|
- #include <stdio.h>
- #include <stdlib.h>
- #include <string.h>
- #include <ctype.h>
- #include <errno.h>
- #include "svm.h"
- #define Malloc(type,n) (type *)malloc((n)*sizeof(type))
-
- void print_null(const char *s) {}
-
- void exit_with_help()
- {
- printf(
- "Usage: svm-train [options] training_set_file [model_file]\n"
- "options:\n"
- "-s svm_type : set type of SVM (default 0)\n"
- " 0 -- C-SVC (multi-class classification)\n"
- " 1 -- nu-SVC (multi-class classification)\n"
- " 2 -- one-class SVM\n"
- " 3 -- epsilon-SVR (regression)\n"
- " 4 -- nu-SVR (regression)\n"
- "-t kernel_type : set type of kernel function (default 2)\n"
- " 0 -- linear: u'*v\n"
- " 1 -- polynomial: (gamma*u'*v + coef0)^degree\n"
- " 2 -- radial basis function: exp(-gamma*|u-v|^2)\n"
- " 3 -- sigmoid: tanh(gamma*u'*v + coef0)\n"
- " 4 -- precomputed kernel (kernel values in training_set_file)\n"
- "-d degree : set degree in kernel function (default 3)\n"
- "-g gamma : set gamma in kernel function (default 1/num_features)\n"
- "-r coef0 : set coef0 in kernel function (default 0)\n"
- "-c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)\n"
- "-n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)\n"
- "-p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1)\n"
- "-m cachesize : set cache memory size in MB (default 100)\n"
- "-e epsilon : set tolerance of termination criterion (default 0.001)\n"
- "-h shrinking : whether to use the shrinking heuristics, 0 or 1 (default 1)\n"
- "-b probability_estimates : whether to train a SVC or SVR model for probability estimates, 0 or 1 (default 0)\n"
- "-wi weight : set the parameter C of class i to weight*C, for C-SVC (default 1)\n"
- "-v n: n-fold cross validation mode\n"
- "-q : quiet mode (no outputs)\n"
- );
- exit(1);
- }
-
- void exit_input_error(int line_num)
- {
- fprintf(stderr,"Wrong input format at line %d\n", line_num);
- exit(1);
- }
-
- void parse_command_line(int argc, char **argv, char *input_file_name, char *model_file_name);
- void read_problem(const char *filename);
- void do_cross_validation();
-
- struct svm_parameter param; // set by parse_command_line
- struct svm_problem prob; // set by read_problem
- struct svm_model *model;
- struct svm_node *x_space;
- int cross_validation;
- int nr_fold;
-
- static char *line = NULL;
- static int max_line_len;
-
- static char* readline(FILE *input)
- {
- int len;
-
- if(fgets(line,max_line_len,input) == NULL)
- return NULL;
-
- while(strrchr(line,'\n') == NULL)
- {
- max_line_len *= 2;
- line = (char *) realloc(line,max_line_len);
- len = (int) strlen(line);
- if(fgets(line+len,max_line_len-len,input) == NULL)
- break;
- }
- return line;
- }
-
- int main(int argc, char **argv)
- {
- char input_file_name[1024];
- char model_file_name[1024];
- const char *error_msg;
-
- parse_command_line(argc, argv, input_file_name, model_file_name);
- read_problem(input_file_name);
- error_msg = svm_check_parameter(&prob,¶m);
-
- if(error_msg)
- {
- fprintf(stderr,"ERROR: %s\n",error_msg);
- exit(1);
- }
-
- if(cross_validation)
- {
- do_cross_validation();
- }
- else
- {
- model = svm_train(&prob,¶m);
- if(svm_save_model(model_file_name,model))
- {
- fprintf(stderr, "can't save model to file %s\n", model_file_name);
- exit(1);
- }
- svm_free_and_destroy_model(&model);
- }
- svm_destroy_param(¶m);
- free(prob.y);
- free(prob.x);
- free(x_space);
- free(line);
-
- return 0;
- }
-
- void do_cross_validation()
- {
- int i;
- int total_correct = 0;
- double total_error = 0;
- double sumv = 0, sumy = 0, sumvv = 0, sumyy = 0, sumvy = 0;
- double *target = Malloc(double,prob.l);
-
- svm_cross_validation(&prob,¶m,nr_fold,target);
- if(param.svm_type == EPSILON_SVR ||
- param.svm_type == NU_SVR)
- {
- for(i=0;i<prob.l;i++)
- {
- double y = prob.y[i];
- double v = target[i];
- total_error += (v-y)*(v-y);
- sumv += v;
- sumy += y;
- sumvv += v*v;
- sumyy += y*y;
- sumvy += v*y;
- }
- printf("Cross Validation Mean squared error = %g\n",total_error/prob.l);
- printf("Cross Validation Squared correlation coefficient = %g\n",
- ((prob.l*sumvy-sumv*sumy)*(prob.l*sumvy-sumv*sumy))/
- ((prob.l*sumvv-sumv*sumv)*(prob.l*sumyy-sumy*sumy))
- );
- }
- else
- {
- for(i=0;i<prob.l;i++)
- if(target[i] == prob.y[i])
- ++total_correct;
- printf("Cross Validation Accuracy = %g%%\n",100.0*total_correct/prob.l);
- }
- free(target);
- }
-
- void parse_command_line(int argc, char **argv, char *input_file_name, char *model_file_name)
- {
- int i;
- void (*print_func)(const char*) = NULL; // default printing to stdout
-
- // default values
- param.svm_type = C_SVC;
- param.kernel_type = RBF;
- param.degree = 3;
- param.gamma = 0; // 1/num_features
- param.coef0 = 0;
- param.nu = 0.5;
- param.cache_size = 100;
- param.C = 1;
- param.eps = 1e-3;
- param.p = 0.1;
- param.shrinking = 1;
- param.probability = 0;
- param.nr_weight = 0;
- param.weight_label = NULL;
- param.weight = NULL;
- cross_validation = 0;
-
- // parse options
- for(i=1;i<argc;i++)
- {
- if(argv[i][0] != '-') break;
- if(++i>=argc)
- exit_with_help();
- switch(argv[i-1][1])
- {
- case 's':
- param.svm_type = atoi(argv[i]);
- break;
- case 't':
- param.kernel_type = atoi(argv[i]);
- break;
- case 'd':
- param.degree = atoi(argv[i]);
- break;
- case 'g':
- param.gamma = atof(argv[i]);
- break;
- case 'r':
- param.coef0 = atof(argv[i]);
- break;
- case 'n':
- param.nu = atof(argv[i]);
- break;
- case 'm':
- param.cache_size = atof(argv[i]);
- break;
- case 'c':
- param.C = atof(argv[i]);
- break;
- case 'e':
- param.eps = atof(argv[i]);
- break;
- case 'p':
- param.p = atof(argv[i]);
- break;
- case 'h':
- param.shrinking = atoi(argv[i]);
- break;
- case 'b':
- param.probability = atoi(argv[i]);
- break;
- case 'q':
- print_func = &print_null;
- i--;
- break;
- case 'v':
- cross_validation = 1;
- nr_fold = atoi(argv[i]);
- if(nr_fold < 2)
- {
- fprintf(stderr,"n-fold cross validation: n must >= 2\n");
- exit_with_help();
- }
- break;
- case 'w':
- ++param.nr_weight;
- param.weight_label = (int *)realloc(param.weight_label,sizeof(int)*param.nr_weight);
- param.weight = (double *)realloc(param.weight,sizeof(double)*param.nr_weight);
- param.weight_label[param.nr_weight-1] = atoi(&argv[i-1][2]);
- param.weight[param.nr_weight-1] = atof(argv[i]);
- break;
- default:
- fprintf(stderr,"Unknown option: -%c\n", argv[i-1][1]);
- exit_with_help();
- }
- }
-
- svm_set_print_string_function(print_func);
-
- // determine filenames
-
- if(i>=argc)
- exit_with_help();
-
- strcpy(input_file_name, argv[i]);
-
- if(i<argc-1)
- strcpy(model_file_name,argv[i+1]);
- else
- {
- char *p = strrchr(argv[i],'/');
- if(p==NULL)
- p = argv[i];
- else
- ++p;
- sprintf(model_file_name,"%s.model",p);
- }
- }
-
- // read in a problem (in svmlight format)
-
- void read_problem(const char *filename)
- {
- int max_index, inst_max_index, i;
- size_t elements, j;
- FILE *fp = fopen(filename,"r");
- char *endptr;
- char *idx, *val, *label;
-
- if(fp == NULL)
- {
- fprintf(stderr,"can't open input file %s\n",filename);
- exit(1);
- }
-
- prob.l = 0;
- elements = 0;
-
- max_line_len = 1024;
- line = Malloc(char,max_line_len);
- while(readline(fp)!=NULL)
- {
- char *p = strtok(line," \t"); // label
-
- // features
- while(1)
- {
- p = strtok(NULL," \t");
- if(p == NULL || *p == '\n') // check '\n' as ' ' may be after the last feature
- break;
- ++elements;
- }
- ++elements;
- ++prob.l;
- }
- rewind(fp);
-
- prob.y = Malloc(double,prob.l);
- prob.x = Malloc(struct svm_node *,prob.l);
- x_space = Malloc(struct svm_node,elements);
-
- max_index = 0;
- j=0;
- for(i=0;i<prob.l;i++)
- {
- inst_max_index = -1; // strtol gives 0 if wrong format, and precomputed kernel has <index> start from 0
- readline(fp);
- prob.x[i] = &x_space[j];
- label = strtok(line," \t\n");
- if(label == NULL) // empty line
- exit_input_error(i+1);
-
- prob.y[i] = strtod(label,&endptr);
- if(endptr == label || *endptr != '\0')
- exit_input_error(i+1);
-
- while(1)
- {
- idx = strtok(NULL,":");
- val = strtok(NULL," \t");
-
- if(val == NULL)
- break;
-
- errno = 0;
- x_space[j].index = (int) strtol(idx,&endptr,10);
- if(endptr == idx || errno != 0 || *endptr != '\0' || x_space[j].index <= inst_max_index)
- exit_input_error(i+1);
- else
- inst_max_index = x_space[j].index;
-
- errno = 0;
- x_space[j].value = strtod(val,&endptr);
- if(endptr == val || errno != 0 || (*endptr != '\0' && !isspace(*endptr)))
- exit_input_error(i+1);
-
- ++j;
- }
-
- if(inst_max_index > max_index)
- max_index = inst_max_index;
- x_space[j++].index = -1;
- }
-
- if(param.gamma == 0 && max_index > 0)
- param.gamma = 1.0/max_index;
-
- if(param.kernel_type == PRECOMPUTED)
- for(i=0;i<prob.l;i++)
- {
- if (prob.x[i][0].index != 0)
- {
- fprintf(stderr,"Wrong input format: first column must be 0:sample_serial_number\n");
- exit(1);
- }
- if ((int)prob.x[i][0].value <= 0 || (int)prob.x[i][0].value > max_index)
- {
- fprintf(stderr,"Wrong input format: sample_serial_number out of range\n");
- exit(1);
- }
- }
-
- fclose(fp);
- }
|