np.ones([n+m, n+m]) * np.inf sub_C[n:, m:] = 0 i = 0 l_nbr_u = G1[u] l_nbr_v = G2[v] for nbr_u in l_nbr_u: j = 0 e1 = [u, nbr_u, G1[u][nbr_u]] for nbr_v in G2[v]: e2 = [v, nbr_v, G2[v][nbr_v]] sub_C[i, j] = self.ces(e1, e2, G1, G2) j += 1 i += 1 i = 0 for nbr_u in l_nbr_u: sub_C[i, m+i] = self.ced([u, nbr_u, G1[u][nbr_u]], G1) i += 1 j = 0 for nbr_v in l_nbr_v: sub_C[n+j, j] = self.cei([v, nbr_v, G2[v][nbr_v]], G2) j += 1 row_ind, col_ind = linear_sum_assignment(sub_C) cost = np.sum(sub_C[row_ind, col_ind]) return BasicCostFunction.cns(self, u, v, G1, G2) + cost def cnd(self, u, G1): cost = 0 for nbr in G1[u]: cost += BasicCostFunction.ced(self,[u,nbr,G1[u][nbr]],G1) return BasicCostFunction.cnd(self,u,G1) + cost def cni(self, v, G2): cost = 0 for nbr in G2[v]: cost += BasicCostFunction.cei(self, [v,nbr,G2[v][nbr]], G2) return BasicCostFunction.cni(self, v, G2) + cost class NeighboorhoodCostFunction(BasicCostFunction): def __init__(self, cf): BasicCostFunction.__init__(self, cf.cns_, cf.cni_, cf.ces_, cf.cei_) def cns(self, u, v, G1, G2): """ u et v sont des id de noeuds """ n = len(G1[u]) m = len(G2[v]) sub_C = np.ones([n+m, n+m]) * np.inf sub_C[n:, m:] = 0 i = 0 l_nbr_u = G1[u] l_nbr_v = G2[v] for nbr_u in l_nbr_u: j = 0 e1 = [u, nbr_u, G1[u][nbr_u]] for nbr_v in G2[v]: e2 = [v, nbr_v, G2[v][nbr_v]] sub_C[i, j] = self.ces(e1, e2, G1, G2) sub_C[i, j] += BasicCostFunction.cns(self, nbr_u, nbr_v, G1, G2) j += 1 i += 1 i = 0 for nbr_u in l_nbr_u: sub_C[i, m+i] = self.ced([u, nbr_u, G1[u][nbr_u]], G1) sub_C[i, m+i] += BasicCostFunction.cnd(self, nbr_u, G1) i += 1 j = 0 for nbr_v in l_nbr_v: sub_C[n+j, j] = self.cei([v, nbr_v, G2[v][nbr_v]], G2) sub_C[n+j, j] += BasicCostFunction.cni(self, nbr_v, G2) j += 1 row_ind, col_ind = linear_sum_assignment(sub_C) cost = np.sum(sub_C[row_ind, col_ind]) return BasicCostFunction.cns(self, u, v, G1, G2) + cost def cnd(self, u, G1): cost = 0 for nbr in G1[u]: cost += BasicCostFunction.ced(self, [u, nbr, G1[u][nbr]], G1) return BasicCostFunction.cnd(self, u, G1) + cost def cni(self, v, G2): cost = 0 for nbr in G2[v]: cost += BasicCostFunction.cei(self, [v, nbr, G2[v][nbr]], G2) return BasicCostFunction.cni(self, v, G2) + cost