|
- #!/usr/bin/env python3
- # -*- coding: utf-8 -*-
- """
- Created on Fri May 15 10:50:46 2020
-
- @author: ljia
- """
- import multiprocessing
- import functools
- import sys
- import os
- import logging
- from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct
- from gklearn.preimage import kernel_knn_cv
- from gklearn.utils import compute_gram_matrices_by_class
-
-
- dir_root = '../results/xp_1nn.init10.triangle_rule/'
- initial_solutions = 10
- triangle_rule = True
- allow_zeros = False
- update_order = False
- test_sizes = [0.9, 0.7] # , 0.5, 0.3, 0.1]
-
-
- def xp_median_preimage_15_1():
- """xp 15_1: AIDS, StructuralSP, using CONSTANT, symbolic only.
- """
- for test_size in test_sizes:
- # set parameters.
- ds_name = 'AIDS' #
- knn_options = {'n_neighbors': 1,
- 'n_splits': 30,
- 'test_size': test_size,
- 'verbose': True}
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [4, 4, 2, 1, 1, 1], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100, #
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'allow_zeros': allow_zeros,
- 'triangle_rule': triangle_rule,
- 'verbose': 1}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'StructuralSP',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'edge_kernels': sub_kernels,
- 'compute_method': 'naive',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 0}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': initial_solutions, # 1
- 'edit_cost': 'CONSTANT', #
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 0,
- 'verbose': 1,
- 'update_order': update_order,
- 'randomness': 'REAL',
- 'refine': False}
- save_results = True
- dir_save = dir_root + ds_name + '.' + kernel_options['name'] + '.symb/'
- irrelevant_labels = {'node_attrs': ['chem', 'charge', 'x', 'y']} #
- edge_required = False #
-
- if not os.path.exists(dir_save):
- os.makedirs(dir_save)
- file_output = open(dir_save + 'output.txt', 'a')
- sys.stdout = file_output
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('knn_options:', knn_options)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for train_examples in ['k-graphs', 'expert', 'random', 'best-dataset', 'trainset']:
- print('\n-------------------------------------')
- print('train examples used:', train_examples, '\n')
- mpg_options['fit_method'] = train_examples
- try:
- kernel_knn_cv(ds_name, train_examples, knn_options, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required, cut_range=None)
- except Exception as exp:
- print('An exception occured when running this experiment:')
- LOG_FILENAME = dir_save + 'error.txt'
- logging.basicConfig(filename=LOG_FILENAME, level=logging.DEBUG)
- logging.exception('')
- print(repr(exp))
-
-
- def xp_median_preimage_15_2():
- """xp 15_2: AIDS, PathUpToH, using CONSTANT, symbolic only.
- """
- for test_size in test_sizes:
- # set parameters.
- ds_name = 'AIDS' #
- knn_options = {'n_neighbors': 1,
- 'n_splits': 30,
- 'test_size': test_size,
- 'verbose': True}
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [4, 4, 2, 1, 1, 1], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100, #
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'allow_zeros': allow_zeros,
- 'triangle_rule': triangle_rule,
- 'verbose': 1}
- kernel_options = {'name': 'PathUpToH',
- 'depth': 1, #
- 'k_func': 'MinMax', #
- 'compute_method': 'trie',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 0}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': initial_solutions, # 1
- 'edit_cost': 'CONSTANT', #
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 0,
- 'verbose': 1,
- 'update_order': update_order,
- 'randomness': 'REAL',
- 'refine': False}
- save_results = True
- dir_save = dir_root + ds_name + '.' + kernel_options['name'] + '.symb/'
- irrelevant_labels = {'node_attrs': ['chem', 'charge', 'x', 'y']} #
- edge_required = False #
-
- if not os.path.exists(dir_save):
- os.makedirs(dir_save)
- file_output = open(dir_save + 'output.txt', 'a')
- sys.stdout = file_output
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('knn_options:', knn_options)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for train_examples in ['k-graphs', 'expert', 'random', 'best-dataset', 'trainset']:
- print('\n-------------------------------------')
- print('train examples used:', train_examples, '\n')
- mpg_options['fit_method'] = train_examples
- try:
- kernel_knn_cv(ds_name, train_examples, knn_options, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required, cut_range=None)
- except Exception as exp:
- print('An exception occured when running this experiment:')
- LOG_FILENAME = dir_save + 'error.txt'
- logging.basicConfig(filename=LOG_FILENAME, level=logging.DEBUG)
- logging.exception('')
- print(repr(exp))
-
-
- def xp_median_preimage_15_3():
- """xp 15_3: AIDS, Treelet, using CONSTANT, symbolic only.
- """
- for test_size in test_sizes:
- from gklearn.utils.kernels import polynomialkernel
- # set parameters.
- ds_name = 'AIDS' #
- knn_options = {'n_neighbors': 1,
- 'n_splits': 30,
- 'test_size': test_size,
- 'verbose': True}
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [4, 4, 2, 1, 1, 1], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100, #
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'allow_zeros': allow_zeros,
- 'triangle_rule': triangle_rule,
- 'verbose': 1}
- pkernel = functools.partial(polynomialkernel, d=1, c=1e+2)
- kernel_options = {'name': 'Treelet', #
- 'sub_kernel': pkernel,
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 0}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': initial_solutions, # 1
- 'edit_cost': 'CONSTANT', #
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 0,
- 'verbose': 1,
- 'update_order': update_order,
- 'randomness': 'REAL',
- 'refine': False}
- save_results = True
- dir_save = dir_root + ds_name + '.' + kernel_options['name'] + '.symb/'
- irrelevant_labels = {'node_attrs': ['chem', 'charge', 'x', 'y']} #
- edge_required = False #
-
- if not os.path.exists(dir_save):
- os.makedirs(dir_save)
- file_output = open(dir_save + 'output.txt', 'a')
- sys.stdout = file_output
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('knn_options:', knn_options)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for train_examples in ['k-graphs', 'expert', 'random', 'best-dataset', 'trainset']:
- print('\n-------------------------------------')
- print('train examples used:', train_examples, '\n')
- mpg_options['fit_method'] = train_examples
- try:
- kernel_knn_cv(ds_name, train_examples, knn_options, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required, cut_range=None)
- except Exception as exp:
- print('An exception occured when running this experiment:')
- LOG_FILENAME = dir_save + 'error.txt'
- logging.basicConfig(filename=LOG_FILENAME, level=logging.DEBUG)
- logging.exception('')
- print(repr(exp))
-
-
- def xp_median_preimage_15_4():
- """xp 15_4: AIDS, WeisfeilerLehman, using CONSTANT, symbolic only.
- """
- for test_size in test_sizes:
- # set parameters.
- ds_name = 'AIDS' #
- knn_options = {'n_neighbors': 1,
- 'n_splits': 30,
- 'test_size': test_size,
- 'verbose': True}
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [4, 4, 2, 1, 1, 1], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100, #
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'allow_zeros': allow_zeros,
- 'triangle_rule': triangle_rule,
- 'verbose': 1}
- kernel_options = {'name': 'WeisfeilerLehman',
- 'height': 10,
- 'base_kernel': 'subtree',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 0}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': initial_solutions, # 1
- 'edit_cost': 'CONSTANT', #
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 0,
- 'verbose': 1,
- 'update_order': update_order,
- 'randomness': 'REAL',
- 'refine': False}
- save_results = True
- dir_save = dir_root + ds_name + '.' + kernel_options['name'] + '.symb/'
- irrelevant_labels = {'node_attrs': ['chem', 'charge', 'x', 'y']} #
- edge_required = False #
-
- if not os.path.exists(dir_save):
- os.makedirs(dir_save)
- file_output = open(dir_save + 'output.txt', 'a')
- sys.stdout = file_output
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('knn_options:', knn_options)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # # compute gram matrices for each class a priori.
- # print('Compute gram matrices for each class a priori.')
- # compute_gram_matrices_by_class(ds_name, kernel_options, save_results=True, dir_save=dir_save, irrelevant_labels=irrelevant_labels)
-
- # generate preimages.
- for train_examples in ['k-graphs', 'expert', 'random', 'best-dataset', 'trainset']:
- print('\n-------------------------------------')
- print('train examples used:', train_examples, '\n')
- mpg_options['fit_method'] = train_examples
- try:
- kernel_knn_cv(ds_name, train_examples, knn_options, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required, cut_range=None)
- except Exception as exp:
- print('An exception occured when running this experiment:')
- LOG_FILENAME = dir_save + 'error.txt'
- logging.basicConfig(filename=LOG_FILENAME, level=logging.DEBUG)
- logging.exception('')
- print(repr(exp))
-
-
- def xp_median_preimage_14_1():
- """xp 14_1: DD, PathUpToH, using CONSTANT.
- """
- for test_size in test_sizes:
- # set parameters.
- ds_name = 'DD' #
- knn_options = {'n_neighbors': 1,
- 'n_splits': 30,
- 'test_size': test_size,
- 'verbose': True}
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [4, 4, 2, 1, 1, 1], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100, #
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'allow_zeros': allow_zeros,
- 'triangle_rule': triangle_rule,
- 'verbose': 1}
- kernel_options = {'name': 'PathUpToH',
- 'depth': 2, #
- 'k_func': 'MinMax', #
- 'compute_method': 'trie',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 0}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': initial_solutions, # 1
- 'edit_cost': 'CONSTANT', #
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 0,
- 'verbose': 1,
- 'update_order': update_order,
- 'randomness': 'REAL',
- 'refine': False}
- save_results = True
- dir_save = dir_root + ds_name + '.' + kernel_options['name'] + '/' + ('update_order/' if update_order else '')
- irrelevant_labels = None #
- edge_required = False #
-
- if not os.path.exists(dir_save):
- os.makedirs(dir_save)
- file_output = open(dir_save + 'output.txt', 'a')
- sys.stdout = file_output
-
- # # compute gram matrices for each class a priori.
- # print('Compute gram matrices for each class a priori.')
- # compute_gram_matrices_by_class(ds_name, kernel_options, save_results=save_results, dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('knn_options:', knn_options)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for train_examples in ['k-graphs', 'random', 'best-dataset', 'trainset']:
- print('\n-------------------------------------')
- print('train examples used:', train_examples, '\n')
- mpg_options['fit_method'] = train_examples
- try:
- kernel_knn_cv(ds_name, train_examples, knn_options, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required, cut_range=None)
- except Exception as exp:
- print('An exception occured when running this experiment:')
- LOG_FILENAME = dir_save + 'error.txt'
- logging.basicConfig(filename=LOG_FILENAME, level=logging.DEBUG)
- logging.exception('')
- print(repr(exp))
-
-
- def xp_median_preimage_13_1():
- """xp 13_1: PAH, StructuralSP, using NON_SYMBOLIC.
- """
- for test_size in test_sizes:
- # set parameters.
- ds_name = 'PAH' #
- knn_options = {'n_neighbors': 1,
- 'n_splits': 30,
- 'test_size': test_size,
- 'verbose': True}
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [3, 3, 1, 3, 3, 0], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100, #
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'allow_zeros': allow_zeros,
- 'triangle_rule': triangle_rule,
- 'verbose': 1}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'StructuralSP',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'edge_kernels': sub_kernels,
- 'compute_method': 'naive',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 0}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': initial_solutions, # 1
- 'edit_cost': 'NON_SYMBOLIC', #
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 0,
- 'verbose': 1,
- 'update_order': update_order,
- 'randomness': 'REAL',
- 'refine': False}
- save_results = True
- dir_save = dir_root + ds_name + '.' + kernel_options['name'] + '/' + ('update_order/' if update_order else '')
- irrelevant_labels = None #
- edge_required = False #
-
- if not os.path.exists(dir_save):
- os.makedirs(dir_save)
- file_output = open(dir_save + 'output.txt', 'a')
- sys.stdout = file_output
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('knn_options:', knn_options)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for train_examples in ['k-graphs', 'random', 'best-dataset', 'trainset']:
- print('\n-------------------------------------')
- print('train examples used:', train_examples, '\n')
- mpg_options['fit_method'] = train_examples
- try:
- kernel_knn_cv(ds_name, train_examples, knn_options, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required, cut_range=None)
- except Exception as exp:
- print('An exception occured when running this experiment:')
- LOG_FILENAME = dir_save + 'error.txt'
- logging.basicConfig(filename=LOG_FILENAME, level=logging.DEBUG)
- logging.exception('')
- print(repr(exp))
-
-
- def xp_median_preimage_13_2():
- """xp 13_2: PAH, ShortestPath, using NON_SYMBOLIC.
- """
- for test_size in test_sizes:
- # set parameters.
- ds_name = 'PAH' #
- knn_options = {'n_neighbors': 1,
- 'n_splits': 30,
- 'test_size': test_size,
- 'verbose': True}
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [3, 3, 1, 3, 3, 0], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100,
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'allow_zeros': allow_zeros,
- 'triangle_rule': triangle_rule,
- 'verbose': 1}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'ShortestPath',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 0}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': initial_solutions, # 1
- 'edit_cost': 'NON_SYMBOLIC', #
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 0,
- 'verbose': 1,
- 'update_order': update_order,
- 'randomness': 'REAL',
- 'refine': False}
- save_results = True
- dir_save = dir_root + ds_name + '.' + kernel_options['name'] + '/' + ('update_order/' if update_order else '') #
- irrelevant_labels = None #
- edge_required = True #
-
- if not os.path.exists(dir_save):
- os.makedirs(dir_save)
- file_output = open(dir_save + 'output.txt', 'a')
- sys.stdout = file_output
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('knn_options:', knn_options)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for train_examples in ['k-graphs', 'random', 'best-dataset', 'trainset']: #
- print('\n-------------------------------------')
- print('train examples used:', train_examples, '\n')
- mpg_options['fit_method'] = train_examples
- try:
- kernel_knn_cv(ds_name, train_examples, knn_options, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required, cut_range=None)
- except Exception as exp:
- print('An exception occured when running this experiment:')
- LOG_FILENAME = dir_save + 'error.txt'
- logging.basicConfig(filename=LOG_FILENAME, level=logging.DEBUG)
- logging.exception('')
- print(repr(exp))
-
-
- def xp_median_preimage_12_1():
- """xp 12_1: PAH, StructuralSP, using NON_SYMBOLIC, unlabeled.
- """
- for test_size in test_sizes:
- # set parameters.
- ds_name = 'PAH' #
- knn_options = {'n_neighbors': 1,
- 'n_splits': 30,
- 'test_size': test_size,
- 'verbose': True}
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [4, 4, 0, 1, 1, 0], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100, #
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'allow_zeros': allow_zeros,
- 'triangle_rule': triangle_rule,
- 'verbose': 1}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'StructuralSP',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'edge_kernels': sub_kernels,
- 'compute_method': 'naive',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 0}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': initial_solutions, # 1
- 'edit_cost': 'NON_SYMBOLIC', #
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 0,
- 'verbose': 1,
- 'update_order': update_order,
- 'randomness': 'REAL',
- 'refine': False}
- save_results = True
- dir_save = dir_root + ds_name + '.' + kernel_options['name'] + '.unlabeled/'
- irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} #
- edge_required = False #
-
- if not os.path.exists(dir_save):
- os.makedirs(dir_save)
- file_output = open(dir_save + 'output.txt', 'a')
- sys.stdout = file_output
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('knn_options:', knn_options)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for train_examples in ['k-graphs', 'expert', 'random', 'best-dataset', 'trainset']:
- print('\n-------------------------------------')
- print('train examples used:', train_examples, '\n')
- mpg_options['fit_method'] = train_examples
- try:
- kernel_knn_cv(ds_name, train_examples, knn_options, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required, cut_range=None)
- except Exception as exp:
- print('An exception occured when running this experiment:')
- LOG_FILENAME = dir_save + 'error.txt'
- logging.basicConfig(filename=LOG_FILENAME, level=logging.DEBUG)
- logging.exception('')
- print(repr(exp))
-
-
- def xp_median_preimage_12_2():
- """xp 12_2: PAH, PathUpToH, using CONSTANT, unlabeled.
- """
- for test_size in test_sizes:
- # set parameters.
- ds_name = 'PAH' #
- knn_options = {'n_neighbors': 1,
- 'n_splits': 30,
- 'test_size': test_size,
- 'verbose': True}
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [4, 4, 2, 1, 1, 1], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100, #
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'allow_zeros': allow_zeros,
- 'triangle_rule': triangle_rule,
- 'verbose': 1}
- kernel_options = {'name': 'PathUpToH',
- 'depth': 1, #
- 'k_func': 'MinMax', #
- 'compute_method': 'trie',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 0}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': initial_solutions, # 1
- 'edit_cost': 'CONSTANT', #
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 0,
- 'verbose': 1,
- 'update_order': update_order,
- 'randomness': 'REAL',
- 'refine': False}
- save_results = True
- dir_save = dir_root + ds_name + '.' + kernel_options['name'] + '.unlabeled/'
- irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} #
- edge_required = False #
-
- if not os.path.exists(dir_save):
- os.makedirs(dir_save)
- file_output = open(dir_save + 'output.txt', 'a')
- sys.stdout = file_output
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('knn_options:', knn_options)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for train_examples in ['k-graphs', 'expert', 'random', 'best-dataset', 'trainset']:
- print('\n-------------------------------------')
- print('train examples used:', train_examples, '\n')
- mpg_options['fit_method'] = train_examples
- try:
- kernel_knn_cv(ds_name, train_examples, knn_options, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required, cut_range=None)
- except Exception as exp:
- print('An exception occured when running this experiment:')
- LOG_FILENAME = dir_save + 'error.txt'
- logging.basicConfig(filename=LOG_FILENAME, level=logging.DEBUG)
- logging.exception('')
- print(repr(exp))
-
-
- def xp_median_preimage_12_3():
- """xp 12_3: PAH, Treelet, using CONSTANT, unlabeled.
- """
- from gklearn.utils.kernels import gaussiankernel
- for test_size in test_sizes:
- # set parameters.
- ds_name = 'PAH' #
- knn_options = {'n_neighbors': 1,
- 'n_splits': 30,
- 'test_size': test_size,
- 'verbose': True}
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [4, 4, 2, 1, 1, 1], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100, #
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'allow_zeros': allow_zeros,
- 'triangle_rule': triangle_rule,
- 'verbose': 1}
- pkernel = functools.partial(gaussiankernel, gamma=None) # @todo
- kernel_options = {'name': 'Treelet', #
- 'sub_kernel': pkernel,
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 0}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': initial_solutions, # 1
- 'edit_cost': 'CONSTANT', #
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 0,
- 'verbose': 1,
- 'update_order': update_order,
- 'randomness': 'REAL',
- 'refine': False}
- save_results = True
- dir_save = dir_root + ds_name + '.' + kernel_options['name'] + '.unlabeled/'
- irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} #
- edge_required = False #
-
- if not os.path.exists(dir_save):
- os.makedirs(dir_save)
- file_output = open(dir_save + 'output.txt', 'a')
- sys.stdout = file_output
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('knn_options:', knn_options)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for train_examples in ['k-graphs', 'expert', 'random', 'best-dataset', 'trainset']:
- print('\n-------------------------------------')
- print('train examples used:', train_examples, '\n')
- mpg_options['fit_method'] = train_examples
- try:
- kernel_knn_cv(ds_name, train_examples, knn_options, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required, cut_range=None)
- except Exception as exp:
- print('An exception occured when running this experiment:')
- LOG_FILENAME = dir_save + 'error.txt'
- logging.basicConfig(filename=LOG_FILENAME, level=logging.DEBUG)
- logging.exception('')
- print(repr(exp))
-
-
- def xp_median_preimage_12_4():
- """xp 12_4: PAH, WeisfeilerLehman, using CONSTANT, unlabeled.
- """
- for test_size in test_sizes:
- # set parameters.
- ds_name = 'PAH' #
- knn_options = {'n_neighbors': 1,
- 'n_splits': 30,
- 'test_size': test_size,
- 'verbose': True}
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [4, 4, 2, 1, 1, 1], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100, #
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'allow_zeros': allow_zeros,
- 'triangle_rule': triangle_rule,
- 'verbose': 1}
- kernel_options = {'name': 'WeisfeilerLehman',
- 'height': 14,
- 'base_kernel': 'subtree',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 0}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': initial_solutions, # 1
- 'edit_cost': 'CONSTANT', #
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 0,
- 'verbose': 1,
- 'update_order': update_order,
- 'randomness': 'REAL',
- 'refine': False}
- save_results = True
- dir_save = dir_root + ds_name + '.' + kernel_options['name'] + '.unlabeled/'
- irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} #
- edge_required = False #
-
- if not os.path.exists(dir_save):
- os.makedirs(dir_save)
- file_output = open(dir_save + 'output.txt', 'a')
- sys.stdout = file_output
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('knn_options:', knn_options)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # # compute gram matrices for each class a priori.
- # print('Compute gram matrices for each class a priori.')
- # compute_gram_matrices_by_class(ds_name, kernel_options, save_results=True, dir_save=dir_save, irrelevant_labels=irrelevant_labels)
-
- # generate preimages.
- for train_examples in ['k-graphs', 'expert', 'random', 'best-dataset', 'trainset']:
- print('\n-------------------------------------')
- print('train examples used:', train_examples, '\n')
- mpg_options['fit_method'] = train_examples
- try:
- kernel_knn_cv(ds_name, train_examples, knn_options, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required, cut_range=None)
- except Exception as exp:
- print('An exception occured when running this experiment:')
- LOG_FILENAME = dir_save + 'error.txt'
- logging.basicConfig(filename=LOG_FILENAME, level=logging.DEBUG)
- logging.exception('')
- print(repr(exp))
-
-
- def xp_median_preimage_12_5():
- """xp 12_5: PAH, ShortestPath, using NON_SYMBOLIC, unlabeled.
- """
- for test_size in test_sizes:
- # set parameters.
- ds_name = 'PAH' #
- knn_options = {'n_neighbors': 1,
- 'n_splits': 30,
- 'test_size': test_size,
- 'verbose': True}
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [4, 4, 0, 1, 1, 0], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100,
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'allow_zeros': allow_zeros,
- 'triangle_rule': triangle_rule,
- 'verbose': 1}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'ShortestPath',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 0}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': initial_solutions, # 1
- 'edit_cost': 'NON_SYMBOLIC', #
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 0,
- 'verbose': 1,
- 'update_order': update_order,
- 'randomness': 'REAL',
- 'refine': False}
- save_results = True
- dir_save = dir_root + ds_name + '.' + kernel_options['name'] + '.unlabeled/' #
- irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} #
- edge_required = True #
-
- if not os.path.exists(dir_save):
- os.makedirs(dir_save)
- file_output = open(dir_save + 'output.txt', 'a')
- sys.stdout = file_output
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('knn_options:', knn_options)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for train_examples in ['k-graphs', 'expert', 'random', 'best-dataset', 'trainset']: #
- print('\n-------------------------------------')
- print('train examples used:', train_examples, '\n')
- mpg_options['fit_method'] = train_examples
- try:
- kernel_knn_cv(ds_name, train_examples, knn_options, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required, cut_range=None)
- except Exception as exp:
- print('An exception occured when running this experiment:')
- LOG_FILENAME = dir_save + 'error.txt'
- logging.basicConfig(filename=LOG_FILENAME, level=logging.DEBUG)
- logging.exception('')
- print(repr(exp))
-
-
- def xp_median_preimage_9_1():
- """xp 9_1: MAO, StructuralSP, using CONSTANT, symbolic only.
- """
- for test_size in test_sizes:
- # set parameters.
- ds_name = 'MAO' #
- knn_options = {'n_neighbors': 1,
- 'n_splits': 30,
- 'test_size': test_size,
- 'verbose': True}
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [4, 4, 2, 1, 1, 1], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100, #
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'allow_zeros': allow_zeros,
- 'triangle_rule': triangle_rule,
- 'verbose': 1}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'StructuralSP',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'edge_kernels': sub_kernels,
- 'compute_method': 'naive',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 0}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': initial_solutions, # 1
- 'edit_cost': 'CONSTANT', #
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 0,
- 'verbose': 1,
- 'update_order': update_order,
- 'randomness': 'REAL',
- 'refine': False}
- save_results = True
- dir_save = dir_root + ds_name + '.' + kernel_options['name'] + '.symb/'
- irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} #
- edge_required = False #
-
- if not os.path.exists(dir_save):
- os.makedirs(dir_save)
- file_output = open(dir_save + 'output.txt', 'a')
- sys.stdout = file_output
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('knn_options:', knn_options)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for train_examples in ['k-graphs', 'expert', 'random', 'best-dataset', 'trainset']:
- print('\n-------------------------------------')
- print('train examples used:', train_examples, '\n')
- mpg_options['fit_method'] = train_examples
- try:
- kernel_knn_cv(ds_name, train_examples, knn_options, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required, cut_range=None)
- except Exception as exp:
- print('An exception occured when running this experiment:')
- LOG_FILENAME = dir_save + 'error.txt'
- logging.basicConfig(filename=LOG_FILENAME, level=logging.DEBUG)
- logging.exception('')
- print(repr(exp))
-
-
- def xp_median_preimage_9_2():
- """xp 9_2: MAO, PathUpToH, using CONSTANT, symbolic only.
- """
- for test_size in test_sizes:
- # set parameters.
- ds_name = 'MAO' #
- knn_options = {'n_neighbors': 1,
- 'n_splits': 30,
- 'test_size': test_size,
- 'verbose': True}
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [4, 4, 2, 1, 1, 1], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100, #
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'allow_zeros': allow_zeros,
- 'triangle_rule': triangle_rule,
- 'verbose': 1}
- kernel_options = {'name': 'PathUpToH',
- 'depth': 9, #
- 'k_func': 'MinMax', #
- 'compute_method': 'trie',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 0}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': initial_solutions, # 1
- 'edit_cost': 'CONSTANT', #
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 0,
- 'verbose': 1,
- 'update_order': update_order,
- 'randomness': 'REAL',
- 'refine': False}
- save_results = True
- dir_save = dir_root + ds_name + '.' + kernel_options['name'] + '.symb/'
- irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} #
- edge_required = False #
-
- if not os.path.exists(dir_save):
- os.makedirs(dir_save)
- file_output = open(dir_save + 'output.txt', 'a')
- sys.stdout = file_output
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('knn_options:', knn_options)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for train_examples in ['k-graphs', 'expert', 'random', 'best-dataset', 'trainset']:
- print('\n-------------------------------------')
- print('train examples used:', train_examples, '\n')
- mpg_options['fit_method'] = train_examples
- try:
- kernel_knn_cv(ds_name, train_examples, knn_options, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required, cut_range=None)
- except Exception as exp:
- print('An exception occured when running this experiment:')
- LOG_FILENAME = dir_save + 'error.txt'
- logging.basicConfig(filename=LOG_FILENAME, level=logging.DEBUG)
- logging.exception('')
- print(repr(exp))
-
-
- def xp_median_preimage_9_3():
- """xp 9_3: MAO, Treelet, using CONSTANT, symbolic only.
- """
- for test_size in test_sizes:
- from gklearn.utils.kernels import polynomialkernel
- # set parameters.
- ds_name = 'MAO' #
- knn_options = {'n_neighbors': 1,
- 'n_splits': 30,
- 'test_size': test_size,
- 'verbose': True}
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [4, 4, 2, 1, 1, 1], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100, #
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'allow_zeros': allow_zeros,
- 'triangle_rule': triangle_rule,
- 'verbose': 1}
- pkernel = functools.partial(polynomialkernel, d=4, c=1e+7)
- kernel_options = {'name': 'Treelet', #
- 'sub_kernel': pkernel,
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 0}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': initial_solutions, # 1
- 'edit_cost': 'CONSTANT', #
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 0,
- 'verbose': 1,
- 'update_order': update_order,
- 'randomness': 'REAL',
- 'refine': False}
- save_results = True
- dir_save = dir_root + ds_name + '.' + kernel_options['name'] + '.symb/'
- irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} #
- edge_required = False #
-
- if not os.path.exists(dir_save):
- os.makedirs(dir_save)
- file_output = open(dir_save + 'output.txt', 'a')
- sys.stdout = file_output
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('knn_options:', knn_options)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for train_examples in ['k-graphs', 'expert', 'random', 'best-dataset', 'trainset']:
- print('\n-------------------------------------')
- print('train examples used:', train_examples, '\n')
- mpg_options['fit_method'] = train_examples
- try:
- kernel_knn_cv(ds_name, train_examples, knn_options, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required, cut_range=None)
- except Exception as exp:
- print('An exception occured when running this experiment:')
- LOG_FILENAME = dir_save + 'error.txt'
- logging.basicConfig(filename=LOG_FILENAME, level=logging.DEBUG)
- logging.exception('')
- print(repr(exp))
-
-
- def xp_median_preimage_9_4():
- """xp 9_4: MAO, WeisfeilerLehman, using CONSTANT, symbolic only.
- """
- for test_size in test_sizes:
- # set parameters.
- ds_name = 'MAO' #
- knn_options = {'n_neighbors': 1,
- 'n_splits': 30,
- 'test_size': test_size,
- 'verbose': True}
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [4, 4, 2, 1, 1, 1], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100, #
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'allow_zeros': allow_zeros,
- 'triangle_rule': triangle_rule,
- 'verbose': 1}
- kernel_options = {'name': 'WeisfeilerLehman',
- 'height': 6,
- 'base_kernel': 'subtree',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 0}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': initial_solutions, # 1
- 'edit_cost': 'CONSTANT', #
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 0,
- 'verbose': 1,
- 'update_order': update_order,
- 'randomness': 'REAL',
- 'refine': False}
- save_results = True
- dir_save = dir_root + ds_name + '.' + kernel_options['name'] + '.symb/'
- irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} #
- edge_required = False #
-
- if not os.path.exists(dir_save):
- os.makedirs(dir_save)
- file_output = open(dir_save + 'output.txt', 'a')
- sys.stdout = file_output
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('knn_options:', knn_options)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # # compute gram matrices for each class a priori.
- # print('Compute gram matrices for each class a priori.')
- # compute_gram_matrices_by_class(ds_name, kernel_options, save_results=True, dir_save=dir_save, irrelevant_labels=irrelevant_labels)
-
- # generate preimages.
- for train_examples in ['k-graphs', 'expert', 'random', 'best-dataset', 'trainset']:
- print('\n-------------------------------------')
- print('train examples used:', train_examples, '\n')
- mpg_options['fit_method'] = train_examples
- try:
- kernel_knn_cv(ds_name, train_examples, knn_options, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required, cut_range=None)
- except Exception as exp:
- print('An exception occured when running this experiment:')
- LOG_FILENAME = dir_save + 'error.txt'
- logging.basicConfig(filename=LOG_FILENAME, level=logging.DEBUG)
- logging.exception('')
- print(repr(exp))
-
-
- def xp_median_preimage_8_1():
- """xp 8_1: Monoterpenoides, StructuralSP, using CONSTANT.
- """
- for test_size in test_sizes:
- # set parameters.
- ds_name = 'Monoterpenoides' #
- knn_options = {'n_neighbors': 1,
- 'n_splits': 30,
- 'test_size': test_size,
- 'verbose': True}
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [3, 3, 1, 3, 3, 1], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100, #
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'allow_zeros': allow_zeros,
- 'triangle_rule': triangle_rule,
- 'verbose': 1}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'StructuralSP',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'edge_kernels': sub_kernels,
- 'compute_method': 'naive',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 0}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': initial_solutions, # 1
- 'edit_cost': 'CONSTANT', #
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 0,
- 'verbose': 1,
- 'update_order': update_order,
- 'randomness': 'REAL',
- 'refine': False}
- save_results = True
- dir_save = dir_root + ds_name + '.' + kernel_options['name'] + '/' + ('update_order/' if update_order else '')
- irrelevant_labels = None #
- edge_required = False #
-
- if not os.path.exists(dir_save):
- os.makedirs(dir_save)
- file_output = open(dir_save + 'output.txt', 'a')
- sys.stdout = file_output
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('knn_options:', knn_options)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for train_examples in ['k-graphs', 'expert', 'random', 'best-dataset', 'trainset']:
- print('\n-------------------------------------')
- print('train examples used:', train_examples, '\n')
- mpg_options['fit_method'] = train_examples
- try:
- kernel_knn_cv(ds_name, train_examples, knn_options, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required, cut_range=None)
- except Exception as exp:
- print('An exception occured when running this experiment:')
- LOG_FILENAME = dir_save + 'error.txt'
- logging.basicConfig(filename=LOG_FILENAME, level=logging.DEBUG)
- logging.exception('')
- print(repr(exp))
-
-
- def xp_median_preimage_8_2():
- """xp 8_2: Monoterpenoides, PathUpToH, using CONSTANT.
- """
- for test_size in test_sizes:
- # set parameters.
- ds_name = 'Monoterpenoides' #
- knn_options = {'n_neighbors': 1,
- 'n_splits': 30,
- 'test_size': test_size,
- 'verbose': True}
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [4, 4, 2, 1, 1, 1], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100, #
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'allow_zeros': allow_zeros,
- 'triangle_rule': triangle_rule,
- 'verbose': 1}
- kernel_options = {'name': 'PathUpToH',
- 'depth': 7, #
- 'k_func': 'MinMax', #
- 'compute_method': 'trie',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 0}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': initial_solutions, # 1
- 'edit_cost': 'CONSTANT', #
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 0,
- 'verbose': 1,
- 'update_order': update_order,
- 'randomness': 'REAL',
- 'refine': False}
- save_results = True
- dir_save = dir_root + ds_name + '.' + kernel_options['name'] + '/' + ('update_order/' if update_order else '')
- irrelevant_labels = None #
- edge_required = False #
-
- if not os.path.exists(dir_save):
- os.makedirs(dir_save)
- file_output = open(dir_save + 'output.txt', 'a')
- sys.stdout = file_output
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('knn_options:', knn_options)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for train_examples in ['k-graphs', 'expert', 'random', 'best-dataset', 'trainset']:
- print('\n-------------------------------------')
- print('train examples used:', train_examples, '\n')
- mpg_options['fit_method'] = train_examples
- try:
- kernel_knn_cv(ds_name, train_examples, knn_options, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required, cut_range=None)
- except Exception as exp:
- print('An exception occured when running this experiment:')
- LOG_FILENAME = dir_save + 'error.txt'
- logging.basicConfig(filename=LOG_FILENAME, level=logging.DEBUG)
- logging.exception('')
- print(repr(exp))
-
-
- def xp_median_preimage_8_3():
- """xp 8_3: Monoterpenoides, Treelet, using CONSTANT.
- """
- for test_size in test_sizes:
- from gklearn.utils.kernels import polynomialkernel
- # set parameters.
- ds_name = 'Monoterpenoides' #
- knn_options = {'n_neighbors': 1,
- 'n_splits': 30,
- 'test_size': test_size,
- 'verbose': True}
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [4, 4, 2, 1, 1, 1], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100, #
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'allow_zeros': allow_zeros,
- 'triangle_rule': triangle_rule,
- 'verbose': 1}
- pkernel = functools.partial(polynomialkernel, d=2, c=1e+5)
- kernel_options = {'name': 'Treelet',
- 'sub_kernel': pkernel,
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 0}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': initial_solutions, # 1
- 'edit_cost': 'CONSTANT', #
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 0,
- 'verbose': 1,
- 'update_order': update_order,
- 'randomness': 'REAL',
- 'refine': False}
- save_results = True
- dir_save = dir_root + ds_name + '.' + kernel_options['name'] + '/' + ('update_order/' if update_order else '')
- irrelevant_labels = None #
- edge_required = False #
-
- if not os.path.exists(dir_save):
- os.makedirs(dir_save)
- file_output = open(dir_save + 'output.txt', 'a')
- sys.stdout = file_output
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('knn_options:', knn_options)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for train_examples in ['k-graphs', 'expert', 'random', 'best-dataset', 'trainset']:
- print('\n-------------------------------------')
- print('train examples used:', train_examples, '\n')
- mpg_options['fit_method'] = train_examples
- try:
- kernel_knn_cv(ds_name, train_examples, knn_options, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required, cut_range=None)
- except Exception as exp:
- print('An exception occured when running this experiment:')
- LOG_FILENAME = dir_save + 'error.txt'
- logging.basicConfig(filename=LOG_FILENAME, level=logging.DEBUG)
- logging.exception('')
- print(repr(exp))
-
-
- def xp_median_preimage_8_4():
- """xp 8_4: Monoterpenoides, WeisfeilerLehman, using CONSTANT.
- """
- for test_size in test_sizes:
- # set parameters.
- ds_name = 'Monoterpenoides' #
- knn_options = {'n_neighbors': 1,
- 'n_splits': 30,
- 'test_size': test_size,
- 'verbose': True}
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [4, 4, 2, 1, 1, 1], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100, #
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'allow_zeros': allow_zeros,
- 'triangle_rule': triangle_rule,
- 'verbose': 1}
- kernel_options = {'name': 'WeisfeilerLehman',
- 'height': 4,
- 'base_kernel': 'subtree',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 0}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': initial_solutions, # 1
- 'edit_cost': 'CONSTANT', #
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 0,
- 'verbose': 1,
- 'update_order': update_order,
- 'randomness': 'REAL',
- 'refine': False}
- save_results = True
- dir_save = dir_root + ds_name + '.' + kernel_options['name'] + '/' + ('update_order/' if update_order else '')
- irrelevant_labels = None #
- edge_required = False #
-
- if not os.path.exists(dir_save):
- os.makedirs(dir_save)
- file_output = open(dir_save + 'output.txt', 'a')
- sys.stdout = file_output
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('knn_options:', knn_options)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for train_examples in ['k-graphs', 'expert', 'random', 'best-dataset', 'trainset']:
- print('\n-------------------------------------')
- print('train examples used:', train_examples, '\n')
- mpg_options['fit_method'] = train_examples
- try:
- kernel_knn_cv(ds_name, train_examples, knn_options, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required, cut_range=None)
- except Exception as exp:
- print('An exception occured when running this experiment:')
- LOG_FILENAME = dir_save + 'error.txt'
- logging.basicConfig(filename=LOG_FILENAME, level=logging.DEBUG)
- logging.exception('')
- print(repr(exp))
-
-
- def xp_median_preimage_7_1():
- """xp 7_1: MUTAG, StructuralSP, using CONSTANT.
- """
- for test_size in test_sizes:
- # set parameters.
- ds_name = 'MUTAG' #
- knn_options = {'n_neighbors': 1,
- 'n_splits': 30,
- 'test_size': test_size,
- 'verbose': True}
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [4, 4, 2, 1, 1, 1], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100, #
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'allow_zeros': allow_zeros,
- 'triangle_rule': triangle_rule,
- 'verbose': 1}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'StructuralSP',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'edge_kernels': sub_kernels,
- 'compute_method': 'naive',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 0}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': initial_solutions, # 1
- 'edit_cost': 'CONSTANT', #
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 0,
- 'verbose': 1,
- 'update_order': update_order,
- 'randomness': 'REAL',
- 'refine': False}
- save_results = True
- dir_save = dir_root + ds_name + '.' + kernel_options['name'] + '/' + ('update_order/' if update_order else '')
- irrelevant_labels = None #
- edge_required = False #
-
- if not os.path.exists(dir_save):
- os.makedirs(dir_save)
- file_output = open(dir_save + 'output.txt', 'a')
- sys.stdout = file_output
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('knn_options:', knn_options)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for train_examples in ['k-graphs', 'expert', 'random', 'best-dataset', 'trainset']:
- print('\n-------------------------------------')
- print('train examples used:', train_examples, '\n')
- mpg_options['fit_method'] = train_examples
- try:
- kernel_knn_cv(ds_name, train_examples, knn_options, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required, cut_range=None)
- except Exception as exp:
- print('An exception occured when running this experiment:')
- LOG_FILENAME = dir_save + 'error.txt'
- logging.basicConfig(filename=LOG_FILENAME, level=logging.DEBUG)
- logging.exception('')
- print(repr(exp))
-
-
- def xp_median_preimage_7_2():
- """xp 7_2: MUTAG, PathUpToH, using CONSTANT.
- """
- for test_size in test_sizes:
- # set parameters.
- ds_name = 'MUTAG' #
- knn_options = {'n_neighbors': 1,
- 'n_splits': 30,
- 'test_size': test_size,
- 'verbose': True}
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [4, 4, 2, 1, 1, 1], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100, #
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'allow_zeros': allow_zeros,
- 'triangle_rule': triangle_rule,
- 'verbose': 1}
- kernel_options = {'name': 'PathUpToH',
- 'depth': 2, #
- 'k_func': 'MinMax', #
- 'compute_method': 'trie',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 0}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': initial_solutions, # 1
- 'edit_cost': 'CONSTANT', #
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 0,
- 'verbose': 1,
- 'update_order': update_order,
- 'randomness': 'REAL',
- 'refine': False}
- save_results = True
- dir_save = dir_root + ds_name + '.' + kernel_options['name'] + '/' + ('update_order/' if update_order else '')
- irrelevant_labels = None #
- edge_required = False #
-
- if not os.path.exists(dir_save):
- os.makedirs(dir_save)
- file_output = open(dir_save + 'output.txt', 'a')
- sys.stdout = file_output
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('knn_options:', knn_options)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for train_examples in ['k-graphs', 'expert', 'random', 'best-dataset', 'trainset']:
- print('\n-------------------------------------')
- print('train examples used:', train_examples, '\n')
- mpg_options['fit_method'] = train_examples
- try:
- kernel_knn_cv(ds_name, train_examples, knn_options, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required, cut_range=None)
- except Exception as exp:
- print('An exception occured when running experiment on xp_median_preimage_7_2:')
- LOG_FILENAME = dir_save + 'error.txt'
- logging.basicConfig(filename=LOG_FILENAME, level=logging.DEBUG)
- logging.exception('')
- print(repr(exp))
-
-
- def xp_median_preimage_7_3():
- """xp 7_3: MUTAG, Treelet, using CONSTANT.
- """
- for test_size in test_sizes:
- from gklearn.utils.kernels import polynomialkernel
- # set parameters.
- ds_name = 'MUTAG' #
- knn_options = {'n_neighbors': 1,
- 'n_splits': 30,
- 'test_size': test_size,
- 'verbose': True}
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [4, 4, 2, 1, 1, 1], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100, #
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'allow_zeros': allow_zeros,
- 'triangle_rule': triangle_rule,
- 'verbose': 1}
- pkernel = functools.partial(polynomialkernel, d=3, c=1e+8)
- kernel_options = {'name': 'Treelet',
- 'sub_kernel': pkernel,
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 0}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': initial_solutions, # 1
- 'edit_cost': 'CONSTANT', #
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 0,
- 'verbose': 1,
- 'update_order': update_order,
- 'randomness': 'REAL',
- 'refine': False}
- save_results = True
- dir_save = dir_root + ds_name + '.' + kernel_options['name'] + '/' + ('update_order/' if update_order else '')
- irrelevant_labels = None #
- edge_required = False #
-
- if not os.path.exists(dir_save):
- os.makedirs(dir_save)
- file_output = open(dir_save + 'output.txt', 'a')
- sys.stdout = file_output
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('knn_options:', knn_options)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for train_examples in ['k-graphs', 'expert', 'random', 'best-dataset', 'trainset']:
- print('\n-------------------------------------')
- print('train examples used:', train_examples, '\n')
- mpg_options['fit_method'] = train_examples
- try:
- kernel_knn_cv(ds_name, train_examples, knn_options, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required, cut_range=None)
- except Exception as exp:
- print('An exception occured when running this experiment:')
- LOG_FILENAME = dir_save + 'error.txt'
- logging.basicConfig(filename=LOG_FILENAME, level=logging.DEBUG)
- logging.exception('')
- print(repr(exp))
-
-
- def xp_median_preimage_7_4():
- """xp 7_4: MUTAG, WeisfeilerLehman, using CONSTANT.
- """
- for test_size in test_sizes:
- # set parameters.
- ds_name = 'MUTAG' #
- knn_options = {'n_neighbors': 1,
- 'n_splits': 30,
- 'test_size': test_size,
- 'verbose': True}
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [4, 4, 2, 1, 1, 1], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100, #
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'allow_zeros': allow_zeros,
- 'triangle_rule': triangle_rule,
- 'verbose': 1}
- kernel_options = {'name': 'WeisfeilerLehman',
- 'height': 1,
- 'base_kernel': 'subtree',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 0}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': initial_solutions, # 1
- 'edit_cost': 'CONSTANT', #
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 0,
- 'verbose': 1,
- 'update_order': update_order,
- 'randomness': 'REAL',
- 'refine': False}
- save_results = True
- dir_save = dir_root + ds_name + '.' + kernel_options['name'] + '/' + ('update_order/' if update_order else '')
- irrelevant_labels = None #
- edge_required = False #
-
- if not os.path.exists(dir_save):
- os.makedirs(dir_save)
- file_output = open(dir_save + 'output.txt', 'a')
- sys.stdout = file_output
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('knn_options:', knn_options)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for train_examples in ['k-graphs', 'expert', 'random', 'best-dataset', 'trainset']:
- print('\n-------------------------------------')
- print('train examples used:', train_examples, '\n')
- mpg_options['fit_method'] = train_examples
- try:
- kernel_knn_cv(ds_name, train_examples, knn_options, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required, cut_range=None)
- except Exception as exp:
- print('An exception occured when running this experiment:')
- LOG_FILENAME = dir_save + 'error.txt'
- logging.basicConfig(filename=LOG_FILENAME, level=logging.DEBUG)
- logging.exception('')
- print(repr(exp))
-
-
- def xp_median_preimage_6_1():
- """xp 6_1: COIL-RAG, StructuralSP, using NON_SYMBOLIC.
- """
- for test_size in test_sizes:
- # set parameters.
- ds_name = 'COIL-RAG' #
- knn_options = {'n_neighbors': 1,
- 'n_splits': 30,
- 'test_size': test_size,
- 'verbose': True}
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [3, 3, 1, 3, 3, 1], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100,
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'allow_zeros': allow_zeros,
- 'triangle_rule': triangle_rule,
- 'verbose': 1}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'StructuralSP',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'edge_kernels': sub_kernels,
- 'compute_method': 'naive',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 0}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': initial_solutions, # 1
- 'edit_cost': 'NON_SYMBOLIC', #
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 0,
- 'verbose': 1,
- 'update_order': update_order,
- 'randomness': 'REAL',
- 'refine': False}
- save_results = True
- dir_save = dir_root + ds_name + '.' + kernel_options['name'] + '/' + ('update_order/' if update_order else '')
- irrelevant_labels = None #
- edge_required = False #
-
- if not os.path.exists(dir_save):
- os.makedirs(dir_save)
- file_output = open(dir_save + 'output.txt', 'a')
- sys.stdout = file_output
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('knn_options:', knn_options)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for train_examples in ['k-graphs', 'random', 'best-dataset', 'trainset']:
- print('\n-------------------------------------')
- print('train examples used:', train_examples, '\n')
- mpg_options['fit_method'] = train_examples
- try:
- kernel_knn_cv(ds_name, train_examples, knn_options, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required, cut_range=None)
- except Exception as exp:
- print('An exception occured when running experiment on xp_median_preimage_6_1:')
- LOG_FILENAME = dir_save + 'error.txt'
- logging.basicConfig(filename=LOG_FILENAME, level=logging.DEBUG)
- logging.exception('')
- print(repr(exp))
-
-
- def xp_median_preimage_6_2():
- """xp 6_2: COIL-RAG, ShortestPath, using NON_SYMBOLIC.
- """
- for test_size in test_sizes:
- # set parameters.
- ds_name = 'COIL-RAG' #
- knn_options = {'n_neighbors': 1,
- 'n_splits': 30,
- 'test_size': test_size,
- 'verbose': True}
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [3, 3, 1, 3, 3, 1], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100,
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'allow_zeros': allow_zeros,
- 'triangle_rule': triangle_rule,
- 'verbose': 1}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'ShortestPath',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 0}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': initial_solutions, # 1
- 'edit_cost': 'NON_SYMBOLIC', #
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 0,
- 'verbose': 1,
- 'update_order': update_order,
- 'randomness': 'REAL',
- 'refine': False}
- save_results = True
- dir_save = dir_root + ds_name + '.' + kernel_options['name'] + '/' + ('update_order/' if update_order else '')
- irrelevant_labels = None #
- edge_required = True #
-
- if not os.path.exists(dir_save):
- os.makedirs(dir_save)
- file_output = open(dir_save + 'output.txt', 'a')
- sys.stdout = file_output
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('knn_options:', knn_options)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for train_examples in ['k-graphs', 'random', 'best-dataset', 'trainset']:
- print('\n-------------------------------------')
- print('train examples used:', train_examples, '\n')
- mpg_options['fit_method'] = train_examples
- try:
- kernel_knn_cv(ds_name, train_examples, knn_options, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required, cut_range=None)
- except Exception as exp:
- print('An exception occured when running experiment on xp_median_preimage_6_2:')
- LOG_FILENAME = dir_save + 'error.txt'
- logging.basicConfig(filename=LOG_FILENAME, level=logging.DEBUG)
- logging.exception('')
- print(repr(exp))
-
-
- def xp_median_preimage_5_1():
- """xp 5_1: FRANKENSTEIN, StructuralSP, using NON_SYMBOLIC.
- """
- for test_size in test_sizes:
- # set parameters.
- ds_name = 'FRANKENSTEIN' #
- knn_options = {'n_neighbors': 1,
- 'n_splits': 30,
- 'test_size': test_size,
- 'verbose': True}
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [3, 3, 1, 3, 3, 0], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100,
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'allow_zeros': allow_zeros,
- 'triangle_rule': triangle_rule,
- 'verbose': 1}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'StructuralSP',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'edge_kernels': sub_kernels,
- 'compute_method': 'naive',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 0}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': initial_solutions, # 1
- 'edit_cost': 'NON_SYMBOLIC',
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 0,
- 'verbose': 1,
- 'update_order': update_order,
- 'randomness': 'REAL',
- 'refine': False}
- save_results = True
- dir_save = dir_root + ds_name + '.' + kernel_options['name'] + '/' + ('update_order/' if update_order else '')
- irrelevant_labels = None #
- edge_required = False #
-
- if not os.path.exists(dir_save):
- os.makedirs(dir_save)
- file_output = open(dir_save + 'output.txt', 'a')
- sys.stdout = file_output
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('knn_options:', knn_options)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for train_examples in ['k-graphs', 'random', 'best-dataset', 'trainset']:
- print('\n-------------------------------------')
- print('train examples used:', train_examples, '\n')
- mpg_options['fit_method'] = train_examples
- try:
- kernel_knn_cv(ds_name, train_examples, knn_options, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required, cut_range=None)
- except Exception as exp:
- print('An exception occured when running this experiment:')
- LOG_FILENAME = dir_save + 'error.txt'
- logging.basicConfig(filename=LOG_FILENAME, level=logging.DEBUG)
- logging.exception('')
- print(repr(exp))
-
-
- def xp_median_preimage_4_1():
- """xp 4_1: COLORS-3, StructuralSP, using NON_SYMBOLIC.
- """
- for test_size in test_sizes:
- # set parameters.
- ds_name = 'COLORS-3' #
- knn_options = {'n_neighbors': 1,
- 'n_splits': 30,
- 'test_size': test_size,
- 'verbose': True}
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [3, 3, 1, 3, 3, 0], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100,
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'allow_zeros': allow_zeros,
- 'triangle_rule': triangle_rule,
- 'verbose': 1}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'StructuralSP',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'edge_kernels': sub_kernels,
- 'compute_method': 'naive',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 0}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': initial_solutions, # 1
- 'edit_cost': 'NON_SYMBOLIC',
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 0,
- 'verbose': 1,
- 'update_order': update_order,
- 'randomness': 'REAL',
- 'refine': False}
- save_results = True
- dir_save = dir_root + ds_name + '.' + kernel_options['name'] + '/' + ('update_order/' if update_order else '')
- irrelevant_labels = None #
- edge_required = False #
-
- if not os.path.exists(dir_save):
- os.makedirs(dir_save)
- file_output = open(dir_save + 'output.txt', 'a')
- sys.stdout = file_output
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('knn_options:', knn_options)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for train_examples in ['k-graphs', 'random', 'best-dataset', 'trainset']:
- print('\n-------------------------------------')
- print('train examples used:', train_examples, '\n')
- mpg_options['fit_method'] = train_examples
- try:
- kernel_knn_cv(ds_name, train_examples, knn_options, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required, cut_range=None)
- except Exception as exp:
- print('An exception occured when running this experiment:')
- LOG_FILENAME = dir_save + 'error.txt'
- logging.basicConfig(filename=LOG_FILENAME, level=logging.DEBUG)
- logging.exception('')
- print(repr(exp))
-
-
- def xp_median_preimage_3_2():
- """xp 3_2: Fingerprint, ShortestPath, using LETTER2, only node attrs.
- """
- for test_size in test_sizes:
- # set parameters.
- ds_name = 'Fingerprint' #
- knn_options = {'n_neighbors': 1,
- 'n_splits': 30,
- 'test_size': test_size,
- 'verbose': True}
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [0.525, 0.525, 0.01, 0.125, 0.125], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100,
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'allow_zeros': allow_zeros,
- 'triangle_rule': triangle_rule,
- 'verbose': 1}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'ShortestPath',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 0}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': initial_solutions, # 1
- 'edit_cost': 'LETTER2',
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 0,
- 'verbose': 1,
- 'update_order': update_order,
- 'randomness': 'REAL',
- 'refine': False}
- save_results = True
- dir_save = dir_root + ds_name + '.' + kernel_options['name'] + '/' + ('update_order/' if update_order else '')
- irrelevant_labels = {'edge_attrs': ['orient', 'angle']} #
- edge_required = True #
-
- if not os.path.exists(dir_save):
- os.makedirs(dir_save)
- file_output = open(dir_save + 'output.txt', 'a')
- sys.stdout = file_output
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('knn_options:', knn_options)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for train_examples in ['k-graphs', 'random', 'best-dataset', 'trainset']:
- print('\n-------------------------------------')
- print('train examples used:', train_examples, '\n')
- mpg_options['fit_method'] = train_examples
- try:
- kernel_knn_cv(ds_name, train_examples, knn_options, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required, cut_range=None)
- except Exception as exp:
- print('An exception occured when running this experiment:')
- LOG_FILENAME = dir_save + 'error.txt'
- logging.basicConfig(filename=LOG_FILENAME, level=logging.DEBUG)
- logging.exception('')
- print(repr(exp))
-
-
- def xp_median_preimage_3_1():
- """xp 3_1: Fingerprint, StructuralSP, using LETTER2, only node attrs.
- """
- for test_size in test_sizes:
- # set parameters.
- ds_name = 'Fingerprint' #
- knn_options = {'n_neighbors': 1,
- 'n_splits': 30,
- 'test_size': test_size,
- 'verbose': True}
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [0.525, 0.525, 0.01, 0.125, 0.125], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100,
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'allow_zeros': allow_zeros,
- 'triangle_rule': triangle_rule,
- 'verbose': 1}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'StructuralSP',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'edge_kernels': sub_kernels,
- 'compute_method': 'naive',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 0}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': initial_solutions, # 1
- 'edit_cost': 'LETTER2',
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 0,
- 'verbose': 1,
- 'update_order': update_order,
- 'randomness': 'REAL',
- 'refine': False}
- save_results = True
- dir_save = dir_root + ds_name + '.' + kernel_options['name'] + '/' + ('update_order/' if update_order else '')
- irrelevant_labels = {'edge_attrs': ['orient', 'angle']} #
- edge_required = False #
-
- if not os.path.exists(dir_save):
- os.makedirs(dir_save)
- file_output = open(dir_save + 'output.txt', 'a')
- sys.stdout = file_output
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('knn_options:', knn_options)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for train_examples in ['k-graphs', 'random', 'best-dataset', 'trainset']:
- print('\n-------------------------------------')
- print('train examples used:', train_examples, '\n')
- mpg_options['fit_method'] = train_examples
- try:
- kernel_knn_cv(ds_name, train_examples, knn_options, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required, cut_range=None)
- except Exception as exp:
- print('An exception occured when running this experiment:')
- LOG_FILENAME = dir_save + 'error.txt'
- logging.basicConfig(filename=LOG_FILENAME, level=logging.DEBUG)
- logging.exception('')
- print(repr(exp))
-
-
- def xp_median_preimage_2_1():
- """xp 2_1: COIL-DEL, StructuralSP, using LETTER2, only node attrs.
- """
- for test_size in test_sizes:
- # set parameters.
- ds_name = 'COIL-DEL' #
- knn_options = {'n_neighbors': 1,
- 'n_splits': 30,
- 'test_size': test_size,
- 'verbose': True}
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [3, 3, 1, 3, 3],
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100,
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'allow_zeros': allow_zeros,
- 'triangle_rule': triangle_rule,
- 'verbose': 1}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'StructuralSP',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'edge_kernels': sub_kernels,
- 'compute_method': 'naive',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 0}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': initial_solutions, # 1
- 'edit_cost': 'LETTER2',
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 0,
- 'verbose': 1,
- 'update_order': update_order,
- 'randomness': 'REAL',
- 'refine': False}
- save_results = True
- dir_save = dir_root + ds_name + '.' + kernel_options['name'] + '.node_attrs/'
- irrelevant_labels = {'edge_labels': ['valence']}
- edge_required = False
-
- if not os.path.exists(dir_save):
- os.makedirs(dir_save)
- file_output = open(dir_save + 'output.txt', 'a')
- sys.stdout = file_output
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('knn_options:', knn_options)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # # compute gram matrices for each class a priori.
- # print('Compute gram matrices for each class a priori.')
- # compute_gram_matrices_by_class(ds_name, kernel_options, save_results=True, dir_save=dir_save, irrelevant_labels=irrelevant_labels)
-
- # generate preimages.
- for train_examples in ['k-graphs', 'random', 'best-dataset', 'trainset']:
- print('\n-------------------------------------')
- print('train examples used:', train_examples, '\n')
- mpg_options['fit_method'] = train_examples
- try:
- kernel_knn_cv(ds_name, train_examples, knn_options, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required, cut_range=None)
- except Exception as exp:
- print('An exception occured when running this experiment:')
- LOG_FILENAME = dir_save + 'error.txt'
- logging.basicConfig(filename=LOG_FILENAME, level=logging.DEBUG)
- logging.exception('')
- print(repr(exp))
-
-
- def xp_median_preimage_1_1():
- """xp 1_1: Letter-high, StructuralSP.
- """
- for test_size in test_sizes:
- # set parameters.
- ds_name = 'Letter-high'
- knn_options = {'n_neighbors': 1,
- 'n_splits': 30,
- 'test_size': test_size,
- 'verbose': True}
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [0.675, 0.675, 0.75, 0.425, 0.425],
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100,
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'allow_zeros': allow_zeros,
- 'triangle_rule': triangle_rule,
- 'verbose': 1}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'StructuralSP',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'edge_kernels': sub_kernels,
- 'compute_method': 'naive',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 0}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': initial_solutions, # 1
- 'edit_cost': 'LETTER2',
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 0,
- 'verbose': 1,
- 'update_order': update_order,
- 'randomness': 'REAL',
- 'refine': False}
- save_results = True
- dir_save = dir_root + ds_name + '.' + kernel_options['name'] + '/' + ('update_order/' if update_order else '')
- irrelevant_labels = None
- edge_required = False
-
- if not os.path.exists(dir_save):
- os.makedirs(dir_save)
- file_output = open(dir_save + 'output.txt', 'a')
- sys.stdout = file_output
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('knn_options:', knn_options)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
-
- # generate preimages.
- for train_examples in ['k-graphs', 'expert', 'random', 'best-dataset', 'trainset']:
- print('\n-------------------------------------')
- print('train examples used:', train_examples, '\n')
- mpg_options['fit_method'] = train_examples
- try:
- kernel_knn_cv(ds_name, train_examples, knn_options, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required, cut_range=None)
- except Exception as exp:
- print('An exception occured when running experiment on xp_median_preimage_1_1:')
- LOG_FILENAME = dir_save + 'error.txt'
- logging.basicConfig(filename=LOG_FILENAME, level=logging.DEBUG)
- logging.exception('')
- print(repr(exp))
-
-
- def xp_median_preimage_1_2():
- """xp 1_2: Letter-high, ShortestPath.
- """
- for test_size in test_sizes:
- # set parameters.
- ds_name = 'Letter-high'
- knn_options = {'n_neighbors': 1,
- 'n_splits': 30,
- 'test_size': test_size,
- 'verbose': True}
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [0.675, 0.675, 0.75, 0.425, 0.425],
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100,
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'allow_zeros': allow_zeros,
- 'triangle_rule': triangle_rule,
- 'verbose': 1}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'ShortestPath',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 0}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': initial_solutions, # 1
- 'edit_cost': 'LETTER2',
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 0,
- 'verbose': 1,
- 'update_order': update_order,
- 'randomness': 'REAL',
- 'refine': False}
- save_results = True
- dir_save = dir_root + ds_name + '.' + kernel_options['name'] + '/' + ('update_order/' if update_order else '')
- irrelevant_labels = None #
- edge_required = True #
-
- if not os.path.exists(dir_save):
- os.makedirs(dir_save)
- file_output = open(dir_save + 'output.txt', 'a')
- sys.stdout = file_output
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('knn_options:', knn_options)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for train_examples in ['k-graphs', 'expert', 'random', 'best-dataset', 'trainset']:
- print('\n-------------------------------------')
- print('train examples used:', train_examples, '\n')
- mpg_options['fit_method'] = train_examples
- try:
- kernel_knn_cv(ds_name, train_examples, knn_options, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required, cut_range=None)
- except Exception as exp:
- print('An exception occured when running experiment on xp_median_preimage_1_2:')
- LOG_FILENAME = dir_save + 'error.txt'
- logging.basicConfig(filename=LOG_FILENAME, level=logging.DEBUG)
- logging.exception('')
- print(repr(exp))
-
-
- def xp_median_preimage_10_1():
- """xp 10_1: Letter-med, StructuralSP.
- """
- for test_size in test_sizes:
- # set parameters.
- ds_name = 'Letter-med'
- knn_options = {'n_neighbors': 1,
- 'n_splits': 30,
- 'test_size': test_size,
- 'verbose': True}
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [0.525, 0.525, 0.75, 0.475, 0.475],
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100,
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'allow_zeros': allow_zeros,
- 'triangle_rule': triangle_rule,
- 'verbose': 1}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'StructuralSP',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'edge_kernels': sub_kernels,
- 'compute_method': 'naive',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 0}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': initial_solutions, # 1
- 'edit_cost': 'LETTER2',
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 0,
- 'verbose': 1,
- 'update_order': update_order,
- 'randomness': 'REAL',
- 'refine': False}
- save_results = True
- dir_save = dir_root + ds_name + '.' + kernel_options['name'] + '/' + ('update_order/' if update_order else '')
- irrelevant_labels = None
- edge_required = False
-
- if not os.path.exists(dir_save):
- os.makedirs(dir_save)
- file_output = open(dir_save + 'output.txt', 'a')
- sys.stdout = file_output
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('knn_options:', knn_options)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
-
- # generate preimages.
- for train_examples in ['k-graphs', 'expert', 'random', 'best-dataset', 'trainset']:
- print('\n-------------------------------------')
- print('train examples used:', train_examples, '\n')
- mpg_options['fit_method'] = train_examples
- try:
- kernel_knn_cv(ds_name, train_examples, knn_options, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required, cut_range=None)
- except Exception as exp:
- print('An exception occured when running experiment on xp_median_preimage_10_1:')
- LOG_FILENAME = dir_save + 'error.txt'
- logging.basicConfig(filename=LOG_FILENAME, level=logging.DEBUG)
- logging.exception('')
- print(repr(exp))
-
-
- def xp_median_preimage_10_2():
- """xp 10_2: Letter-med, ShortestPath.
- """
- for test_size in test_sizes:
- # set parameters.
- ds_name = 'Letter-med'
- knn_options = {'n_neighbors': 1,
- 'n_splits': 30,
- 'test_size': test_size,
- 'verbose': True}
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [0.525, 0.525, 0.75, 0.475, 0.475],
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100,
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'allow_zeros': allow_zeros,
- 'triangle_rule': triangle_rule,
- 'verbose': 1}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'ShortestPath',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 0}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': initial_solutions, # 1
- 'edit_cost': 'LETTER2',
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 0,
- 'verbose': 1,
- 'update_order': update_order,
- 'randomness': 'REAL',
- 'refine': False}
- save_results = True
- dir_save = dir_root + ds_name + '.' + kernel_options['name'] + '/' + ('update_order/' if update_order else '')
- irrelevant_labels = None #
- edge_required = True #
-
- if not os.path.exists(dir_save):
- os.makedirs(dir_save)
- file_output = open(dir_save + 'output.txt', 'a')
- sys.stdout = file_output
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('knn_options:', knn_options)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for train_examples in ['k-graphs', 'expert', 'random', 'best-dataset', 'trainset']:
- print('\n-------------------------------------')
- print('train examples used:', train_examples, '\n')
- mpg_options['fit_method'] = train_examples
- try:
- kernel_knn_cv(ds_name, train_examples, knn_options, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required, cut_range=None)
- except Exception as exp:
- print('An exception occured when running experiment on xp_median_preimage_10_2:')
- LOG_FILENAME = dir_save + 'error.txt'
- logging.basicConfig(filename=LOG_FILENAME, level=logging.DEBUG)
- logging.exception('')
- print(repr(exp))
-
-
- def xp_median_preimage_11_1():
- """xp 11_1: Letter-low, StructuralSP.
- """
- for test_size in test_sizes:
- # set parameters.
- ds_name = 'Letter-low'
- knn_options = {'n_neighbors': 1,
- 'n_splits': 30,
- 'test_size': test_size,
- 'verbose': True}
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [0.075, 0.075, 0.25, 0.075, 0.075],
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100,
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'allow_zeros': allow_zeros,
- 'triangle_rule': triangle_rule,
- 'verbose': 1}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'StructuralSP',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'edge_kernels': sub_kernels,
- 'compute_method': 'naive',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 0}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': initial_solutions, # 1
- 'edit_cost': 'LETTER2',
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 0,
- 'verbose': 1,
- 'update_order': update_order,
- 'randomness': 'REAL',
- 'refine': False}
- save_results = True
- dir_save = dir_root + ds_name + '.' + kernel_options['name'] + '/' + ('update_order/' if update_order else '')
- irrelevant_labels = None
- edge_required = False
-
- if not os.path.exists(dir_save):
- os.makedirs(dir_save)
- file_output = open(dir_save + 'output.txt', 'a')
- sys.stdout = file_output
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('knn_options:', knn_options)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
-
- # generate preimages.
- for train_examples in ['k-graphs', 'expert', 'random', 'best-dataset', 'trainset']:
- print('\n-------------------------------------')
- print('train examples used:', train_examples, '\n')
- mpg_options['fit_method'] = train_examples
- try:
- kernel_knn_cv(ds_name, train_examples, knn_options, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required, cut_range=None)
- except Exception as exp:
- print('An exception occured when running experiment on xp_median_preimage_11_1:')
- LOG_FILENAME = dir_save + 'error.txt'
- logging.basicConfig(filename=LOG_FILENAME, level=logging.DEBUG)
- logging.exception('')
- print(repr(exp))
-
-
- def xp_median_preimage_11_2():
- """xp 11_2: Letter-low, ShortestPath.
- """
- for test_size in test_sizes:
- # set parameters.
- ds_name = 'Letter-low'
- knn_options = {'n_neighbors': 1,
- 'n_splits': 30,
- 'test_size': test_size,
- 'verbose': True}
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [0.075, 0.075, 0.25, 0.075, 0.075],
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100,
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'allow_zeros': allow_zeros,
- 'triangle_rule': triangle_rule,
- 'verbose': 1}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'ShortestPath',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 0}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': initial_solutions, # 1
- 'edit_cost': 'LETTER2',
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 0,
- 'verbose': 1,
- 'update_order': update_order,
- 'randomness': 'REAL',
- 'refine': False}
- save_results = True
- dir_save = dir_root + ds_name + '.' + kernel_options['name'] + '/' + ('update_order/' if update_order else '')
- irrelevant_labels = None #
- edge_required = True #
-
- if not os.path.exists(dir_save):
- os.makedirs(dir_save)
- file_output = open(dir_save + 'output.txt', 'a')
- sys.stdout = file_output
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('knn_options:', knn_options)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for train_examples in ['k-graphs', 'expert', 'random', 'best-dataset', 'trainset']:
- print('\n-------------------------------------')
- print('train examples used:', train_examples, '\n')
- mpg_options['fit_method'] = train_examples
- try:
- kernel_knn_cv(ds_name, train_examples, knn_options, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required, cut_range=None)
- except Exception as exp:
- print('An exception occured when running experiment on xp_median_preimage_11_2:')
- LOG_FILENAME = dir_save + 'error.txt'
- logging.basicConfig(filename=LOG_FILENAME, level=logging.DEBUG)
- logging.exception('')
- print(repr(exp))
-
-
- if __name__ == "__main__":
-
- # #### xp 1_1: Letter-high, StructuralSP.
- # xp_median_preimage_1_1()
-
- # #### xp 1_2: Letter-high, ShortestPath.
- # xp_median_preimage_1_2()
-
- # #### xp 10_1: Letter-med, StructuralSP.
- # xp_median_preimage_10_1()
-
- # #### xp 10_2: Letter-med, ShortestPath.
- # xp_median_preimage_10_2()
-
- # #### xp 11_1: Letter-low, StructuralSP.
- # xp_median_preimage_11_1()
-
- # #### xp 11_2: Letter-low, ShortestPath.
- # xp_median_preimage_11_2()
- #
- # #### xp 2_1: COIL-DEL, StructuralSP, using LETTER2, only node attrs.
- # # xp_median_preimage_2_1()
- #
- # #### xp 3_1: Fingerprint, StructuralSP, using LETTER2, only node attrs.
- # # xp_median_preimage_3_1()
-
- # #### xp 3_2: Fingerprint, ShortestPath, using LETTER2, only node attrs.
- # xp_median_preimage_3_2()
-
- # #### xp 4_1: COLORS-3, StructuralSP, using NON_SYMBOLIC.
- # # xp_median_preimage_4_1()
- #
- # #### xp 5_1: FRANKENSTEIN, StructuralSP, using NON_SYMBOLIC.
- # # xp_median_preimage_5_1()
- #
- # #### xp 6_1: COIL-RAG, StructuralSP, using NON_SYMBOLIC.
- # xp_median_preimage_6_1()
-
- # #### xp 6_2: COIL-RAG, ShortestPath, using NON_SYMBOLIC.
- # xp_median_preimage_6_2()
-
- # #### xp 7_1: MUTAG, StructuralSP, using CONSTANT.
- # xp_median_preimage_7_1()
-
- # #### xp 7_2: MUTAG, PathUpToH, using CONSTANT.
- # xp_median_preimage_7_2()
-
- # #### xp 7_3: MUTAG, Treelet, using CONSTANT.
- # xp_median_preimage_7_3()
-
- # #### xp 7_4: MUTAG, WeisfeilerLehman, using CONSTANT.
- # xp_median_preimage_7_4()
- #
- # #### xp 8_1: Monoterpenoides, StructuralSP, using CONSTANT.
- # xp_median_preimage_8_1()
-
- # #### xp 8_2: Monoterpenoides, PathUpToH, using CONSTANT.
- # xp_median_preimage_8_2()
-
- # #### xp 8_3: Monoterpenoides, Treelet, using CONSTANT.
- # xp_median_preimage_8_3()
-
- # #### xp 8_4: Monoterpenoides, WeisfeilerLehman, using CONSTANT.
- # xp_median_preimage_8_4()
-
- # #### xp 9_1: MAO, StructuralSP, using CONSTANT, symbolic only.
- # xp_median_preimage_9_1()
-
- # #### xp 9_2: MAO, PathUpToH, using CONSTANT, symbolic only.
- # xp_median_preimage_9_2()
-
- # #### xp 9_3: MAO, Treelet, using CONSTANT, symbolic only.
- # xp_median_preimage_9_3()
-
- # #### xp 9_4: MAO, WeisfeilerLehman, using CONSTANT, symbolic only.
- # xp_median_preimage_9_4()
-
- #### xp 12_1: PAH, StructuralSP, using NON_SYMBOLIC, unlabeled.
- # xp_median_preimage_12_1()
-
- #### xp 12_2: PAH, PathUpToH, using CONSTANT, unlabeled.
- # xp_median_preimage_12_2()
-
- #### xp 12_3: PAH, Treelet, using CONSTANT, unlabeled.
- # xp_median_preimage_12_3()
-
- #### xp 12_4: PAH, WeisfeilerLehman, using CONSTANT, unlabeled.
- # xp_median_preimage_12_4()
-
- #### xp 12_5: PAH, ShortestPath, using NON_SYMBOLIC, unlabeled.
- # xp_median_preimage_12_5()
-
- #### xp 13_1: PAH, StructuralSP, using NON_SYMBOLIC.
- # xp_median_preimage_13_1()
-
- #### xp 13_2: PAH, ShortestPath, using NON_SYMBOLIC.
- # xp_median_preimage_13_2()
-
- #### xp 14_1: DD, PathUpToH, using CONSTANT.
- # xp_median_preimage_14_1()
-
- # #### xp 15_1: AIDS, StructuralSP, using CONSTANT, symbolic only.
- # xp_median_preimage_15_1()
-
- # #### xp 15_2: AIDS, PathUpToH, using CONSTANT, symbolic only.
- # xp_median_preimage_15_2()
-
- # #### xp 15_3: AIDS, Treelet, using CONSTANT, symbolic only.
- # xp_median_preimage_15_3()
-
- # #### xp 15_4: AIDS, WeisfeilerLehman, using CONSTANT, symbolic only.
- # xp_median_preimage_15_4()
-
-
-
-
-
-
- # #### xp 1_1: Letter-high, StructuralSP.
- xp_median_preimage_1_1()
-
- # #### xp 1_2: Letter-high, ShortestPath.
- xp_median_preimage_1_2()
-
- # #### xp 10_1: Letter-med, StructuralSP.
- xp_median_preimage_10_1()
-
- # #### xp 10_2: Letter-med, ShortestPath.
- xp_median_preimage_10_2()
-
- # #### xp 11_1: Letter-low, StructuralSP.
- xp_median_preimage_11_1()
-
- # #### xp 11_2: Letter-low, ShortestPath.
- xp_median_preimage_11_2()
-
- #### xp 13_1: PAH, StructuralSP, using NON_SYMBOLIC.
- xp_median_preimage_13_1()
-
- #### xp 13_2: PAH, ShortestPath, using NON_SYMBOLIC.
- xp_median_preimage_13_2()
-
- # #### xp 7_2: MUTAG, PathUpToH, using CONSTANT.
- xp_median_preimage_7_2()
-
- # #### xp 7_3: MUTAG, Treelet, using CONSTANT.
- xp_median_preimage_7_3()
-
- # #### xp 7_4: MUTAG, WeisfeilerLehman, using CONSTANT.
- xp_median_preimage_7_4()
- #
- # #### xp 7_1: MUTAG, StructuralSP, using CONSTANT.
- xp_median_preimage_7_1()
-
- # #### xp 9_2: MAO, PathUpToH, using CONSTANT, symbolic only.
- xp_median_preimage_9_2()
-
- # #### xp 9_3: MAO, Treelet, using CONSTANT, symbolic only.
- xp_median_preimage_9_3()
-
- # #### xp 9_4: MAO, WeisfeilerLehman, using CONSTANT, symbolic only.
- xp_median_preimage_9_4()
-
- # #### xp 9_1: MAO, StructuralSP, using CONSTANT, symbolic only.
- xp_median_preimage_9_1()
-
- #### xp 12_1: PAH, StructuralSP, using NON_SYMBOLIC, unlabeled.
- xp_median_preimage_12_1()
-
- #### xp 12_2: PAH, PathUpToH, using CONSTANT, unlabeled.
- xp_median_preimage_12_2()
-
- #### xp 12_3: PAH, Treelet, using CONSTANT, unlabeled.
- xp_median_preimage_12_3()
-
- #### xp 12_4: PAH, WeisfeilerLehman, using CONSTANT, unlabeled.
- xp_median_preimage_12_4()
-
- #### xp 12_5: PAH, ShortestPath, using NON_SYMBOLIC, unlabeled.
- xp_median_preimage_12_5()
-
- # #### xp 6_1: COIL-RAG, StructuralSP, using NON_SYMBOLIC.
- xp_median_preimage_6_1()
-
- # #### xp 8_2: Monoterpenoides, PathUpToH, using CONSTANT.
- xp_median_preimage_8_2()
-
- # #### xp 8_3: Monoterpenoides, Treelet, using CONSTANT.
- xp_median_preimage_8_3()
-
- # #### xp 8_4: Monoterpenoides, WeisfeilerLehman, using CONSTANT.
- xp_median_preimage_8_4()
-
- # #### xp 8_1: Monoterpenoides, StructuralSP, using CONSTANT.
- xp_median_preimage_8_1()
-
- # #### xp 15_1: AIDS, StructuralSP, using CONSTANT, symbolic only.
- xp_median_preimage_15_1()
-
- # #### xp 15_2: AIDS, PathUpToH, using CONSTANT, symbolic only.
- xp_median_preimage_15_2()
-
- # #### xp 15_3: AIDS, Treelet, using CONSTANT, symbolic only.
- xp_median_preimage_15_3()
-
- # #### xp 15_4: AIDS, WeisfeilerLehman, using CONSTANT, symbolic only.
- xp_median_preimage_15_4()
- #
- # #### xp 2_1: COIL-DEL, StructuralSP, using LETTER2, only node attrs.
- xp_median_preimage_2_1()
- #
- # #### xp 3_1: Fingerprint, StructuralSP, using LETTER2, only node attrs.
- # # xp_median_preimage_3_1()
-
- # #### xp 3_2: Fingerprint, ShortestPath, using LETTER2, only node attrs.
- # xp_median_preimage_3_2()
-
- # #### xp 4_1: COLORS-3, StructuralSP, using NON_SYMBOLIC.
- # # xp_median_preimage_4_1()
- #
- # #### xp 5_1: FRANKENSTEIN, StructuralSP, using NON_SYMBOLIC.
- # # xp_median_preimage_5_1()
- #
- # #### xp 6_2: COIL-RAG, ShortestPath, using NON_SYMBOLIC.
- # xp_median_preimage_6_2()
-
- #### xp 14_1: DD, PathUpToH, using CONSTANT.
- # xp_median_preimage_14_1()
|