All kernels are tested on dataset Asyclic, which consists of 185 molecules (graphs).
The criteria used for prediction are SVM for classification and kernel Ridge regression for regression.
For predition we randomly divide the data in train and test subset, where 90% of entire dataset is for training and rest for testing. 10 splits are performed. For each split, we first train on the train data, then evaluate the performance on the test set. We choose the optimal parameters for the test set and finally provide the corresponding performance. The final results correspond to the average of the performances on the test sets.
Kernels | RMSE(℃) | STD(℃) | Parameter | k_time |
---|---|---|---|---|
Shortest path | 35.19 | 4.50 | - | 14.58" |
Marginalized | 18.02 | 6.29 | p_quit = 0.1 | 4'19" |
Path | 14.00 | 6.94 | - | 37.58" |
WL subtree | 7.55 | 2.33 | height = 1 | 0.84" |
Treelet | 8.31 | 3.38 | - | 0.50" |
Path up to d | 7.43 | 2.69 | depth = 2 | 0.52" |
In each table below:
RMSE_test std_test RMSE_train std_train k_time
----------- ---------- ------------ ----------- --------
35.192 4.49577 28.3604 1.35718 14.5768
The table below shows the results of the marginalized under different termimation probability.
p_quit RMSE_test std_test RMSE_train std_train k_time
-------- ----------- ---------- ------------ ----------- --------
0.1 18.0243 6.29247 12.1863 7.03899 258.77
0.2 18.3376 5.85454 13.9554 7.54407 256.327
0.3 18.496 5.73492 13.9391 7.95812 255.614
0.4 19.4491 5.3713 16.2593 6.69358 254.897
0.5 19.7857 5.55054 17.0181 6.84437 256.757
0.6 20.1922 5.59122 17.6618 6.56718 256.557
0.7 21.6614 6.02685 20.5882 5.74601 254.953
0.8 22.996 6.08347 23.5943 3.80637 252.804
0.9 24.4241 4.95119 25.8082 3.31207 256.738
The targets of training data are normalized before calculating the kernel.
RMSE_test std_test RMSE_train std_train k_time
----------- ---------- ------------ ----------- --------
14.0015 6.93602 3.76191 0.702594 37.5759
The table below shows the results of the WL subtree under different subtree heights.
height RMSE_test std_test RMSE_train std_train k_time
-------- ----------- ---------- ------------ ----------- --------
0 15.6859 4.1392 17.6816 0.713183 0.360443
1 7.55046 2.33179 6.27001 0.654734 0.837389
2 9.72847 2.05767 4.45068 0.882129 1.25317
3 11.2961 2.79994 2.27059 0.481516 1.79971
4 12.8083 3.44694 1.07403 0.637823 2.35346
5 14.0179 3.67504 0.700602 0.57264 2.78285
6 14.9184 3.80535 0.691515 0.56462 3.20764
7 15.6295 3.86539 0.691516 0.56462 3.71648
8 16.2144 3.92876 0.691515 0.56462 3.99213
9 16.7257 3.9931 0.691515 0.56462 4.26315
10 17.1864 4.05672 0.691516 0.564621 5.00918
The targets of training data are normalized before calculating the kernel.
RMSE_test std_test RMSE_train std_train k_time
----------- ---------- ------------ ----------- --------
8.3079 3.37838 2.90887 1.2679 0.500302
The table below shows the results of the path kernel up to different depth d.
The first table is the results using Tanimoto kernel, where The targets of training data are normalized before calculating the kernel..
depth rmse_test std_test rmse_train std_train k_time
------- ----------- ---------- ------------ ----------- ---------
0 41.6202 6.453 43.6169 2.13212 0.0904737
1 38.8446 6.44648 40.8329 3.44147 0.175414
2 35.2915 4.7813 35.7461 1.61134 0.344896
3 29.4845 3.90351 28.4646 3.00137 0.553939
4 22.6693 6.28053 19.2517 3.42893 0.770649
5 21.7956 5.5225 16.886 2.60519 1.01558
6 20.6049 5.49983 13.1097 2.58431 1.33302
7 20.3479 5.17631 12.0152 2.5928 1.60266
8 19.8228 5.13769 10.7981 2.13082 1.81218
9 19.8734 5.10369 10.7997 2.09549 2.21726
10 19.8708 5.09217 10.7787 2.10002 2.41006
The second table is the results using MinMax kernel.
depth rmse_test std_test rmse_train std_train k_time
------- ----------- ---------- ------------ ----------- --------
0 12.58 2.73235 12.1209 0.500467 0.377576
1 12.6215 2.18866 10.2243 0.734261 0.456332
2 7.42903 2.69395 2.71885 0.732922 0.585278
3 9.02468 2.50808 1.54 1.13813 0.706556
4 10.0811 3.6477 1.36029 1.42399 0.847957
5 11.3005 4.44163 1.08518 1.06206 1.00086
6 12.186 4.88816 1.06443 1.00191 1.19792
7 12.7534 5.14529 1.19912 1.34031 1.4372
8 13.0471 5.27184 1.35822 1.84315 1.68449
9 13.1789 5.27707 1.36002 1.84834 1.96545
10 13.2538 5.26425 1.36208 1.85426 2.24943