|
- """
- @author: linlin
- @references: Borgwardt KM, Kriegel HP. Shortest-path kernels on graphs. InData
- Mining, Fifth IEEE International Conference on 2005 Nov 27 (pp. 8-pp). IEEE.
- """
-
- import sys
- import time
- from itertools import product
- from functools import partial
- from multiprocessing import Pool
- from tqdm import tqdm
-
- import networkx as nx
- import numpy as np
-
- from pygraph.utils.utils import getSPGraph
- from pygraph.utils.graphdataset import get_dataset_attributes
- from pygraph.utils.parallel import parallel_gm
- sys.path.insert(0, "../")
-
- def spkernel(*args,
- node_label='atom',
- edge_weight=None,
- node_kernels=None,
- n_jobs=None,
- verbose=True):
- """Calculate shortest-path kernels between graphs.
-
- Parameters
- ----------
- Gn : List of NetworkX graph
- List of graphs between which the kernels are calculated.
- /
- G1, G2 : NetworkX graphs
- Two graphs between which the kernel is calculated.
- node_label : string
- Node attribute used as label. The default node label is atom.
- edge_weight : string
- Edge attribute name corresponding to the edge weight.
- node_kernels : dict
- A dictionary of kernel functions for nodes, including 3 items: 'symb'
- for symbolic node labels, 'nsymb' for non-symbolic node labels, 'mix'
- for both labels. The first 2 functions take two node labels as
- parameters, and the 'mix' function takes 4 parameters, a symbolic and a
- non-symbolic label for each the two nodes. Each label is in form of 2-D
- dimension array (n_samples, n_features). Each function returns an
- number as the kernel value. Ignored when nodes are unlabeled.
- n_jobs : int
- Number of jobs for parallelization.
-
- Return
- ------
- Kmatrix : Numpy matrix
- Kernel matrix, each element of which is the sp kernel between 2 praphs.
- """
- # pre-process
- Gn = args[0] if len(args) == 1 else [args[0], args[1]]
- Gn = [g.copy() for g in Gn]
- weight = None
- if edge_weight is None:
- if verbose:
- print('\n None edge weight specified. Set all weight to 1.\n')
- else:
- try:
- some_weight = list(
- nx.get_edge_attributes(Gn[0], edge_weight).values())[0]
- if isinstance(some_weight, (float, int)):
- weight = edge_weight
- else:
- if verbose:
- print(
- '\n Edge weight with name %s is not float or integer. Set all weight to 1.\n'
- % edge_weight)
- except:
- if verbose:
- print(
- '\n Edge weight with name "%s" is not found in the edge attributes. Set all weight to 1.\n'
- % edge_weight)
- ds_attrs = get_dataset_attributes(
- Gn,
- attr_names=['node_labeled', 'node_attr_dim', 'is_directed'],
- node_label=node_label)
-
- # remove graphs with no edges, as no sp can be found in their structures,
- # so the kernel between such a graph and itself will be zero.
- len_gn = len(Gn)
- Gn = [(idx, G) for idx, G in enumerate(Gn) if nx.number_of_edges(G) != 0]
- idx = [G[0] for G in Gn]
- Gn = [G[1] for G in Gn]
- if len(Gn) != len_gn:
- if verbose:
- print('\n %d graphs are removed as they don\'t contain edges.\n' %
- (len_gn - len(Gn)))
-
- start_time = time.time()
-
- pool = Pool(n_jobs)
- # get shortest path graphs of Gn
- getsp_partial = partial(wrapper_getSPGraph, weight)
- itr = zip(Gn, range(0, len(Gn)))
- if len(Gn) < 100 * n_jobs:
- # # use default chunksize as pool.map when iterable is less than 100
- # chunksize, extra = divmod(len(Gn), n_jobs * 4)
- # if extra:
- # chunksize += 1
- chunksize = int(len(Gn) / n_jobs) + 1
- else:
- chunksize = 100
- if verbose:
- iterator = tqdm(pool.imap_unordered(getsp_partial, itr, chunksize),
- desc='getting sp graphs', file=sys.stdout)
- else:
- iterator = pool.imap_unordered(getsp_partial, itr, chunksize)
- for i, g in iterator:
- Gn[i] = g
- pool.close()
- pool.join()
-
- # # ---- direct running, normally use single CPU core. ----
- # for i in tqdm(range(len(Gn)), desc='getting sp graphs', file=sys.stdout):
- # i, Gn[i] = wrapper_getSPGraph(weight, (Gn[i], i))
-
- # # ---- use pool.map to parallel ----
- # result_sp = pool.map(getsp_partial, range(0, len(Gn)))
- # for i in result_sp:
- # Gn[i[0]] = i[1]
- # or
- # getsp_partial = partial(wrap_getSPGraph, Gn, weight)
- # for i, g in tqdm(
- # pool.map(getsp_partial, range(0, len(Gn))),
- # desc='getting sp graphs',
- # file=sys.stdout):
- # Gn[i] = g
-
- # # ---- only for the Fast Computation of Shortest Path Kernel (FCSP)
- # sp_ml = [0] * len(Gn) # shortest path matrices
- # for i in result_sp:
- # sp_ml[i[0]] = i[1]
- # edge_x_g = [[] for i in range(len(sp_ml))]
- # edge_y_g = [[] for i in range(len(sp_ml))]
- # edge_w_g = [[] for i in range(len(sp_ml))]
- # for idx, item in enumerate(sp_ml):
- # for i1 in range(len(item)):
- # for i2 in range(i1 + 1, len(item)):
- # if item[i1, i2] != np.inf:
- # edge_x_g[idx].append(i1)
- # edge_y_g[idx].append(i2)
- # edge_w_g[idx].append(item[i1, i2])
- # print(len(edge_x_g[0]))
- # print(len(edge_y_g[0]))
- # print(len(edge_w_g[0]))
-
- Kmatrix = np.zeros((len(Gn), len(Gn)))
-
- # ---- use pool.imap_unordered to parallel and track progress. ----
- def init_worker(gn_toshare):
- global G_gn
- G_gn = gn_toshare
- do_partial = partial(wrapper_sp_do, ds_attrs, node_label, node_kernels)
- parallel_gm(do_partial, Kmatrix, Gn, init_worker=init_worker,
- glbv=(Gn,), n_jobs=n_jobs, verbose=verbose)
-
-
- # # ---- use pool.map to parallel. ----
- # # result_perf = pool.map(do_partial, itr)
- # do_partial = partial(spkernel_do, Gn, ds_attrs, node_label, node_kernels)
- # itr = combinations_with_replacement(range(0, len(Gn)), 2)
- # for i, j, kernel in tqdm(
- # pool.map(do_partial, itr), desc='calculating kernels',
- # file=sys.stdout):
- # Kmatrix[i][j] = kernel
- # Kmatrix[j][i] = kernel
- # pool.close()
- # pool.join()
-
- # # ---- use joblib.Parallel to parallel and track progress. ----
- # result_perf = Parallel(
- # n_jobs=n_jobs, verbose=10)(
- # delayed(do_partial)(ij)
- # for ij in combinations_with_replacement(range(0, len(Gn)), 2))
- # result_perf = [
- # do_partial(ij)
- # for ij in combinations_with_replacement(range(0, len(Gn)), 2)
- # ]
- # for i in result_perf:
- # Kmatrix[i[0]][i[1]] = i[2]
- # Kmatrix[i[1]][i[0]] = i[2]
-
- # # ---- direct running, normally use single CPU core. ----
- # from itertools import combinations_with_replacement
- # itr = combinations_with_replacement(range(0, len(Gn)), 2)
- # for i, j in tqdm(itr, desc='calculating kernels', file=sys.stdout):
- # kernel = spkernel_do(Gn[i], Gn[j], ds_attrs, node_label, node_kernels)
- # Kmatrix[i][j] = kernel
- # Kmatrix[j][i] = kernel
-
- run_time = time.time() - start_time
- if verbose:
- print(
- "\n --- shortest path kernel matrix of size %d built in %s seconds ---"
- % (len(Gn), run_time))
-
- return Kmatrix, run_time, idx
-
-
- def spkernel_do(g1, g2, ds_attrs, node_label, node_kernels):
-
- kernel = 0
-
- # compute shortest path matrices first, method borrowed from FCSP.
- vk_dict = {} # shortest path matrices dict
- if ds_attrs['node_labeled']:
- # node symb and non-synb labeled
- if ds_attrs['node_attr_dim'] > 0:
- kn = node_kernels['mix']
- for n1, n2 in product(
- g1.nodes(data=True), g2.nodes(data=True)):
- vk_dict[(n1[0], n2[0])] = kn(
- n1[1][node_label], n2[1][node_label],
- n1[1]['attributes'], n2[1]['attributes'])
- # node symb labeled
- else:
- kn = node_kernels['symb']
- for n1 in g1.nodes(data=True):
- for n2 in g2.nodes(data=True):
- vk_dict[(n1[0], n2[0])] = kn(n1[1][node_label],
- n2[1][node_label])
- else:
- # node non-synb labeled
- if ds_attrs['node_attr_dim'] > 0:
- kn = node_kernels['nsymb']
- for n1 in g1.nodes(data=True):
- for n2 in g2.nodes(data=True):
- vk_dict[(n1[0], n2[0])] = kn(n1[1]['attributes'],
- n2[1]['attributes'])
- # node unlabeled
- else:
- for e1, e2 in product(
- g1.edges(data=True), g2.edges(data=True)):
- if e1[2]['cost'] == e2[2]['cost']:
- kernel += 1
- return kernel
-
- # compute graph kernels
- if ds_attrs['is_directed']:
- for e1, e2 in product(g1.edges(data=True), g2.edges(data=True)):
- if e1[2]['cost'] == e2[2]['cost']:
- nk11, nk22 = vk_dict[(e1[0], e2[0])], vk_dict[(e1[1],
- e2[1])]
- kn1 = nk11 * nk22
- kernel += kn1
- else:
- for e1, e2 in product(g1.edges(data=True), g2.edges(data=True)):
- if e1[2]['cost'] == e2[2]['cost']:
- # each edge walk is counted twice, starting from both its extreme nodes.
- nk11, nk12, nk21, nk22 = vk_dict[(e1[0], e2[0])], vk_dict[(
- e1[0], e2[1])], vk_dict[(e1[1],
- e2[0])], vk_dict[(e1[1],
- e2[1])]
- kn1 = nk11 * nk22
- kn2 = nk12 * nk21
- kernel += kn1 + kn2
-
- # # ---- exact implementation of the Fast Computation of Shortest Path Kernel (FCSP), reference [2], sadly it is slower than the current implementation
- # # compute vertex kernels
- # try:
- # vk_mat = np.zeros((nx.number_of_nodes(g1),
- # nx.number_of_nodes(g2)))
- # g1nl = enumerate(g1.nodes(data=True))
- # g2nl = enumerate(g2.nodes(data=True))
- # for i1, n1 in g1nl:
- # for i2, n2 in g2nl:
- # vk_mat[i1][i2] = kn(
- # n1[1][node_label], n2[1][node_label],
- # [n1[1]['attributes']], [n2[1]['attributes']])
-
- # range1 = range(0, len(edge_w_g[i]))
- # range2 = range(0, len(edge_w_g[j]))
- # for i1 in range1:
- # x1 = edge_x_g[i][i1]
- # y1 = edge_y_g[i][i1]
- # w1 = edge_w_g[i][i1]
- # for i2 in range2:
- # x2 = edge_x_g[j][i2]
- # y2 = edge_y_g[j][i2]
- # w2 = edge_w_g[j][i2]
- # ke = (w1 == w2)
- # if ke > 0:
- # kn1 = vk_mat[x1][x2] * vk_mat[y1][y2]
- # kn2 = vk_mat[x1][y2] * vk_mat[y1][x2]
- # kernel += kn1 + kn2
-
- return kernel
-
-
- def wrapper_sp_do(ds_attrs, node_label, node_kernels, itr):
- i = itr[0]
- j = itr[1]
- return i, j, spkernel_do(G_gn[i], G_gn[j], ds_attrs, node_label, node_kernels)
-
- #def wrapper_sp_do(ds_attrs, node_label, node_kernels, itr_item):
- # g1 = itr_item[0][0]
- # g2 = itr_item[0][1]
- # i = itr_item[1][0]
- # j = itr_item[1][1]
- # return i, j, spkernel_do(g1, g2, ds_attrs, node_label, node_kernels)
-
-
- def wrapper_getSPGraph(weight, itr_item):
- g = itr_item[0]
- i = itr_item[1]
- return i, getSPGraph(g, edge_weight=weight)
- # return i, nx.floyd_warshall_numpy(g, weight=weight)
|