#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri May 29 14:29:52 2020 @author: ljia """ import numpy as np import time import sys from tqdm import tqdm import multiprocessing import networkx as nx from multiprocessing import Pool from functools import partial from gklearn.preimage import PreimageGenerator from gklearn.preimage.utils import compute_k_dis from gklearn.utils import Timer from gklearn.utils.utils import get_graph_kernel_by_name # from gklearn.utils.dataset import Dataset class RandomPreimageGenerator(PreimageGenerator): def __init__(self, dataset=None): PreimageGenerator.__init__(self, dataset=dataset) # arguments to set. self._k = 5 # number of nearest neighbors of phi in D_N. self._r_max = 10 # maximum number of iterations. self._l = 500 # numbers of graphs generated for each graph in D_k U {g_i_hat}. self._alphas = None # weights of linear combinations of points in kernel space. self._parallel = True self._n_jobs = multiprocessing.cpu_count() self._time_limit_in_sec = 0 self._max_itrs = 20 # values to compute. self._runtime_generate_preimage = None self._runtime_total = None self._preimage = None self._best_from_dataset = None self._k_dis_preimage = None self._k_dis_dataset = None self._itrs = 0 self._converged = False # @todo self._num_updates = 0 # values that can be set or to be computed. self._gram_matrix_unnorm = None self._runtime_precompute_gm = None def set_options(self, **kwargs): self._kernel_options = kwargs.get('kernel_options', {}) self._graph_kernel = kwargs.get('graph_kernel', None) self._verbose = kwargs.get('verbose', 2) self._k = kwargs.get('k', 5) self._r_max = kwargs.get('r_max', 10) self._l = kwargs.get('l', 500) self._alphas = kwargs.get('alphas', None) self._parallel = kwargs.get('parallel', True) self._n_jobs = kwargs.get('n_jobs', multiprocessing.cpu_count()) self._time_limit_in_sec = kwargs.get('time_limit_in_sec', 0) self._max_itrs = kwargs.get('max_itrs', 20) self._gram_matrix_unnorm = kwargs.get('gram_matrix_unnorm', None) self._runtime_precompute_gm = kwargs.get('runtime_precompute_gm', None) def run(self): self._graph_kernel = get_graph_kernel_by_name(self._kernel_options['name'], node_labels=self._dataset.node_labels, edge_labels=self._dataset.edge_labels, node_attrs=self._dataset.node_attrs, edge_attrs=self._dataset.edge_attrs, ds_infos=self._dataset.get_dataset_infos(keys=['directed']), kernel_options=self._kernel_options) # record start time. start = time.time() # 1. precompute gram matrix. if self._gram_matrix_unnorm is None: gram_matrix, run_time = self._graph_kernel.compute(self._dataset.graphs, **self._kernel_options) self._gram_matrix_unnorm = self._graph_kernel.gram_matrix_unnorm end_precompute_gm = time.time() self._runtime_precompute_gm = end_precompute_gm - start else: if self._runtime_precompute_gm is None: raise Exception('Parameter "runtime_precompute_gm" must be given when using pre-computed Gram matrix.') self._graph_kernel.gram_matrix_unnorm = self._gram_matrix_unnorm if self._kernel_options['normalize']: self._graph_kernel.gram_matrix = self._graph_kernel.normalize_gm(np.copy(self._gram_matrix_unnorm)) else: self._graph_kernel.gram_matrix = np.copy(self._gram_matrix_unnorm) end_precompute_gm = time.time() start -= self._runtime_precompute_gm # 2. compute k nearest neighbors of phi in D_N. if self._verbose >= 2: print('\nstart computing k nearest neighbors of phi in D_N...\n') D_N = self._dataset.graphs if self._alphas is None: self._alphas = [1 / len(D_N)] * len(D_N) k_dis_list = [] # distance between g_star and each graph. term3 = 0 for i1, a1 in enumerate(self._alphas): for i2, a2 in enumerate(self._alphas): term3 += a1 * a2 * self._graph_kernel.gram_matrix[i1, i2] for idx in range(len(D_N)): k_dis_list.append(compute_k_dis(idx, range(0, len(D_N)), self._alphas, self._graph_kernel.gram_matrix, term3=term3, withterm3=True)) # sort. sort_idx = np.argsort(k_dis_list) dis_gs = [k_dis_list[idis] for idis in sort_idx[0:self._k]] # the k shortest distances. nb_best = len(np.argwhere(dis_gs == dis_gs[0]).flatten().tolist()) g0hat_list = [D_N[idx].copy() for idx in sort_idx[0:nb_best]] # the nearest neighbors of phi in D_N self._best_from_dataset = g0hat_list[0] # get the first best graph if there are muitlple. self._k_dis_dataset = dis_gs[0] if self._k_dis_dataset == 0: # get the exact pre-image. end_generate_preimage = time.time() self._runtime_generate_preimage = end_generate_preimage - end_precompute_gm self._runtime_total = end_generate_preimage - start self._preimage = self._best_from_dataset.copy() self._k_dis_preimage = self._k_dis_dataset if self._verbose: print() print('=============================================================================') print('The exact pre-image is found from the input dataset.') print('-----------------------------------------------------------------------------') print('Distance in kernel space for the best graph from dataset and for preimage:', self._k_dis_dataset) print('Time to pre-compute Gram matrix:', self._runtime_precompute_gm) print('Time to generate pre-images:', self._runtime_generate_preimage) print('Total time:', self._runtime_total) print('=============================================================================') print() return dhat = dis_gs[0] # the nearest distance Gk = [D_N[ig].copy() for ig in sort_idx[0:self._k]] # the k nearest neighbors Gs_nearest = [nx.convert_node_labels_to_integers(g) for g in Gk] # [g.copy() for g in Gk] # 3. start iterations. if self._verbose >= 2: print('starting iterations...') gihat_list = [] dihat_list = [] r = 0 dis_of_each_itr = [dhat] if self._parallel: self._kernel_options['parallel'] = None self._itrs = 0 self._num_updates = 0 timer = Timer(self._time_limit_in_sec) while not self._termination_criterion_met(timer, self._itrs, r): print('\n- r =', r) found = False dis_bests = dis_gs + dihat_list # compute numbers of edges to be inserted/deleted. # @todo what if the log is negetive? how to choose alpha (scalar)? fdgs_list = np.array(dis_bests) if np.min(fdgs_list) < 1: # in case the log is negetive. fdgs_list /= np.min(fdgs_list) fdgs_list = [int(item) for item in np.ceil(np.log(fdgs_list))] if np.min(fdgs_list) < 1: # in case the log is smaller than 1. fdgs_list = np.array(fdgs_list) + 1 # expand the number of modifications to increase the possiblity. nb_vpairs_list = [nx.number_of_nodes(g) * (nx.number_of_nodes(g) - 1) for g in (Gs_nearest + gihat_list)] nb_vpairs_min = np.min(nb_vpairs_list) idx_fdgs_max = np.argmax(fdgs_list) fdgs_max_old = fdgs_list[idx_fdgs_max] fdgs_max = fdgs_max_old nb_modif = 1 for idx, nb in enumerate(range(nb_vpairs_min, nb_vpairs_min - fdgs_max, -1)): nb_modif *= nb / (fdgs_max - idx) while fdgs_max < nb_vpairs_min and nb_modif < self._l: fdgs_max += 1 nb_modif *= (nb_vpairs_min - fdgs_max + 1) / fdgs_max nb_increase = int(fdgs_max - fdgs_max_old) if nb_increase > 0: fdgs_list += 1 for ig, gs in enumerate(Gs_nearest + gihat_list): if self._verbose >= 2: print('-- computing', ig + 1, 'graphs out of', len(Gs_nearest) + len(gihat_list)) gnew, dhat, found = self._generate_l_graphs(gs, fdgs_list[ig], dhat, ig, found, term3) if found: r = 0 gihat_list = [gnew] dihat_list = [dhat] else: r += 1 dis_of_each_itr.append(dhat) self._itrs += 1 if self._verbose >= 2: print('Total number of iterations is', self._itrs, '.') print('The preimage is updated', self._num_updates, 'times.') print('The shortest distances for previous iterations are', dis_of_each_itr, '.') # get results and print. end_generate_preimage = time.time() self._runtime_generate_preimage = end_generate_preimage - end_precompute_gm self._runtime_total = end_generate_preimage - start self._preimage = (g0hat_list[0] if len(gihat_list) == 0 else gihat_list[0]) self._k_dis_preimage = dhat if self._verbose: print() print('=============================================================================') print('Finished generation of preimages.') print('-----------------------------------------------------------------------------') print('Distance in kernel space for the best graph from dataset:', self._k_dis_dataset) print('Distance in kernel space for the preimage:', self._k_dis_preimage) print('Total number of iterations for optimizing:', self._itrs) print('Total number of updating preimage:', self._num_updates) print('Time to pre-compute Gram matrix:', self._runtime_precompute_gm) print('Time to generate pre-images:', self._runtime_generate_preimage) print('Total time:', self._runtime_total) print('=============================================================================') print() def _generate_l_graphs(self, g_init, fdgs, dhat, ig, found, term3): if self._parallel: gnew, dhat, found = self._generate_l_graphs_parallel(g_init, fdgs, dhat, ig, found, term3) else: gnew, dhat, found = self._generate_l_graphs_series(g_init, fdgs, dhat, ig, found, term3) return gnew, dhat, found def _generate_l_graphs_series(self, g_init, fdgs, dhat, ig, found, term3): gnew = None updated = False for trial in range(0, self._l): if self._verbose >= 2: print('---', trial + 1, 'trial out of', self._l) gtemp, dnew = self._do_trial(g_init, fdgs, term3, trial) # get the better graph preimage. if dnew <= dhat: # @todo: the new distance is smaller or also equal? if dhat - dnew > 1e-6: if self._verbose >= 2: print('trial =', str(trial)) print('\nI am smaller!') print('index (as in D_k U {gihat} =', str(ig)) print('distance:', dhat, '->', dnew) updated = True else: if self._verbose >= 2: print('I am equal!') dhat = dnew gnew = gtemp.copy() found = True # found better or equally good graph. if updated: self._num_updates += 1 return gnew, dhat, found def _generate_l_graphs_parallel(self, g_init, fdgs, dhat, ig, found, term3): gnew = None len_itr = self._l gnew_list = [None] * len_itr dnew_list = [None] * len_itr itr = range(0, len_itr) n_jobs = multiprocessing.cpu_count() if len_itr < 100 * n_jobs: chunksize = int(len_itr / n_jobs) + 1 else: chunksize = 100 do_fun = partial(self._generate_graph_parallel, g_init, fdgs, term3) pool = Pool(processes=n_jobs) if self._verbose >= 2: iterator = tqdm(pool.imap_unordered(do_fun, itr, chunksize), desc='Generating l graphs', file=sys.stdout) else: iterator = pool.imap_unordered(do_fun, itr, chunksize) for idx, gnew, dnew in iterator: gnew_list[idx] = gnew dnew_list[idx] = dnew pool.close() pool.join() # check if get the better graph preimage. idx_min = np.argmin(dnew_list) dnew = dnew_list[idx_min] if dnew <= dhat: # @todo: the new distance is smaller or also equal? if dhat - dnew > 1e-6: # @todo: use a proportion and watch out for 0. if self._verbose >= 2: print('I am smaller!') print('index (as in D_k U {gihat}) =', str(ig)) print('distance:', dhat, '->', dnew, '\n') self._num_updates += 1 else: if self._verbose >= 2: print('I am equal!') dhat = dnew gnew = gnew_list[idx_min] found = True # found better graph. return gnew, dhat, found def _generate_graph_parallel(self, g_init, fdgs, term3, itr): trial = itr gtemp, dnew = self._do_trial(g_init, fdgs, term3, trial) return trial, gtemp, dnew def _do_trial(self, g_init, fdgs, term3, trial): # add and delete edges. gtemp = g_init.copy() seed = (trial + int(time.time())) % (2 ** 32 - 1) rdm_state = np.random.RandomState(seed=seed) # which edges to change. # @todo: should we use just half of the adjacency matrix for undirected graphs? nb_vpairs = nx.number_of_nodes(g_init) * (nx.number_of_nodes(g_init) - 1) # @todo: what if fdgs is bigger than nb_vpairs? idx_change = rdm_state.randint(0, high=nb_vpairs, size=(fdgs if fdgs < nb_vpairs else nb_vpairs)) # print(idx_change) for item in idx_change: node1 = int(item / (nx.number_of_nodes(g_init) - 1)) node2 = (item - node1 * (nx.number_of_nodes(g_init) - 1)) if node2 >= node1: # skip the self pair. node2 += 1 # @todo: is the randomness correct? if not gtemp.has_edge(node1, node2): gtemp.add_edge(node1, node2) else: gtemp.remove_edge(node1, node2) # compute new distances. kernels_to_gtmp, _ = self._graph_kernel.compute(gtemp, self._dataset.graphs, **self._kernel_options) kernel_gtmp, _ = self._graph_kernel.compute(gtemp, gtemp, **self._kernel_options) if self._kernel_options['normalize']: kernels_to_gtmp = [kernels_to_gtmp[i] / np.sqrt(self._gram_matrix_unnorm[i, i] * kernel_gtmp) for i in range(len(kernels_to_gtmp))] # normalize kernel_gtmp = 1 # @todo: not correct kernel value gram_with_gtmp = np.concatenate((np.array([kernels_to_gtmp]), np.copy(self._graph_kernel.gram_matrix)), axis=0) gram_with_gtmp = np.concatenate((np.array([[kernel_gtmp] + kernels_to_gtmp]).T, gram_with_gtmp), axis=1) dnew = compute_k_dis(0, range(1, 1 + len(self._dataset.graphs)), self._alphas, gram_with_gtmp, term3=term3, withterm3=True) return gtemp, dnew def get_results(self): results = {} results['runtime_precompute_gm'] = self._runtime_precompute_gm results['runtime_generate_preimage'] = self._runtime_generate_preimage results['runtime_total'] = self._runtime_total results['k_dis_dataset'] = self._k_dis_dataset results['k_dis_preimage'] = self._k_dis_preimage results['itrs'] = self._itrs results['num_updates'] = self._num_updates return results def _termination_criterion_met(self, timer, itr, r): if timer.expired() or (itr >= self._max_itrs if self._max_itrs >= 0 else False): # if self._state == AlgorithmState.TERMINATED: # self._state = AlgorithmState.INITIALIZED return True return (r >= self._r_max if self._r_max >= 0 else False) # return converged or (itrs_without_update > self._max_itrs_without_update if self._max_itrs_without_update >= 0 else False) @property def preimage(self): return self._preimage @property def best_from_dataset(self): return self._best_from_dataset @property def gram_matrix_unnorm(self): return self._gram_matrix_unnorm @gram_matrix_unnorm.setter def gram_matrix_unnorm(self, value): self._gram_matrix_unnorm = value