|
- """
- @author: linlin
-
- @references:
-
- [1] Gaüzère B, Brun L, Villemin D. Two new graphs kernels in
- chemoinformatics. Pattern Recognition Letters. 2012 Nov 1;33(15):2038-47.
- """
-
- import sys
- import time
- from collections import Counter
- from itertools import chain
- from functools import partial
- from multiprocessing import Pool
- from tqdm import tqdm
-
- import networkx as nx
- import numpy as np
-
- from gklearn.utils.graphdataset import get_dataset_attributes
- from gklearn.utils.parallel import parallel_gm
-
- def treeletkernel(*args,
- sub_kernel,
- node_label='atom',
- edge_label='bond_type',
- parallel='imap_unordered',
- n_jobs=None,
- verbose=True):
- """Calculate treelet graph kernels between graphs.
-
- Parameters
- ----------
- Gn : List of NetworkX graph
- List of graphs between which the kernels are calculated.
-
- G1, G2 : NetworkX graphs
- Two graphs between which the kernel is calculated.
-
- sub_kernel : function
- The sub-kernel between 2 real number vectors. Each vector counts the
- numbers of isomorphic treelets in a graph.
-
- node_label : string
- Node attribute used as label. The default node label is atom.
-
- edge_label : string
- Edge attribute used as label. The default edge label is bond_type.
-
- parallel : string/None
- Which paralleliztion method is applied to compute the kernel. The
- Following choices are available:
-
- 'imap_unordered': use Python's multiprocessing.Pool.imap_unordered
- method.
-
- None: no parallelization is applied.
-
- n_jobs : int
- Number of jobs for parallelization. The default is to use all
- computational cores. This argument is only valid when one of the
- parallelization method is applied.
-
- Return
- ------
- Kmatrix : Numpy matrix
- Kernel matrix, each element of which is the treelet kernel between 2 praphs.
- """
- # pre-process
- Gn = args[0] if len(args) == 1 else [args[0], args[1]]
- Gn = [g.copy() for g in Gn]
- Kmatrix = np.zeros((len(Gn), len(Gn)))
- ds_attrs = get_dataset_attributes(Gn,
- attr_names=['node_labeled', 'edge_labeled', 'is_directed'],
- node_label=node_label, edge_label=edge_label)
- labeled = False
- if ds_attrs['node_labeled'] or ds_attrs['edge_labeled']:
- labeled = True
- if not ds_attrs['node_labeled']:
- for G in Gn:
- nx.set_node_attributes(G, '0', 'atom')
- if not ds_attrs['edge_labeled']:
- for G in Gn:
- nx.set_edge_attributes(G, '0', 'bond_type')
-
- start_time = time.time()
-
- # ---- use pool.imap_unordered to parallel and track progress. ----
- if parallel == 'imap_unordered':
- # get all canonical keys of all graphs before calculating kernels to save
- # time, but this may cost a lot of memory for large dataset.
- pool = Pool(n_jobs)
- itr = zip(Gn, range(0, len(Gn)))
- if len(Gn) < 100 * n_jobs:
- chunksize = int(len(Gn) / n_jobs) + 1
- else:
- chunksize = 100
- canonkeys = [[] for _ in range(len(Gn))]
- get_partial = partial(wrapper_get_canonkeys, node_label, edge_label,
- labeled, ds_attrs['is_directed'])
- if verbose:
- iterator = tqdm(pool.imap_unordered(get_partial, itr, chunksize),
- desc='getting canonkeys', file=sys.stdout)
- else:
- iterator = pool.imap_unordered(get_partial, itr, chunksize)
- for i, ck in iterator:
- canonkeys[i] = ck
- pool.close()
- pool.join()
-
- # compute kernels.
- def init_worker(canonkeys_toshare):
- global G_canonkeys
- G_canonkeys = canonkeys_toshare
- do_partial = partial(wrapper_treeletkernel_do, sub_kernel)
- parallel_gm(do_partial, Kmatrix, Gn, init_worker=init_worker,
- glbv=(canonkeys,), n_jobs=n_jobs, verbose=verbose)
-
- # ---- do not use parallelization. ----
- elif parallel == None:
- # get all canonical keys of all graphs before calculating kernels to save
- # time, but this may cost a lot of memory for large dataset.
- canonkeys = []
- for g in (tqdm(Gn, desc='getting canonkeys', file=sys.stdout) if verbose else Gn):
- canonkeys.append(get_canonkeys(g, node_label, edge_label, labeled,
- ds_attrs['is_directed']))
-
- # compute kernels.
- from itertools import combinations_with_replacement
- itr = combinations_with_replacement(range(0, len(Gn)), 2)
- for i, j in (tqdm(itr, desc='getting canonkeys', file=sys.stdout) if verbose else itr):
- Kmatrix[i][j] = _treeletkernel_do(canonkeys[i], canonkeys[j], sub_kernel)
- Kmatrix[j][i] = Kmatrix[i][j] # @todo: no directed graph considered?
-
- else:
- raise Exception('No proper parallelization method designated.')
-
-
- run_time = time.time() - start_time
- if verbose:
- print("\n --- treelet kernel matrix of size %d built in %s seconds ---"
- % (len(Gn), run_time))
-
- return Kmatrix, run_time
-
-
- def _treeletkernel_do(canonkey1, canonkey2, sub_kernel):
- """Calculate treelet graph kernel between 2 graphs.
-
- Parameters
- ----------
- canonkey1, canonkey2 : list
- List of canonical keys in 2 graphs, where each key is represented by a string.
-
- Return
- ------
- kernel : float
- Treelet Kernel between 2 graphs.
- """
- keys = set(canonkey1.keys()) & set(canonkey2.keys()) # find same canonical keys in both graphs
- vector1 = np.array([(canonkey1[key] if (key in canonkey1.keys()) else 0) for key in keys])
- vector2 = np.array([(canonkey2[key] if (key in canonkey2.keys()) else 0) for key in keys])
- kernel = sub_kernel(vector1, vector2)
- return kernel
-
-
- def wrapper_treeletkernel_do(sub_kernel, itr):
- i = itr[0]
- j = itr[1]
- return i, j, _treeletkernel_do(G_canonkeys[i], G_canonkeys[j], sub_kernel)
-
-
- def get_canonkeys(G, node_label, edge_label, labeled, is_directed):
- """Generate canonical keys of all treelets in a graph.
-
- Parameters
- ----------
- G : NetworkX graphs
- The graph in which keys are generated.
- node_label : string
- node attribute used as label. The default node label is atom.
- edge_label : string
- edge attribute used as label. The default edge label is bond_type.
- labeled : boolean
- Whether the graphs are labeled. The default is True.
-
- Return
- ------
- canonkey/canonkey_l : dict
- For unlabeled graphs, canonkey is a dictionary which records amount of
- every tree pattern. For labeled graphs, canonkey_l is one which keeps
- track of amount of every treelet.
- """
- patterns = {} # a dictionary which consists of lists of patterns for all graphlet.
- canonkey = {} # canonical key, a dictionary which records amount of every tree pattern.
-
- ### structural analysis ###
- ### In this section, a list of patterns is generated for each graphlet,
- ### where every pattern is represented by nodes ordered by Morgan's
- ### extended labeling.
- # linear patterns
- patterns['0'] = G.nodes()
- canonkey['0'] = nx.number_of_nodes(G)
- for i in range(1, 6): # for i in range(1, 6):
- patterns[str(i)] = find_all_paths(G, i, is_directed)
- canonkey[str(i)] = len(patterns[str(i)])
-
- # n-star patterns
- patterns['3star'] = [[node] + [neighbor for neighbor in G[node]] for node in G.nodes() if G.degree(node) == 3]
- patterns['4star'] = [[node] + [neighbor for neighbor in G[node]] for node in G.nodes() if G.degree(node) == 4]
- patterns['5star'] = [[node] + [neighbor for neighbor in G[node]] for node in G.nodes() if G.degree(node) == 5]
- # n-star patterns
- canonkey['6'] = len(patterns['3star'])
- canonkey['8'] = len(patterns['4star'])
- canonkey['d'] = len(patterns['5star'])
-
- # pattern 7
- patterns['7'] = [] # the 1st line of Table 1 in Ref [1]
- for pattern in patterns['3star']:
- for i in range(1, len(pattern)): # for each neighbor of node 0
- if G.degree(pattern[i]) >= 2:
- pattern_t = pattern[:]
- # set the node with degree >= 2 as the 4th node
- pattern_t[i], pattern_t[3] = pattern_t[3], pattern_t[i]
- for neighborx in G[pattern[i]]:
- if neighborx != pattern[0]:
- new_pattern = pattern_t + [neighborx]
- patterns['7'].append(new_pattern)
- canonkey['7'] = len(patterns['7'])
-
- # pattern 11
- patterns['11'] = [] # the 4th line of Table 1 in Ref [1]
- for pattern in patterns['4star']:
- for i in range(1, len(pattern)):
- if G.degree(pattern[i]) >= 2:
- pattern_t = pattern[:]
- pattern_t[i], pattern_t[4] = pattern_t[4], pattern_t[i]
- for neighborx in G[pattern[i]]:
- if neighborx != pattern[0]:
- new_pattern = pattern_t + [ neighborx ]
- patterns['11'].append(new_pattern)
- canonkey['b'] = len(patterns['11'])
-
- # pattern 12
- patterns['12'] = [] # the 5th line of Table 1 in Ref [1]
- rootlist = [] # a list of root nodes, whose extended labels are 3
- for pattern in patterns['3star']:
- if pattern[0] not in rootlist: # prevent to count the same pattern twice from each of the two root nodes
- rootlist.append(pattern[0])
- for i in range(1, len(pattern)):
- if G.degree(pattern[i]) >= 3:
- rootlist.append(pattern[i])
- pattern_t = pattern[:]
- pattern_t[i], pattern_t[3] = pattern_t[3], pattern_t[i]
- for neighborx1 in G[pattern[i]]:
- if neighborx1 != pattern[0]:
- for neighborx2 in G[pattern[i]]:
- if neighborx1 > neighborx2 and neighborx2 != pattern[0]:
- new_pattern = pattern_t + [neighborx1] + [neighborx2]
- # new_patterns = [ pattern + [neighborx1] + [neighborx2] for neighborx1 in G[pattern[i]] if neighborx1 != pattern[0] for neighborx2 in G[pattern[i]] if (neighborx1 > neighborx2 and neighborx2 != pattern[0]) ]
- patterns['12'].append(new_pattern)
- canonkey['c'] = int(len(patterns['12']) / 2)
-
- # pattern 9
- patterns['9'] = [] # the 2nd line of Table 1 in Ref [1]
- for pattern in patterns['3star']:
- for pairs in [ [neighbor1, neighbor2] for neighbor1 in G[pattern[0]] if G.degree(neighbor1) >= 2 \
- for neighbor2 in G[pattern[0]] if G.degree(neighbor2) >= 2 if neighbor1 > neighbor2 ]:
- pattern_t = pattern[:]
- # move nodes with extended labels 4 to specific position to correspond to their children
- pattern_t[pattern_t.index(pairs[0])], pattern_t[2] = pattern_t[2], pattern_t[pattern_t.index(pairs[0])]
- pattern_t[pattern_t.index(pairs[1])], pattern_t[3] = pattern_t[3], pattern_t[pattern_t.index(pairs[1])]
- for neighborx1 in G[pairs[0]]:
- if neighborx1 != pattern[0]:
- for neighborx2 in G[pairs[1]]:
- if neighborx2 != pattern[0]:
- new_pattern = pattern_t + [neighborx1] + [neighborx2]
- patterns['9'].append(new_pattern)
- canonkey['9'] = len(patterns['9'])
-
- # pattern 10
- patterns['10'] = [] # the 3rd line of Table 1 in Ref [1]
- for pattern in patterns['3star']:
- for i in range(1, len(pattern)):
- if G.degree(pattern[i]) >= 2:
- for neighborx in G[pattern[i]]:
- if neighborx != pattern[0] and G.degree(neighborx) >= 2:
- pattern_t = pattern[:]
- pattern_t[i], pattern_t[3] = pattern_t[3], pattern_t[i]
- new_patterns = [ pattern_t + [neighborx] + [neighborxx] for neighborxx in G[neighborx] if neighborxx != pattern[i] ]
- patterns['10'].extend(new_patterns)
- canonkey['a'] = len(patterns['10'])
-
- ### labeling information ###
- ### In this section, a list of canonical keys is generated for every
- ### pattern obtained in the structural analysis section above, which is a
- ### string corresponding to a unique treelet. A dictionary is built to keep
- ### track of the amount of every treelet.
- if labeled == True:
- canonkey_l = {} # canonical key, a dictionary which keeps track of amount of every treelet.
-
- # linear patterns
- canonkey_t = Counter(list(nx.get_node_attributes(G, node_label).values()))
- for key in canonkey_t:
- canonkey_l[('0', key)] = canonkey_t[key]
-
- for i in range(1, 6): # for i in range(1, 6):
- treelet = []
- for pattern in patterns[str(i)]:
- canonlist = list(chain.from_iterable((G.node[node][node_label], \
- G[node][pattern[idx+1]][edge_label]) for idx, node in enumerate(pattern[:-1])))
- canonlist.append(G.node[pattern[-1]][node_label])
- canonkey_t = canonlist if canonlist < canonlist[::-1] else canonlist[::-1]
- treelet.append(tuple([str(i)] + canonkey_t))
- canonkey_l.update(Counter(treelet))
-
- # n-star patterns
- for i in range(3, 6):
- treelet = []
- for pattern in patterns[str(i) + 'star']:
- canonlist = [tuple((G.node[leaf][node_label],
- G[leaf][pattern[0]][edge_label])) for leaf in pattern[1:]]
- canonlist.sort()
- canonlist = list(chain.from_iterable(canonlist))
- canonkey_t = tuple(['d' if i == 5 else str(i * 2)] +
- [G.node[pattern[0]][node_label]] + canonlist)
- treelet.append(canonkey_t)
- canonkey_l.update(Counter(treelet))
-
- # pattern 7
- treelet = []
- for pattern in patterns['7']:
- canonlist = [tuple((G.node[leaf][node_label],
- G[leaf][pattern[0]][edge_label])) for leaf in pattern[1:3]]
- canonlist.sort()
- canonlist = list(chain.from_iterable(canonlist))
- canonkey_t = tuple(['7'] + [G.node[pattern[0]][node_label]] + canonlist
- + [G.node[pattern[3]][node_label]]
- + [G[pattern[3]][pattern[0]][edge_label]]
- + [G.node[pattern[4]][node_label]]
- + [G[pattern[4]][pattern[3]][edge_label]])
- treelet.append(canonkey_t)
- canonkey_l.update(Counter(treelet))
-
- # pattern 11
- treelet = []
- for pattern in patterns['11']:
- canonlist = [tuple((G.node[leaf][node_label],
- G[leaf][pattern[0]][edge_label])) for leaf in pattern[1:4]]
- canonlist.sort()
- canonlist = list(chain.from_iterable(canonlist))
- canonkey_t = tuple(['b'] + [G.node[pattern[0]][node_label]] + canonlist
- + [G.node[pattern[4]][node_label]]
- + [G[pattern[4]][pattern[0]][edge_label]]
- + [G.node[pattern[5]][node_label]]
- + [G[pattern[5]][pattern[4]][edge_label]])
- treelet.append(canonkey_t)
- canonkey_l.update(Counter(treelet))
-
- # pattern 10
- treelet = []
- for pattern in patterns['10']:
- canonkey4 = [G.node[pattern[5]][node_label], G[pattern[5]][pattern[4]][edge_label]]
- canonlist = [tuple((G.node[leaf][node_label],
- G[leaf][pattern[0]][edge_label])) for leaf in pattern[1:3]]
- canonlist.sort()
- canonkey0 = list(chain.from_iterable(canonlist))
- canonkey_t = tuple(['a'] + [G.node[pattern[3]][node_label]]
- + [G.node[pattern[4]][node_label]]
- + [G[pattern[4]][pattern[3]][edge_label]]
- + [G.node[pattern[0]][node_label]]
- + [G[pattern[0]][pattern[3]][edge_label]]
- + canonkey4 + canonkey0)
- treelet.append(canonkey_t)
- canonkey_l.update(Counter(treelet))
-
- # pattern 12
- treelet = []
- for pattern in patterns['12']:
- canonlist0 = [tuple((G.node[leaf][node_label],
- G[leaf][pattern[0]][edge_label])) for leaf in pattern[1:3]]
- canonlist0.sort()
- canonlist0 = list(chain.from_iterable(canonlist0))
- canonlist3 = [tuple((G.node[leaf][node_label],
- G[leaf][pattern[3]][edge_label])) for leaf in pattern[4:6]]
- canonlist3.sort()
- canonlist3 = list(chain.from_iterable(canonlist3))
-
- # 2 possible key can be generated from 2 nodes with extended label 3,
- # select the one with lower lexicographic order.
- canonkey_t1 = tuple(['c'] + [G.node[pattern[0]][node_label]] + canonlist0
- + [G.node[pattern[3]][node_label]]
- + [G[pattern[3]][pattern[0]][edge_label]]
- + canonlist3)
- canonkey_t2 = tuple(['c'] + [G.node[pattern[3]][node_label]] + canonlist3
- + [G.node[pattern[0]][node_label]]
- + [G[pattern[0]][pattern[3]][edge_label]]
- + canonlist0)
- treelet.append(canonkey_t1 if canonkey_t1 < canonkey_t2 else canonkey_t2)
- canonkey_l.update(Counter(treelet))
-
- # pattern 9
- treelet = []
- for pattern in patterns['9']:
- canonkey2 = [G.node[pattern[4]][node_label], G[pattern[4]][pattern[2]][edge_label]]
- canonkey3 = [G.node[pattern[5]][node_label], G[pattern[5]][pattern[3]][edge_label]]
- prekey2 = [G.node[pattern[2]][node_label], G[pattern[2]][pattern[0]][edge_label]]
- prekey3 = [G.node[pattern[3]][node_label], G[pattern[3]][pattern[0]][edge_label]]
- if prekey2 + canonkey2 < prekey3 + canonkey3:
- canonkey_t = [G.node[pattern[1]][node_label]] \
- + [G[pattern[1]][pattern[0]][edge_label]] \
- + prekey2 + prekey3 + canonkey2 + canonkey3
- else:
- canonkey_t = [G.node[pattern[1]][node_label]] \
- + [G[pattern[1]][pattern[0]][edge_label]] \
- + prekey3 + prekey2 + canonkey3 + canonkey2
- treelet.append(tuple(['9'] + [G.node[pattern[0]][node_label]] + canonkey_t))
- canonkey_l.update(Counter(treelet))
-
- return canonkey_l
-
- return canonkey
-
-
- def wrapper_get_canonkeys(node_label, edge_label, labeled, is_directed, itr_item):
- g = itr_item[0]
- i = itr_item[1]
- return i, get_canonkeys(g, node_label, edge_label, labeled, is_directed)
-
-
- def find_paths(G, source_node, length):
- """Find all paths with a certain length those start from a source node.
- A recursive depth first search is applied.
-
- Parameters
- ----------
- G : NetworkX graphs
- The graph in which paths are searched.
- source_node : integer
- The number of the node from where all paths start.
- length : integer
- The length of paths.
-
- Return
- ------
- path : list of list
- List of paths retrieved, where each path is represented by a list of nodes.
- """
- if length == 0:
- return [[source_node]]
- path = [[source_node] + path for neighbor in G[source_node] \
- for path in find_paths(G, neighbor, length - 1) if source_node not in path]
- return path
-
-
- def find_all_paths(G, length, is_directed):
- """Find all paths with a certain length in a graph. A recursive depth first
- search is applied.
-
- Parameters
- ----------
- G : NetworkX graphs
- The graph in which paths are searched.
- length : integer
- The length of paths.
-
- Return
- ------
- path : list of list
- List of paths retrieved, where each path is represented by a list of nodes.
- """
- all_paths = []
- for node in G:
- all_paths.extend(find_paths(G, node, length))
-
- if not is_directed:
- # For each path, two presentations are retrieved from its two extremities.
- # Remove one of them.
- all_paths_r = [path[::-1] for path in all_paths]
- for idx, path in enumerate(all_paths[:-1]):
- for path2 in all_paths_r[idx+1::]:
- if path == path2:
- all_paths[idx] = []
- break
- all_paths = list(filter(lambda a: a != [], all_paths))
-
- return all_paths
|