|
- import libsvm.*;
- import java.io.*;
- import java.util.*;
-
- class svm_predict {
- private static svm_print_interface svm_print_null = new svm_print_interface()
- {
- public void print(String s) {}
- };
-
- private static svm_print_interface svm_print_stdout = new svm_print_interface()
- {
- public void print(String s)
- {
- System.out.print(s);
- }
- };
-
- private static svm_print_interface svm_print_string = svm_print_stdout;
-
- static void info(String s)
- {
- svm_print_string.print(s);
- }
-
- private static double atof(String s)
- {
- return Double.valueOf(s).doubleValue();
- }
-
- private static int atoi(String s)
- {
- return Integer.parseInt(s);
- }
-
- private static void predict(BufferedReader input, DataOutputStream output, svm_model model, int predict_probability) throws IOException
- {
- int correct = 0;
- int total = 0;
- double error = 0;
- double sumv = 0, sumy = 0, sumvv = 0, sumyy = 0, sumvy = 0;
-
- int svm_type=svm.svm_get_svm_type(model);
- int nr_class=svm.svm_get_nr_class(model);
- double[] prob_estimates=null;
-
- if(predict_probability == 1)
- {
- if(svm_type == svm_parameter.EPSILON_SVR ||
- svm_type == svm_parameter.NU_SVR)
- {
- svm_predict.info("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma="+svm.svm_get_svr_probability(model)+"\n");
- }
- else
- {
- int[] labels=new int[nr_class];
- svm.svm_get_labels(model,labels);
- prob_estimates = new double[nr_class];
- output.writeBytes("labels");
- for(int j=0;j<nr_class;j++)
- output.writeBytes(" "+labels[j]);
- output.writeBytes("\n");
- }
- }
- while(true)
- {
- String line = input.readLine();
- if(line == null) break;
-
- StringTokenizer st = new StringTokenizer(line," \t\n\r\f:");
-
- double target = atof(st.nextToken());
- int m = st.countTokens()/2;
- svm_node[] x = new svm_node[m];
- for(int j=0;j<m;j++)
- {
- x[j] = new svm_node();
- x[j].index = atoi(st.nextToken());
- x[j].value = atof(st.nextToken());
- }
-
- double v;
- if (predict_probability==1 && (svm_type==svm_parameter.C_SVC || svm_type==svm_parameter.NU_SVC))
- {
- v = svm.svm_predict_probability(model,x,prob_estimates);
- output.writeBytes(v+" ");
- for(int j=0;j<nr_class;j++)
- output.writeBytes(prob_estimates[j]+" ");
- output.writeBytes("\n");
- }
- else
- {
- v = svm.svm_predict(model,x);
- output.writeBytes(v+"\n");
- }
-
- if(v == target)
- ++correct;
- error += (v-target)*(v-target);
- sumv += v;
- sumy += target;
- sumvv += v*v;
- sumyy += target*target;
- sumvy += v*target;
- ++total;
- }
- if(svm_type == svm_parameter.EPSILON_SVR ||
- svm_type == svm_parameter.NU_SVR)
- {
- svm_predict.info("Mean squared error = "+error/total+" (regression)\n");
- svm_predict.info("Squared correlation coefficient = "+
- ((total*sumvy-sumv*sumy)*(total*sumvy-sumv*sumy))/
- ((total*sumvv-sumv*sumv)*(total*sumyy-sumy*sumy))+
- " (regression)\n");
- }
- else
- svm_predict.info("Accuracy = "+(double)correct/total*100+
- "% ("+correct+"/"+total+") (classification)\n");
- }
-
- private static void exit_with_help()
- {
- System.err.print("usage: svm_predict [options] test_file model_file output_file\n"
- +"options:\n"
- +"-b probability_estimates: whether to predict probability estimates, 0 or 1 (default 0); one-class SVM not supported yet\n"
- +"-q : quiet mode (no outputs)\n");
- System.exit(1);
- }
-
- public static void main(String argv[]) throws IOException
- {
- int i, predict_probability=0;
- svm_print_string = svm_print_stdout;
-
- // parse options
- for(i=0;i<argv.length;i++)
- {
- if(argv[i].charAt(0) != '-') break;
- ++i;
- switch(argv[i-1].charAt(1))
- {
- case 'b':
- predict_probability = atoi(argv[i]);
- break;
- case 'q':
- svm_print_string = svm_print_null;
- i--;
- break;
- default:
- System.err.print("Unknown option: " + argv[i-1] + "\n");
- exit_with_help();
- }
- }
- if(i>=argv.length-2)
- exit_with_help();
- try
- {
- BufferedReader input = new BufferedReader(new FileReader(argv[i]));
- DataOutputStream output = new DataOutputStream(new BufferedOutputStream(new FileOutputStream(argv[i+2])));
- svm_model model = svm.svm_load_model(argv[i+1]);
- if (model == null)
- {
- System.err.print("can't open model file "+argv[i+1]+"\n");
- System.exit(1);
- }
- if(predict_probability == 1)
- {
- if(svm.svm_check_probability_model(model)==0)
- {
- System.err.print("Model does not support probabiliy estimates\n");
- System.exit(1);
- }
- }
- else
- {
- if(svm.svm_check_probability_model(model)!=0)
- {
- svm_predict.info("Model supports probability estimates, but disabled in prediction.\n");
- }
- }
- predict(input,output,model,predict_probability);
- input.close();
- output.close();
- }
- catch(FileNotFoundException e)
- {
- exit_with_help();
- }
- catch(ArrayIndexOutOfBoundsException e)
- {
- exit_with_help();
- }
- }
- }
|