#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Aug 20 16:12:45 2020 @author: ljia @references: [1] S Vichy N Vishwanathan, Nicol N Schraudolph, Risi Kondor, and Karsten M Borgwardt. Graph kernels. Journal of Machine Learning Research, 11(Apr):1201–1242, 2010. """ import sys from tqdm import tqdm import numpy as np import networkx as nx from scipy.sparse import kron from gklearn.utils.parallel import parallel_gm, parallel_me from gklearn.kernels import RandomWalkMeta class SpectralDecomposition(RandomWalkMeta): def __init__(self, **kwargs): super().__init__(**kwargs) self._sub_kernel = kwargs.get('sub_kernel', None) def _compute_gm_series(self): self._check_edge_weight(self._graphs, self._verbose) self._check_graphs(self._graphs) if self._verbose >= 2: import warnings warnings.warn('All labels are ignored. Only works for undirected graphs.') # compute Gram matrix. gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) if self._q is None: # precompute the spectral decomposition of each graph. P_list = [] D_list = [] if self._verbose >= 2: iterator = tqdm(self._graphs, desc='spectral decompose', file=sys.stdout) else: iterator = self._graphs for G in iterator: # don't normalize adjacency matrices if q is a uniform vector. Note # A actually is the transpose of the adjacency matrix. A = nx.adjacency_matrix(G, self._edge_weight).todense().transpose() ew, ev = np.linalg.eig(A) D_list.append(ew) P_list.append(ev) # P_inv_list = [p.T for p in P_list] # @todo: also works for directed graphs? if self._p is None: # p is uniform distribution as default. q_T_list = [np.full((1, nx.number_of_nodes(G)), 1 / nx.number_of_nodes(G)) for G in self._graphs] # q_T_list = [q.T for q in q_list] from itertools import combinations_with_replacement itr = combinations_with_replacement(range(0, len(self._graphs)), 2) if self._verbose >= 2: iterator = tqdm(itr, desc='Computing kernels', file=sys.stdout) else: iterator = itr for i, j in iterator: kernel = self._kernel_do(q_T_list[i], q_T_list[j], P_list[i], P_list[j], D_list[i], D_list[j], self._weight, self._sub_kernel) gram_matrix[i][j] = kernel gram_matrix[j][i] = kernel else: # @todo pass else: # @todo pass return gram_matrix def _compute_gm_imap_unordered(self): self._check_edge_weight(self._graphs, self._verbose) self._check_graphs(self._graphs) if self._verbose >= 2: import warnings warnings.warn('All labels are ignored. Only works for undirected graphs.') # compute Gram matrix. gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) if self._q is None: # precompute the spectral decomposition of each graph. P_list = [] D_list = [] if self._verbose >= 2: iterator = tqdm(self._graphs, desc='spectral decompose', file=sys.stdout) else: iterator = self._graphs for G in iterator: # don't normalize adjacency matrices if q is a uniform vector. Note # A actually is the transpose of the adjacency matrix. A = nx.adjacency_matrix(G, self._edge_weight).todense().transpose() ew, ev = np.linalg.eig(A) D_list.append(ew) P_list.append(ev) # @todo: parallel? if self._p is None: # p is uniform distribution as default. q_T_list = [np.full((1, nx.number_of_nodes(G)), 1 / nx.number_of_nodes(G)) for G in self._graphs] # @todo: parallel? def init_worker(q_T_list_toshare, P_list_toshare, D_list_toshare): global G_q_T_list, G_P_list, G_D_list G_q_T_list = q_T_list_toshare G_P_list = P_list_toshare G_D_list = D_list_toshare do_fun = self._wrapper_kernel_do parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=init_worker, glbv=(q_T_list, P_list, D_list), n_jobs=self._n_jobs, verbose=self._verbose) else: # @todo pass else: # @todo pass return gram_matrix def _compute_kernel_list_series(self, g1, g_list): self._check_edge_weight(g_list + [g1], self._verbose) self._check_graphs(g_list + [g1]) if self._verbose >= 2: import warnings warnings.warn('All labels are ignored. Only works for undirected graphs.') # compute kernel list. kernel_list = [None] * len(g_list) if self._q is None: # precompute the spectral decomposition of each graph. A1 = nx.adjacency_matrix(g1, self._edge_weight).todense().transpose() D1, P1 = np.linalg.eig(A1) P_list = [] D_list = [] if self._verbose >= 2: iterator = tqdm(g_list, desc='spectral decompose', file=sys.stdout) else: iterator = g_list for G in iterator: # don't normalize adjacency matrices if q is a uniform vector. Note # A actually is the transpose of the adjacency matrix. A = nx.adjacency_matrix(G, self._edge_weight).todense().transpose() ew, ev = np.linalg.eig(A) D_list.append(ew) P_list.append(ev) if self._p is None: # p is uniform distribution as default. q_T1 = 1 / nx.number_of_nodes(g1) q_T_list = [np.full((1, nx.number_of_nodes(G)), 1 / nx.number_of_nodes(G)) for G in g_list] if self._verbose >= 2: iterator = tqdm(range(len(g_list)), desc='Computing kernels', file=sys.stdout) else: iterator = range(len(g_list)) for i in iterator: kernel = self._kernel_do(q_T1, q_T_list[i], P1, P_list[i], D1, D_list[i], self._weight, self._sub_kernel) kernel_list[i] = kernel else: # @todo pass else: # @todo pass return kernel_list def _compute_kernel_list_imap_unordered(self, g1, g_list): self._check_edge_weight(g_list + [g1], self._verbose) self._check_graphs(g_list + [g1]) if self._verbose >= 2: import warnings warnings.warn('All labels are ignored. Only works for undirected graphs.') # compute kernel list. kernel_list = [None] * len(g_list) if self._q is None: # precompute the spectral decomposition of each graph. A1 = nx.adjacency_matrix(g1, self._edge_weight).todense().transpose() D1, P1 = np.linalg.eig(A1) P_list = [] D_list = [] if self._verbose >= 2: iterator = tqdm(g_list, desc='spectral decompose', file=sys.stdout) else: iterator = g_list for G in iterator: # don't normalize adjacency matrices if q is a uniform vector. Note # A actually is the transpose of the adjacency matrix. A = nx.adjacency_matrix(G, self._edge_weight).todense().transpose() ew, ev = np.linalg.eig(A) D_list.append(ew) P_list.append(ev) # @todo: parallel? if self._p is None: # p is uniform distribution as default. q_T1 = 1 / nx.number_of_nodes(g1) q_T_list = [np.full((1, nx.number_of_nodes(G)), 1 / nx.number_of_nodes(G)) for G in g_list] # @todo: parallel? def init_worker(q_T1_toshare, P1_toshare, D1_toshare, q_T_list_toshare, P_list_toshare, D_list_toshare): global G_q_T1, G_P1, G_D1, G_q_T_list, G_P_list, G_D_list G_q_T1 = q_T1_toshare G_P1 = P1_toshare G_D1 = D1_toshare G_q_T_list = q_T_list_toshare G_P_list = P_list_toshare G_D_list = D_list_toshare do_fun = self._wrapper_kernel_list_do def func_assign(result, var_to_assign): var_to_assign[result[0]] = result[1] itr = range(len(g_list)) len_itr = len(g_list) parallel_me(do_fun, func_assign, kernel_list, itr, len_itr=len_itr, init_worker=init_worker, glbv=(q_T1, P1, D1, q_T_list, P_list, D_list), method='imap_unordered', n_jobs=self._n_jobs, itr_desc='Computing kernels', verbose=self._verbose) else: # @todo pass else: # @todo pass return kernel_list def _wrapper_kernel_list_do(self, itr): return itr, self._kernel_do(G_q_T1, G_q_T_list[itr], G_P1, G_P_list[itr], G_D1, G_D_list[itr], self._weight, self._sub_kernel) def _compute_single_kernel_series(self, g1, g2): self._check_edge_weight([g1] + [g2], self._verbose) self._check_graphs([g1] + [g2]) if self._verbose >= 2: import warnings warnings.warn('All labels are ignored. Only works for undirected graphs.') if self._q is None: # precompute the spectral decomposition of each graph. A1 = nx.adjacency_matrix(g1, self._edge_weight).todense().transpose() D1, P1 = np.linalg.eig(A1) A2 = nx.adjacency_matrix(g2, self._edge_weight).todense().transpose() D2, P2 = np.linalg.eig(A2) if self._p is None: # p is uniform distribution as default. q_T1 = 1 / nx.number_of_nodes(g1) q_T2 = 1 / nx.number_of_nodes(g2) kernel = self._kernel_do(q_T1, q_T2, P1, P2, D1, D2, self._weight, self._sub_kernel) else: # @todo pass else: # @todo pass return kernel def _kernel_do(self, q_T1, q_T2, P1, P2, D1, D2, weight, sub_kernel): # use uniform distribution if there is no prior knowledge. kl = kron(np.dot(q_T1, P1), np.dot(q_T2, P2)).todense() # @todo: this is not needed when p = q (kr = kl.T) for undirected graphs. # kr = kron(np.dot(P_inv_list[i], q_list[i]), np.dot(P_inv_list[j], q_list[j])).todense() if sub_kernel == 'exp': D_diag = np.array([d1 * d2 for d1 in D1 for d2 in D2]) kmiddle = np.diag(np.exp(weight * D_diag)) elif sub_kernel == 'geo': D_diag = np.array([d1 * d2 for d1 in D1 for d2 in D2]) kmiddle = np.diag(weight * D_diag) kmiddle = np.identity(len(kmiddle)) - weight * kmiddle kmiddle = np.linalg.inv(kmiddle) return np.dot(np.dot(kl, kmiddle), kl.T)[0, 0] def _wrapper_kernel_do(self, itr): i = itr[0] j = itr[1] return i, j, self._kernel_do(G_q_T_list[i], G_q_T_list[j], G_P_list[i], G_P_list[j], G_D_list[i], G_D_list[j], self._weight, self._sub_kernel)