|
- #!/usr/bin/env python3
- # -*- coding: utf-8 -*-
- """
- Created on Tue Jan 14 15:39:29 2020
-
- @author: ljia
- """
- import multiprocessing
- import functools
- from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct
- from gklearn.preimage.utils import generate_median_preimages_by_class
- from gklearn.utils import compute_gram_matrices_by_class
-
-
- def xp_median_preimage_9_1():
- """xp 9_1: MAO, StructuralSP, using CONSTANT, symbolic only.
- """
- # set parameters.
- ds_name = 'MAO' #
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [4, 4, 2, 1, 1, 1], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100, #
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'StructuralSP',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'edge_kernels': sub_kernels,
- 'compute_method': 'naive',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'CONSTANT', #
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save='../results/xp_median_preimage/'
- irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} #
- edge_required = False #
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for fit_method in ['k-graphs', 'expert'] + ['random'] * 10:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
-
-
- def xp_median_preimage_9_2():
- """xp 9_2: MAO, PathUpToH, using CONSTANT, symbolic only.
- """
- # set parameters.
- ds_name = 'MAO' #
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [4, 4, 2, 1, 1, 1], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100, #
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- kernel_options = {'name': 'PathUpToH',
- 'depth': 9, #
- 'k_func': 'MinMax', #
- 'compute_method': 'trie',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'CONSTANT', #
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save='../results/xp_median_preimage/'
- irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} #
- edge_required = False #
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for fit_method in ['k-graphs', 'expert'] + ['random'] * 10:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
-
-
- def xp_median_preimage_8_1():
- """xp 8_1: Monoterpenoides, StructuralSP, using CONSTANT.
- """
- # set parameters.
- ds_name = 'Monoterpenoides' #
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [3, 3, 1, 3, 3, 1], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100, #
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'StructuralSP',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'edge_kernels': sub_kernels,
- 'compute_method': 'naive',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'CONSTANT', #
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save='../results/xp_median_preimage/'
- irrelevant_labels = None #
- edge_required = False #
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for fit_method in ['k-graphs', 'expert'] + ['random'] * 10:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
-
-
- def xp_median_preimage_8_2():
- """xp 8_2: Monoterpenoides, PathUpToH, using CONSTANT.
- """
- # set parameters.
- ds_name = 'Monoterpenoides' #
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [4, 4, 2, 1, 1, 1], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100, #
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- kernel_options = {'name': 'PathUpToH',
- 'depth': 7, #
- 'k_func': 'MinMax', #
- 'compute_method': 'trie',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'CONSTANT', #
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save='../results/xp_median_preimage/'
- irrelevant_labels = None #
- edge_required = False #
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for fit_method in ['k-graphs', 'expert'] + ['random'] * 10:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
-
-
- def xp_median_preimage_7_1():
- """xp 7_1: MUTAG, StructuralSP, using CONSTANT.
- """
- # set parameters.
- ds_name = 'MUTAG' #
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [4, 4, 2, 1, 1, 1], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100, #
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'StructuralSP',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'edge_kernels': sub_kernels,
- 'compute_method': 'naive',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'CONSTANT', #
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save='../results/xp_median_preimage/'
- irrelevant_labels = None #
- edge_required = False #
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for fit_method in ['k-graphs', 'expert'] + ['random'] * 10:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
-
-
- def xp_median_preimage_7_2():
- """xp 7_2: MUTAG, PathUpToH, using CONSTANT.
- """
- # set parameters.
- ds_name = 'MUTAG' #
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [4, 4, 2, 1, 1, 1], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100, #
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- kernel_options = {'name': 'PathUpToH',
- 'depth': 2, #
- 'k_func': 'MinMax', #
- 'compute_method': 'trie',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'CONSTANT', #
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save='../results/xp_median_preimage/'
- irrelevant_labels = None #
- edge_required = False #
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for fit_method in ['k-graphs', 'expert'] + ['random'] * 10:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
-
-
- def xp_median_preimage_6_1():
- """xp 6_1: COIL-RAG, StructuralSP, using NON_SYMBOLIC.
- """
- # set parameters.
- ds_name = 'COIL-RAG' #
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [3, 3, 1, 3, 3, 1], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100,
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'StructuralSP',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'edge_kernels': sub_kernels,
- 'compute_method': 'naive',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'NON_SYMBOLIC', #
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save='../results/xp_median_preimage/'
- irrelevant_labels = None #
- edge_required = False #
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for fit_method in ['k-graphs'] + ['random'] * 10:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
-
-
- def xp_median_preimage_6_2():
- """xp 6_2: COIL-RAG, ShortestPath, using NON_SYMBOLIC.
- """
- # set parameters.
- ds_name = 'COIL-RAG' #
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [3, 3, 1, 3, 3, 1], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100,
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'ShortestPath',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'NON_SYMBOLIC', #
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save='../results/xp_median_preimage/'
- irrelevant_labels = None #
- edge_required = True #
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for fit_method in ['k-graphs'] + ['random'] * 10:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
-
-
- def xp_median_preimage_5_1():
- """xp 5_1: FRANKENSTEIN, StructuralSP, using NON_SYMBOLIC.
- """
- # set parameters.
- ds_name = 'FRANKENSTEIN' #
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [3, 3, 1, 3, 3, 0], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100,
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'StructuralSP',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'edge_kernels': sub_kernels,
- 'compute_method': 'naive',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'NON_SYMBOLIC',
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save='../results/xp_median_preimage/'
- irrelevant_labels = None #
- edge_required = False #
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for fit_method in ['k-graphs'] + ['random'] * 10:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
-
-
- def xp_median_preimage_4_1():
- """xp 4_1: COLORS-3, StructuralSP, using NON_SYMBOLIC.
- """
- # set parameters.
- ds_name = 'COLORS-3' #
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [3, 3, 1, 3, 3, 0], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100,
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'StructuralSP',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'edge_kernels': sub_kernels,
- 'compute_method': 'naive',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'NON_SYMBOLIC',
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save='../results/xp_median_preimage/'
- irrelevant_labels = None #
- edge_required = False #
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for fit_method in ['k-graphs'] + ['random'] * 10:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
-
-
- def xp_median_preimage_3_2():
- """xp 3_2: Fingerprint, ShortestPath, using LETTER2, only node attrs.
- """
- # set parameters.
- ds_name = 'Fingerprint' #
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [0.525, 0.525, 0.001, 0.125, 0.125], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100,
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'ShortestPath',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'LETTER2',
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save='../results/xp_median_preimage/'
- irrelevant_labels = {'edge_attrs': ['orient', 'angle']} #
- edge_required = True #
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for fit_method in ['k-graphs'] + ['random'] * 10:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
-
-
- def xp_median_preimage_3_1():
- """xp 3_1: Fingerprint, StructuralSP, using LETTER2, only node attrs.
- """
- # set parameters.
- ds_name = 'Fingerprint' #
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [0.525, 0.525, 0.001, 0.125, 0.125], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100,
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'StructuralSP',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'edge_kernels': sub_kernels,
- 'compute_method': 'naive',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'LETTER2',
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save='../results/xp_median_preimage/'
- irrelevant_labels = {'edge_attrs': ['orient', 'angle']} #
- edge_required = False #
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for fit_method in ['k-graphs'] + ['random'] * 10:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
-
-
- def xp_median_preimage_2_1():
- """xp 2_1: COIL-DEL, StructuralSP, using LETTER2, only node attrs.
- """
- # set parameters.
- ds_name = 'COIL-DEL' #
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [3, 3, 1, 3, 3],
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100,
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'StructuralSP',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'edge_kernels': sub_kernels,
- 'compute_method': 'naive',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'LETTER2',
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save='../results/xp_median_preimage/'
- irrelevant_labels = {'edge_labels': ['valence']}
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # # compute gram matrices for each class a priori.
- # print('Compute gram matrices for each class a priori.')
- # compute_gram_matrices_by_class(ds_name, kernel_options, save_results=True, dir_save=dir_save, irrelevant_labels=irrelevant_labels)
-
- # generate preimages.
- for fit_method in ['k-graphs'] + ['random'] * 10:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels)
-
-
- def xp_median_preimage_1_1():
- """xp 1_1: Letter-high, StructuralSP.
- """
- # set parameters.
- ds_name = 'Letter-high'
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [0.675, 0.675, 0.75, 0.425, 0.425],
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100,
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'StructuralSP',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'edge_kernels': sub_kernels,
- 'compute_method': 'naive',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'LETTER2',
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
-
- # generate preimages.
- for fit_method in ['k-graphs', 'expert'] + ['random'] * 10:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save='../results/xp_median_preimage/')
-
-
- def xp_median_preimage_1_2():
- """xp 1_2: Letter-high, ShortestPath.
- """
- # set parameters.
- ds_name = 'Letter-high'
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [0.675, 0.675, 0.75, 0.425, 0.425],
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100,
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'ShortestPath',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'LETTER2',
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save='../results/xp_median_preimage/'
- irrelevant_labels = None #
- edge_required = True #
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for fit_method in ['k-graphs', 'expert'] + ['random'] * 10:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
-
-
- def xp_median_preimage_10_1():
- """xp 10_1: Letter-med, StructuralSP.
- """
- # set parameters.
- ds_name = 'Letter-med'
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [0.525, 0.525, 0.75, 0.475, 0.475],
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100,
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'StructuralSP',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'edge_kernels': sub_kernels,
- 'compute_method': 'naive',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'LETTER2',
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
-
- # generate preimages.
- for fit_method in ['k-graphs', 'expert'] + ['random'] * 10:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save='../results/xp_median_preimage/')
-
-
- def xp_median_preimage_10_2():
- """xp 10_2: Letter-med, ShortestPath.
- """
- # set parameters.
- ds_name = 'Letter-med'
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [0.525, 0.525, 0.75, 0.475, 0.475],
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100,
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'ShortestPath',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'LETTER2',
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save='../results/xp_median_preimage/'
- irrelevant_labels = None #
- edge_required = True #
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for fit_method in ['k-graphs', 'expert'] + ['random'] * 10:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
-
-
- def xp_median_preimage_11_1():
- """xp 11_1: Letter-low, StructuralSP.
- """
- # set parameters.
- ds_name = 'Letter-low'
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [0.075, 0.075, 0.25, 0.075, 0.075],
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100,
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'StructuralSP',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'edge_kernels': sub_kernels,
- 'compute_method': 'naive',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'LETTER2',
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
-
- # generate preimages.
- for fit_method in ['k-graphs', 'expert'] + ['random'] * 10:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save='../results/xp_median_preimage/')
-
-
- def xp_median_preimage_11_2():
- """xp 11_2: Letter-low, ShortestPath.
- """
- # set parameters.
- ds_name = 'Letter-low'
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [0.075, 0.075, 0.25, 0.075, 0.075],
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100,
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'ShortestPath',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'LETTER2',
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save='../results/xp_median_preimage/'
- irrelevant_labels = None #
- edge_required = True #
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for fit_method in ['k-graphs', 'expert'] + ['random'] * 10:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
-
-
- if __name__ == "__main__":
-
- #### xp 1_1: Letter-high, StructuralSP.
- # xp_median_preimage_1_1()
-
- #### xp 1_2: Letter-high, ShortestPath.
- # xp_median_preimage_1_2()
-
- #### xp 10_1: Letter-med, StructuralSP.
- # xp_median_preimage_10_1()
-
- #### xp 10_2: Letter-med, ShortestPath.
- # xp_median_preimage_10_2()
-
- #### xp 11_1: Letter-low, StructuralSP.
- # xp_median_preimage_11_1()
-
- #### xp 11_2: Letter-low, ShortestPath.
- # xp_median_preimage_11_2()
-
- #### xp 2_1: COIL-DEL, StructuralSP, using LETTER2, only node attrs.
- # xp_median_preimage_2_1()
-
- #### xp 3_1: Fingerprint, StructuralSP, using LETTER2, only node attrs.
- # xp_median_preimage_3_1()
-
- #### xp 3_2: Fingerprint, ShortestPath, using LETTER2, only node attrs.
- # xp_median_preimage_3_2()
-
- #### xp 4_1: COLORS-3, StructuralSP, using NON_SYMBOLIC.
- # xp_median_preimage_4_1()
-
- #### xp 5_1: FRANKENSTEIN, StructuralSP, using NON_SYMBOLIC.
- # xp_median_preimage_5_1()
-
- #### xp 6_1: COIL-RAG, StructuralSP, using NON_SYMBOLIC.
- # xp_median_preimage_6_1()
-
- #### xp 6_2: COIL-RAG, ShortestPath, using NON_SYMBOLIC.
- # xp_median_preimage_6_2()
-
- #### xp 7_1: MUTAG, StructuralSP, using CONSTANT.
- # xp_median_preimage_7_1()
-
- #### xp 7_2: MUTAG, PathUpToH, using CONSTANT.
- xp_median_preimage_7_2()
-
- #### xp 8_1: Monoterpenoides, StructuralSP, using CONSTANT.
- # xp_median_preimage_8_1()
-
- #### xp 8_2: Monoterpenoides, PathUpToH, using CONSTANT.
- # xp_median_preimage_8_2()
-
- #### xp 9_1: MAO, StructuralSP, using CONSTANT, symbolic only.
- # xp_median_preimage_9_1()
-
- #### xp 9_2: MAO, PathUpToH, using CONSTANT, symbolic only.
- # xp_median_preimage_9_2()
|