|
- #!/usr/bin/env python3
- # -*- coding: utf-8 -*-
- """
- Created on Fri Dec 21 17:59:28 2018
-
- @author: ljia
- """
-
- import functools
- from libs import *
- import multiprocessing
-
- from gklearn.kernels.sp_sym import spkernel
- from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct
- #from gklearn.utils.model_selection_precomputed import trial_do
-
- dslist = [
- {'name': 'Letter-med', 'dataset': '../datasets/Letter-med/Letter-med_A.txt'},
- # node nsymb
- {'name': 'ENZYMES', 'dataset': '../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'},
- # node symb/nsymb
-
- # {'name': 'COIL-DEL', 'dataset': '../datasets/COIL-DEL/COIL-DEL_A.txt'}, # edge symb, node nsymb
- # # # {'name': 'BZR', 'dataset': '../datasets/BZR_txt/BZR_A_sparse.txt'}, # node symb/nsymb
- # # # {'name': 'COX2', 'dataset': '../datasets/COX2_txt/COX2_A_sparse.txt'}, # node symb/nsymb
- # {'name': 'Fingerprint', 'dataset': '../datasets/Fingerprint/Fingerprint_A.txt'},
- #
- # # {'name': 'DHFR', 'dataset': '../datasets/DHFR_txt/DHFR_A_sparse.txt'}, # node symb/nsymb
- # # {'name': 'SYNTHETIC', 'dataset': '../datasets/SYNTHETIC_txt/SYNTHETIC_A_sparse.txt'}, # node symb/nsymb
- # # {'name': 'MSRC9', 'dataset': '../datasets/MSRC_9_txt/MSRC_9_A.txt'}, # node symb
- # # {'name': 'MSRC21', 'dataset': '../datasets/MSRC_21_txt/MSRC_21_A.txt'}, # node symb
- # # {'name': 'FIRSTMM_DB', 'dataset': '../datasets/FIRSTMM_DB/FIRSTMM_DB_A.txt'}, # node symb/nsymb ,edge nsymb
-
- # # {'name': 'PROTEINS', 'dataset': '../datasets/PROTEINS_txt/PROTEINS_A_sparse.txt'}, # node symb/nsymb
- # # {'name': 'PROTEINS_full', 'dataset': '../datasets/PROTEINS_full_txt/PROTEINS_full_A_sparse.txt'}, # node symb/nsymb
- # # {'name': 'AIDS', 'dataset': '../datasets/AIDS/AIDS_A.txt'}, # node symb/nsymb, edge symb
- ]
- estimator = spkernel
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- param_grid_precomputed = {'node_kernels': [
- {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}]}
- param_grid = [{'C': np.logspace(-10, 10, num=41, base=10)},
- {'alpha': np.logspace(-10, 10, num=41, base=10)}]
-
- for ds in dslist:
- print()
- print(ds['name'])
- model_selection_for_precomputed_kernel(
- ds['dataset'],
- estimator,
- param_grid_precomputed,
- (param_grid[1] if ('task' in ds and ds['task']
- == 'regression') else param_grid[0]),
- (ds['task'] if 'task' in ds else 'classification'),
- NUM_TRIALS=30,
- datafile_y=(ds['dataset_y'] if 'dataset_y' in ds else None),
- extra_params=(ds['extra_params'] if 'extra_params' in ds else None),
- ds_name=ds['name'],
- n_jobs=multiprocessing.cpu_count(),
- read_gm_from_file=False)
- print()
|