#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Sep 22 11:33:28 2020 @author: ljia """ import multiprocessing Graph_Kernel_List = ['PathUpToH', 'WLSubtree', 'SylvesterEquation', 'Marginalized', 'ShortestPath', 'Treelet', 'ConjugateGradient', 'FixedPoint', 'SpectralDecomposition', 'StructuralSP', 'CommonWalk'] # Graph_Kernel_List = ['CommonWalk', 'Marginalized', 'SylvesterEquation', 'ConjugateGradient', 'FixedPoint', 'SpectralDecomposition', 'ShortestPath', 'StructuralSP', 'PathUpToH', 'Treelet', 'WLSubtree'] Graph_Kernel_List_VSym = ['PathUpToH', 'WLSubtree', 'Marginalized', 'ShortestPath', 'Treelet', 'ConjugateGradient', 'FixedPoint', 'StructuralSP', 'CommonWalk'] Graph_Kernel_List_ESym = ['PathUpToH', 'Marginalized', 'Treelet', 'ConjugateGradient', 'FixedPoint', 'StructuralSP', 'CommonWalk'] Graph_Kernel_List_VCon = ['ShortestPath', 'ConjugateGradient', 'FixedPoint', 'StructuralSP'] Graph_Kernel_List_ECon = ['ConjugateGradient', 'FixedPoint', 'StructuralSP'] Dataset_List = ['Alkane', 'Acyclic', 'MAO', 'PAH', 'MUTAG', 'Letter-med', 'ENZYMES', 'AIDS', 'NCI1', 'NCI109', 'DD'] def compute_graph_kernel(graphs, kernel_name, n_jobs=multiprocessing.cpu_count(), chunksize=None): if kernel_name == 'CommonWalk': from gklearn.kernels.commonWalkKernel import commonwalkkernel estimator = commonwalkkernel params = {'compute_method': 'geo', 'weight': 0.1} elif kernel_name == 'Marginalized': from gklearn.kernels.marginalizedKernel import marginalizedkernel estimator = marginalizedkernel params = {'p_quit': 0.5, 'n_iteration': 5, 'remove_totters': False} elif kernel_name == 'SylvesterEquation': from gklearn.kernels.randomWalkKernel import randomwalkkernel estimator = randomwalkkernel params = {'compute_method': 'sylvester', 'weight': 0.1} elif kernel_name == 'ConjugateGradient': from gklearn.kernels.randomWalkKernel import randomwalkkernel estimator = randomwalkkernel from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct import functools mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) sub_kernel = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel} params = {'compute_method': 'conjugate', 'weight': 0.1, 'node_kernels': sub_kernel, 'edge_kernels': sub_kernel} elif kernel_name == 'FixedPoint': from gklearn.kernels.randomWalkKernel import randomwalkkernel estimator = randomwalkkernel from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct import functools mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) sub_kernel = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel} params = {'compute_method': 'fp', 'weight': 1e-3, 'node_kernels': sub_kernel, 'edge_kernels': sub_kernel} elif kernel_name == 'SpectralDecomposition': from gklearn.kernels.randomWalkKernel import randomwalkkernel estimator = randomwalkkernel params = {'compute_method': 'spectral', 'sub_kernel': 'geo', 'weight': 0.1} elif kernel_name == 'ShortestPath': from gklearn.kernels.spKernel import spkernel estimator = spkernel from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct import functools mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) sub_kernel = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel} params = {'node_kernels': sub_kernel} elif kernel_name == 'StructuralSP': from gklearn.kernels.structuralspKernel import structuralspkernel estimator = structuralspkernel from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct import functools mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) sub_kernel = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel} params = {'node_kernels': sub_kernel, 'edge_kernels': sub_kernel} elif kernel_name == 'PathUpToH': from gklearn.kernels.untilHPathKernel import untilhpathkernel estimator = untilhpathkernel params = {'depth': 5, 'k_func': 'MinMax', 'compute_method': 'trie'} elif kernel_name == 'Treelet': from gklearn.kernels.treeletKernel import treeletkernel estimator = treeletkernel from gklearn.utils.kernels import polynomialkernel import functools sub_kernel = functools.partial(polynomialkernel, d=4, c=1e+8) params = {'sub_kernel': sub_kernel} elif kernel_name == 'WLSubtree': from gklearn.kernels.weisfeilerLehmanKernel import weisfeilerlehmankernel estimator = weisfeilerlehmankernel params = {'base_kernel': 'subtree', 'height': 5} # params['parallel'] = None params['n_jobs'] = n_jobs params['chunksize'] = chunksize params['verbose'] = True results = estimator(graphs, **params) return results[0], results[1]