|
- """
- @author: linlin
- @references:
- [1] H. Kashima, K. Tsuda, and A. Inokuchi. Marginalized kernels between labeled graphs. In Proceedings of the 20th International Conference on Machine Learning, Washington, DC, United States, 2003.
- [2] Pierre Mahé, Nobuhisa Ueda, Tatsuya Akutsu, Jean-Luc Perret, and Jean-Philippe Vert. Extensions of marginalized graph kernels. In Proceedings of the twenty-first international conference on Machine learning, page 70. ACM, 2004.
- """
-
- import sys
- import pathlib
- sys.path.insert(0, "../")
- import time
- from tqdm import tqdm
- tqdm.monitor_interval = 0
-
- import networkx as nx
- import numpy as np
- from matplotlib import pyplot as plt
-
- from pygraph.kernels.deltaKernel import deltakernel
- from pygraph.utils.utils import untotterTransformation
- from pygraph.utils.graphdataset import get_dataset_attributes
-
-
- def marginalizedkernel(*args,
- node_label='atom',
- edge_label='bond_type',
- p_quit=0.5,
- itr=20,
- remove_totters=True):
- """Calculate marginalized graph kernels between graphs.
-
- Parameters
- ----------
- Gn : List of NetworkX graph
- List of graphs between which the kernels are calculated.
- /
- G1, G2 : NetworkX graphs
- 2 graphs between which the kernel is calculated.
- node_label : string
- node attribute used as label. The default node label is atom.
- edge_label : string
- edge attribute used as label. The default edge label is bond_type.
- p_quit : integer
- the termination probability in the random walks generating step
- itr : integer
- time of iterations to calculate R_inf
- remove_totters : boolean
- whether to remove totters. The default value is True.
-
- Return
- ------
- Kmatrix : Numpy matrix
- Kernel matrix, each element of which is the marginalized kernel between 2 praphs.
- """
- # arrange all graphs in a list
- Gn = args[0] if len(args) == 1 else [args[0], args[1]]
- Kmatrix = np.zeros((len(Gn), len(Gn)))
- ds_attrs = get_dataset_attributes(
- Gn,
- attr_names=['node_labeled', 'edge_labeled', 'is_directed'],
- node_label=node_label,
- edge_label=edge_label)
- if not ds_attrs['node_labeled']:
- for G in Gn:
- nx.set_node_attributes(G, '0', 'atom')
- if not ds_attrs['edge_labeled']:
- for G in Gn:
- nx.set_edge_attributes(G, '0', 'bond_type')
-
- start_time = time.time()
-
- if remove_totters:
- Gn = [
- untotterTransformation(G, node_label, edge_label)
- for G in tqdm(Gn, desc='removing tottering', file=sys.stdout)
- ]
-
- pbar = tqdm(
- total=(1 + len(Gn)) * len(Gn) / 2,
- desc='calculating kernels',
- file=sys.stdout)
- for i in range(0, len(Gn)):
- for j in range(i, len(Gn)):
- Kmatrix[i][j] = _marginalizedkernel_do(Gn[i], Gn[j], node_label,
- edge_label, p_quit, itr)
- Kmatrix[j][i] = Kmatrix[i][j]
- pbar.update(1)
-
- run_time = time.time() - start_time
- print(
- "\n --- marginalized kernel matrix of size %d built in %s seconds ---"
- % (len(Gn), run_time))
-
- return Kmatrix, run_time
-
-
- def _marginalizedkernel_do(G1, G2, node_label, edge_label, p_quit, itr):
- """Calculate marginalized graph kernel between 2 graphs.
-
- Parameters
- ----------
- G1, G2 : NetworkX graphs
- 2 graphs between which the kernel is calculated.
- node_label : string
- node attribute used as label.
- edge_label : string
- edge attribute used as label.
- p_quit : integer
- the termination probability in the random walks generating step.
- itr : integer
- time of iterations to calculate R_inf.
-
- Return
- ------
- kernel : float
- Marginalized Kernel between 2 graphs.
- """
- # init parameters
- kernel = 0
- num_nodes_G1 = nx.number_of_nodes(G1)
- num_nodes_G2 = nx.number_of_nodes(G2)
- p_init_G1 = 1 / num_nodes_G1 # the initial probability distribution in the random walks generating step (uniform distribution over |G|)
- p_init_G2 = 1 / num_nodes_G2
-
- q = p_quit * p_quit
- r1 = q
-
- # initial R_inf
- # matrix to save all the R_inf for all pairs of nodes
- R_inf = np.zeros([num_nodes_G1, num_nodes_G2])
-
- # calculate R_inf with a simple interative method
- for i in range(1, itr):
- R_inf_new = np.zeros([num_nodes_G1, num_nodes_G2])
- R_inf_new.fill(r1)
-
- # calculate R_inf for each pair of nodes
- for node1 in G1.nodes(data=True):
- neighbor_n1 = G1[node1[0]]
- # the transition probability distribution in the random walks generating step (uniform distribution over the vertices adjacent to the current vertex)
- p_trans_n1 = (1 - p_quit) / len(neighbor_n1)
- for node2 in G2.nodes(data=True):
- neighbor_n2 = G2[node2[0]]
- p_trans_n2 = (1 - p_quit) / len(neighbor_n2)
-
- for neighbor1 in neighbor_n1:
- for neighbor2 in neighbor_n2:
- t = p_trans_n1 * p_trans_n2 * \
- deltakernel(G1.node[neighbor1][node_label] == G2.node[neighbor2][node_label]) * \
- deltakernel(neighbor_n1[neighbor1][edge_label] == neighbor_n2[neighbor2][edge_label])
-
- R_inf_new[node1[0]][node2[0]] += t * R_inf[neighbor1][
- neighbor2] # ref [1] equation (8)
- R_inf[:] = R_inf_new
-
- # add elements of R_inf up and calculate kernel
- for node1 in G1.nodes(data=True):
- for node2 in G2.nodes(data=True):
- s = p_init_G1 * p_init_G2 * deltakernel(
- node1[1][node_label] == node2[1][node_label])
- kernel += s * R_inf[node1[0]][node2[0]] # ref [1] equation (6)
-
- return kernel
|