|
- #!/usr/bin/env python3
- # -*- coding: utf-8 -*-
- """
- Created on Fri Apr 26 11:49:12 2019
-
- Iterative alternate minimizations using GED.
- @author: ljia
- """
- import numpy as np
- import random
- import networkx as nx
-
- import sys
- #from Cython_GedLib_2 import librariesImport, script
- import librariesImport, script
- sys.path.insert(0, "../")
- from pygraph.utils.graphfiles import saveDataset
- from pygraph.utils.graphdataset import get_dataset_attributes
- from pygraph.utils.utils import graph_isIdentical, get_node_labels, get_edge_labels
- #from pygraph.utils.utils import graph_deepcopy
-
-
- def iam(Gn, c_ei=3, c_er=3, c_es=1, node_label='atom', edge_label='bond_type',
- connected=True):
- """See my name, then you know what I do.
- """
- # Gn = Gn[0:10]
- Gn = [nx.convert_node_labels_to_integers(g) for g in Gn]
-
- # phase 1: initilize.
- # compute set-median.
- dis_min = np.inf
- pi_p = []
- pi_all = []
- for idx1, G_p in enumerate(Gn):
- dist_sum = 0
- pi_all.append([])
- for idx2, G_p_prime in enumerate(Gn):
- dist_tmp, pi_tmp, _ = GED(G_p, G_p_prime)
- pi_all[idx1].append(pi_tmp)
- dist_sum += dist_tmp
- if dist_sum < dis_min:
- dis_min = dist_sum
- G = G_p.copy()
- idx_min = idx1
- # list of edit operations.
- pi_p = pi_all[idx_min]
-
- # phase 2: iteration.
- ds_attrs = get_dataset_attributes(Gn, attr_names=['edge_labeled', 'node_attr_dim'],
- edge_label=edge_label)
- for itr in range(0, 10): # @todo: the convergence condition?
- G_new = G.copy()
- # update vertex labels.
- # pre-compute h_i0 for each label.
- # for label in get_node_labels(Gn, node_label):
- # print(label)
- # for nd in G.nodes(data=True):
- # pass
- if not ds_attrs['node_attr_dim']: # labels are symbolic
- for nd, _ in G.nodes(data=True):
- h_i0_list = []
- label_list = []
- for label in get_node_labels(Gn, node_label):
- h_i0 = 0
- for idx, g in enumerate(Gn):
- pi_i = pi_p[idx][nd]
- if g.has_node(pi_i) and g.nodes[pi_i][node_label] == label:
- h_i0 += 1
- h_i0_list.append(h_i0)
- label_list.append(label)
- # choose one of the best randomly.
- idx_max = np.argwhere(h_i0_list == np.max(h_i0_list)).flatten().tolist()
- idx_rdm = random.randint(0, len(idx_max) - 1)
- G_new.nodes[nd][node_label] = label_list[idx_max[idx_rdm]]
- else: # labels are non-symbolic
- for nd, _ in G.nodes(data=True):
- Si_norm = 0
- phi_i_bar = np.array([0.0 for _ in range(ds_attrs['node_attr_dim'])])
- for idx, g in enumerate(Gn):
- pi_i = pi_p[idx][nd]
- if g.has_node(pi_i): #@todo: what if no g has node? phi_i_bar = 0?
- Si_norm += 1
- phi_i_bar += np.array([float(itm) for itm in g.nodes[pi_i]['attributes']])
- phi_i_bar /= Si_norm
- G_new.nodes[nd]['attributes'] = phi_i_bar
-
- # update edge labels and adjacency matrix.
- if ds_attrs['edge_labeled']:
- for nd1, nd2, _ in G.edges(data=True):
- h_ij0_list = []
- label_list = []
- for label in get_edge_labels(Gn, edge_label):
- h_ij0 = 0
- for idx, g in enumerate(Gn):
- pi_i = pi_p[idx][nd1]
- pi_j = pi_p[idx][nd2]
- h_ij0_p = (g.has_node(pi_i) and g.has_node(pi_j) and
- g.has_edge(pi_i, pi_j) and
- g.edges[pi_i, pi_j][edge_label] == label)
- h_ij0 += h_ij0_p
- h_ij0_list.append(h_ij0)
- label_list.append(label)
- # choose one of the best randomly.
- idx_max = np.argwhere(h_ij0_list == np.max(h_ij0_list)).flatten().tolist()
- h_ij0_max = h_ij0_list[idx_max[0]]
- idx_rdm = random.randint(0, len(idx_max) - 1)
- best_label = label_list[idx_max[idx_rdm]]
-
- # check whether a_ij is 0 or 1.
- sij_norm = 0
- for idx, g in enumerate(Gn):
- pi_i = pi_p[idx][nd1]
- pi_j = pi_p[idx][nd2]
- if g.has_node(pi_i) and g.has_node(pi_j) and g.has_edge(pi_i, pi_j):
- sij_norm += 1
- if h_ij0_max > len(Gn) * c_er / c_es + sij_norm * (1 - (c_er + c_ei) / c_es):
- if not G_new.has_edge(nd1, nd2):
- G_new.add_edge(nd1, nd2)
- G_new.edges[nd1, nd2][edge_label] = best_label
- else:
- if G_new.has_edge(nd1, nd2):
- G_new.remove_edge(nd1, nd2)
- else: # if edges are unlabeled
- for nd1, nd2, _ in G.edges(data=True):
- sij_norm = 0
- for idx, g in enumerate(Gn):
- pi_i = pi_p[idx][nd1]
- pi_j = pi_p[idx][nd2]
- if g.has_node(pi_i) and g.has_node(pi_j) and g.has_edge(pi_i, pi_j):
- sij_norm += 1
- if sij_norm > len(Gn) * c_er / (c_er + c_ei):
- if not G_new.has_edge(nd1, nd2):
- G_new.add_edge(nd1, nd2)
- else:
- if G_new.has_edge(nd1, nd2):
- G_new.remove_edge(nd1, nd2)
-
- G = G_new.copy()
-
- # update pi_p
- pi_p = []
- for idx1, G_p in enumerate(Gn):
- dist_tmp, pi_tmp, _ = GED(G, G_p)
- pi_p.append(pi_tmp)
-
- return G
-
-
- def GED(g1, g2, lib='gedlib'):
- """
- Compute GED.
- """
- if lib == 'gedlib':
- # transform dataset to the 'xml' file as the GedLib required.
- saveDataset([g1, g2], [None, None], group='xml', filename='ged_tmp/tmp')
- # script.appel()
- script.PyRestartEnv()
- script.PyLoadGXLGraph('ged_tmp/', 'ged_tmp/tmp.xml')
- listID = script.PyGetGraphIds()
- script.PySetEditCost("CHEM_1")
- script.PyInitEnv()
- script.PySetMethod("IPFP", "")
- script.PyInitMethod()
- g = listID[0]
- h = listID[1]
- script.PyRunMethod(g, h)
- pi_forward, pi_backward = script.PyGetAllMap(g, h)
- upper = script.PyGetUpperBound(g, h)
- lower = script.PyGetLowerBound(g, h)
- dis = (upper + lower) / 2
-
- return dis, pi_forward, pi_backward
-
-
- # --------------------------- These are tests --------------------------------#
-
- def test_iam_with_more_graphs_as_init(Gn, G_candidate, c_ei=3, c_er=3, c_es=1,
- node_label='atom', edge_label='bond_type'):
- """See my name, then you know what I do.
- """
- from tqdm import tqdm
- # Gn = Gn[0:10]
- Gn = [nx.convert_node_labels_to_integers(g) for g in Gn]
-
- # phase 1: initilize.
- # compute set-median.
- dis_min = np.inf
- # pi_p = []
- pi_all_forward = []
- pi_all_backward = []
- for idx1, G_p in tqdm(enumerate(G_candidate), desc='computing GEDs', file=sys.stdout):
- dist_sum = 0
- pi_all_forward.append([])
- pi_all_backward.append([])
- for idx2, G_p_prime in enumerate(Gn):
- dist_tmp, pi_tmp_forward, pi_tmp_backward = GED(G_p, G_p_prime)
- pi_all_forward[idx1].append(pi_tmp_forward)
- pi_all_backward[idx1].append(pi_tmp_backward)
- dist_sum += dist_tmp
- if dist_sum <= dis_min:
- dis_min = dist_sum
- G = G_p.copy()
- idx_min = idx1
- # list of edit operations.
- pi_p_forward = pi_all_forward[idx_min]
- pi_p_backward = pi_all_backward[idx_min]
-
- # phase 2: iteration.
- ds_attrs = get_dataset_attributes(Gn + [G], attr_names=['edge_labeled', 'node_attr_dim'],
- edge_label=edge_label)
- label_set = get_node_labels(Gn + [G], node_label)
- for itr in range(0, 10): # @todo: the convergence condition?
- G_new = G.copy()
- # update vertex labels.
- # pre-compute h_i0 for each label.
- # for label in get_node_labels(Gn, node_label):
- # print(label)
- # for nd in G.nodes(data=True):
- # pass
- if not ds_attrs['node_attr_dim']: # labels are symbolic
- for nd in G.nodes():
- h_i0_list = []
- label_list = []
- for label in label_set:
- h_i0 = 0
- for idx, g in enumerate(Gn):
- pi_i = pi_p_forward[idx][nd]
- if g.has_node(pi_i) and g.nodes[pi_i][node_label] == label:
- h_i0 += 1
- h_i0_list.append(h_i0)
- label_list.append(label)
- # choose one of the best randomly.
- idx_max = np.argwhere(h_i0_list == np.max(h_i0_list)).flatten().tolist()
- idx_rdm = random.randint(0, len(idx_max) - 1)
- G_new.nodes[nd][node_label] = label_list[idx_max[idx_rdm]]
- else: # labels are non-symbolic
- for nd in G.nodes():
- Si_norm = 0
- phi_i_bar = np.array([0.0 for _ in range(ds_attrs['node_attr_dim'])])
- for idx, g in enumerate(Gn):
- pi_i = pi_p_forward[idx][nd]
- if g.has_node(pi_i): #@todo: what if no g has node? phi_i_bar = 0?
- Si_norm += 1
- phi_i_bar += np.array([float(itm) for itm in g.nodes[pi_i]['attributes']])
- phi_i_bar /= Si_norm
- G_new.nodes[nd]['attributes'] = phi_i_bar
-
- # update edge labels and adjacency matrix.
- if ds_attrs['edge_labeled']:
- for nd1, nd2, _ in G.edges(data=True):
- h_ij0_list = []
- label_list = []
- for label in get_edge_labels(Gn, edge_label):
- h_ij0 = 0
- for idx, g in enumerate(Gn):
- pi_i = pi_p_forward[idx][nd1]
- pi_j = pi_p_forward[idx][nd2]
- h_ij0_p = (g.has_node(pi_i) and g.has_node(pi_j) and
- g.has_edge(pi_i, pi_j) and
- g.edges[pi_i, pi_j][edge_label] == label)
- h_ij0 += h_ij0_p
- h_ij0_list.append(h_ij0)
- label_list.append(label)
- # choose one of the best randomly.
- idx_max = np.argwhere(h_ij0_list == np.max(h_ij0_list)).flatten().tolist()
- h_ij0_max = h_ij0_list[idx_max[0]]
- idx_rdm = random.randint(0, len(idx_max) - 1)
- best_label = label_list[idx_max[idx_rdm]]
-
- # check whether a_ij is 0 or 1.
- sij_norm = 0
- for idx, g in enumerate(Gn):
- pi_i = pi_p_forward[idx][nd1]
- pi_j = pi_p_forward[idx][nd2]
- if g.has_node(pi_i) and g.has_node(pi_j) and g.has_edge(pi_i, pi_j):
- sij_norm += 1
- if h_ij0_max > len(Gn) * c_er / c_es + sij_norm * (1 - (c_er + c_ei) / c_es):
- if not G_new.has_edge(nd1, nd2):
- G_new.add_edge(nd1, nd2)
- G_new.edges[nd1, nd2][edge_label] = best_label
- else:
- if G_new.has_edge(nd1, nd2):
- G_new.remove_edge(nd1, nd2)
- else: # if edges are unlabeled
- # @todo: works only for undirected graphs.
- for nd1 in range(nx.number_of_nodes(G)):
- for nd2 in range(nd1 + 1, nx.number_of_nodes(G)):
- sij_norm = 0
- for idx, g in enumerate(Gn):
- pi_i = pi_p_forward[idx][nd1]
- pi_j = pi_p_forward[idx][nd2]
- if g.has_node(pi_i) and g.has_node(pi_j) and g.has_edge(pi_i, pi_j):
- sij_norm += 1
- if sij_norm > len(Gn) * c_er / (c_er + c_ei):
- if not G_new.has_edge(nd1, nd2):
- G_new.add_edge(nd1, nd2)
- elif sij_norm < len(Gn) * c_er / (c_er + c_ei):
- if G_new.has_edge(nd1, nd2):
- G_new.remove_edge(nd1, nd2)
- # do not change anything when equal.
-
- G = G_new.copy()
-
- # update pi_p
- pi_p_forward = []
- for G_p in Gn:
- dist_tmp, pi_tmp_forward, pi_tmp_backward = GED(G, G_p)
- pi_p_forward.append(pi_tmp_forward)
-
- return G
-
-
- def test_iam_moreGraphsAsInit_tryAllPossibleBestGraphs_deleteNodesInIterations(
- Gn_median, Gn_candidate, c_ei=3, c_er=3, c_es=1, node_label='atom',
- edge_label='bond_type', connected=True):
- """See my name, then you know what I do.
- """
- from tqdm import tqdm
- # Gn_median = Gn_median[0:10]
- # Gn_median = [nx.convert_node_labels_to_integers(g) for g in Gn_median]
- node_ir = sys.maxsize * 2 # Max number for c++, corresponding to the node remove and insertion.
- label_r = 'thanksdanny' # the label for node remove. # @todo: make this label unrepeatable.
- ds_attrs = get_dataset_attributes(Gn_median + Gn_candidate,
- attr_names=['edge_labeled', 'node_attr_dim'],
- edge_label=edge_label)
-
-
- def generate_graph(G, pi_p_forward, label_set):
- G_new_list = [G.copy()] # all "best" graphs generated in this iteration.
- # nx.draw_networkx(G)
- # import matplotlib.pyplot as plt
- # plt.show()
- # print(pi_p_forward)
-
- # update vertex labels.
- # pre-compute h_i0 for each label.
- # for label in get_node_labels(Gn, node_label):
- # print(label)
- # for nd in G.nodes(data=True):
- # pass
- if not ds_attrs['node_attr_dim']: # labels are symbolic
- for ndi, (nd, _) in enumerate(G.nodes(data=True)):
- h_i0_list = []
- label_list = []
- for label in label_set:
- h_i0 = 0
- for idx, g in enumerate(Gn_median):
- pi_i = pi_p_forward[idx][ndi]
- if g.has_node(pi_i) and g.nodes[pi_i][node_label] == label:
- h_i0 += 1
- h_i0_list.append(h_i0)
- label_list.append(label)
- # case when the node is to be removed.
- h_i0_remove = 0
- for idx, g in enumerate(Gn_median):
- pi_i = pi_p_forward[idx][ndi]
- if pi_i == node_ir:
- h_i0_remove += 1
- h_i0_list.append(h_i0_remove)
- label_list.append(label_r)
- # get the best labels.
- idx_max = np.argwhere(h_i0_list == np.max(h_i0_list)).flatten().tolist()
- nlabel_best = [label_list[idx] for idx in idx_max]
- # generate "best" graphs with regard to "best" node labels.
- G_new_list_nd = []
- for g in G_new_list:
- for nl in nlabel_best:
- g_tmp = g.copy()
- if nl == label_r:
- g_tmp.remove_node(nd)
- else:
- g_tmp.nodes[nd][node_label] = nl
- G_new_list_nd.append(g_tmp)
- # nx.draw_networkx(g_tmp)
- # import matplotlib.pyplot as plt
- # plt.show()
- # print(g_tmp.nodes(data=True))
- # print(g_tmp.edges(data=True))
- G_new_list = G_new_list_nd[:]
-
- else: # labels are non-symbolic
- for nd in G.nodes():
- Si_norm = 0
- phi_i_bar = np.array([0.0 for _ in range(ds_attrs['node_attr_dim'])])
- for idx, g in enumerate(Gn_median):
- pi_i = pi_p_forward[idx][nd]
- if g.has_node(pi_i): #@todo: what if no g has node? phi_i_bar = 0?
- Si_norm += 1
- phi_i_bar += np.array([float(itm) for itm in g.nodes[pi_i]['attributes']])
- phi_i_bar /= Si_norm
- G_new.nodes[nd]['attributes'] = phi_i_bar
-
- # update edge labels and adjacency matrix.
- if ds_attrs['edge_labeled']:
- for nd1, nd2, _ in G.edges(data=True):
- h_ij0_list = []
- label_list = []
- for label in get_edge_labels(Gn_median, edge_label):
- h_ij0 = 0
- for idx, g in enumerate(Gn_median):
- pi_i = pi_p_forward[idx][nd1]
- pi_j = pi_p_forward[idx][nd2]
- h_ij0_p = (g.has_node(pi_i) and g.has_node(pi_j) and
- g.has_edge(pi_i, pi_j) and
- g.edges[pi_i, pi_j][edge_label] == label)
- h_ij0 += h_ij0_p
- h_ij0_list.append(h_ij0)
- label_list.append(label)
- # choose one of the best randomly.
- idx_max = np.argwhere(h_ij0_list == np.max(h_ij0_list)).flatten().tolist()
- h_ij0_max = h_ij0_list[idx_max[0]]
- idx_rdm = random.randint(0, len(idx_max) - 1)
- best_label = label_list[idx_max[idx_rdm]]
-
- # check whether a_ij is 0 or 1.
- sij_norm = 0
- for idx, g in enumerate(Gn_median):
- pi_i = pi_p_forward[idx][nd1]
- pi_j = pi_p_forward[idx][nd2]
- if g.has_node(pi_i) and g.has_node(pi_j) and g.has_edge(pi_i, pi_j):
- sij_norm += 1
- if h_ij0_max > len(Gn_median) * c_er / c_es + sij_norm * (1 - (c_er + c_ei) / c_es):
- if not G_new.has_edge(nd1, nd2):
- G_new.add_edge(nd1, nd2)
- G_new.edges[nd1, nd2][edge_label] = best_label
- else:
- if G_new.has_edge(nd1, nd2):
- G_new.remove_edge(nd1, nd2)
- else: # if edges are unlabeled
- # @todo: works only for undirected graphs.
- nd_list = [n for n in G.nodes()]
- for g_tmp in G_new_list:
- for nd1i in range(nx.number_of_nodes(G)):
- nd1 = nd_list[nd1i]
- for nd2i in range(nd1i + 1, nx.number_of_nodes(G)):
- nd2 = nd_list[nd2i]
- sij_norm = 0
- for idx, g in enumerate(Gn_median):
- pi_i = pi_p_forward[idx][nd1i]
- pi_j = pi_p_forward[idx][nd2i]
- if g.has_node(pi_i) and g.has_node(pi_j) and g.has_edge(pi_i, pi_j):
- sij_norm += 1
- if sij_norm > len(Gn_median) * c_er / (c_er + c_ei):
- # @todo: should we consider if nd1 and nd2 in g_tmp?
- # or just add the edge anyway?
- if g_tmp.has_node(nd1) and g_tmp.has_node(nd2) \
- and not g_tmp.has_edge(nd1, nd2):
- g_tmp.add_edge(nd1, nd2)
- elif sij_norm < len(Gn_median) * c_er / (c_er + c_ei):
- if g_tmp.has_edge(nd1, nd2):
- g_tmp.remove_edge(nd1, nd2)
- # do not change anything when equal.
-
- # find the best graph generated in this iteration and update pi_p.
- # @todo: should we update all graphs generated or just the best ones?
- dis_list, pi_forward_list = median_distance(G_new_list, Gn_median)
- # @todo: should we remove the identical and connectivity check?
- # Don't know which is faster.
- G_new_list, idx_list = remove_duplicates(G_new_list)
- pi_forward_list = [pi_forward_list[idx] for idx in idx_list]
- # if connected == True:
- # G_new_list, idx_list = remove_disconnected(G_new_list)
- # pi_forward_list = [pi_forward_list[idx] for idx in idx_list]
- # idx_min_list = np.argwhere(dis_list == np.min(dis_list)).flatten().tolist()
- # dis_min = dis_list[idx_min_tmp_list[0]]
- # pi_forward_list = [pi_forward_list[idx] for idx in idx_min_list]
- # G_new_list = [G_new_list[idx] for idx in idx_min_list]
-
- for g in G_new_list:
- import matplotlib.pyplot as plt
- nx.draw_networkx(g)
- plt.show()
- print(g.nodes(data=True))
- print(g.edges(data=True))
-
- return G_new_list, pi_forward_list
-
-
- def median_distance(Gn, Gn_median, measure='ged', verbose=False):
- dis_list = []
- pi_forward_list = []
- for idx, G in tqdm(enumerate(Gn), desc='computing median distances',
- file=sys.stdout) if verbose else enumerate(Gn):
- dis_sum = 0
- pi_forward_list.append([])
- for G_p in Gn_median:
- dis_tmp, pi_tmp_forward, pi_tmp_backward = GED(G, G_p)
- pi_forward_list[idx].append(pi_tmp_forward)
- dis_sum += dis_tmp
- dis_list.append(dis_sum)
- return dis_list, pi_forward_list
-
-
- def best_median_graphs(Gn_candidate, dis_all, pi_all_forward):
- idx_min_list = np.argwhere(dis_all == np.min(dis_all)).flatten().tolist()
- dis_min = dis_all[idx_min_list[0]]
- pi_forward_min_list = [pi_all_forward[idx] for idx in idx_min_list]
- G_min_list = [Gn_candidate[idx] for idx in idx_min_list]
- return G_min_list, pi_forward_min_list, dis_min
-
-
- def iteration_proc(G, pi_p_forward):
- G_list = [G]
- pi_forward_list = [pi_p_forward]
- # iterations.
- for itr in range(0, 10): # @todo: the convergence condition?
- # print('itr is', itr)
- G_new_list = []
- pi_forward_new_list = []
- for idx, G in enumerate(G_list):
- label_set = get_node_labels(Gn_median + [G], node_label)
- G_tmp_list, pi_forward_tmp_list = generate_graph(
- G, pi_forward_list[idx], label_set)
- G_new_list += G_tmp_list
- pi_forward_new_list += pi_forward_tmp_list
- G_list = G_new_list[:]
- pi_forward_list = pi_forward_new_list[:]
-
- G_list, idx_list = remove_duplicates(G_list)
- pi_forward_list = [pi_forward_list[idx] for idx in idx_list]
-
- # import matplotlib.pyplot as plt
- # for g in G_list:
- # nx.draw_networkx(g)
- # plt.show()
- # print(g.nodes(data=True))
- # print(g.edges(data=True))
-
- return G_list, pi_forward_list # do we return all graphs or the best ones?
-
-
- def remove_duplicates(Gn):
- """Remove duplicate graphs from list.
- """
- Gn_new = []
- idx_list = []
- for idx, g in enumerate(Gn):
- dupl = False
- for g_new in Gn_new:
- if graph_isIdentical(g_new, g):
- dupl = True
- break
- if not dupl:
- Gn_new.append(g)
- idx_list.append(idx)
- return Gn_new, idx_list
-
-
- def remove_disconnected(Gn):
- """Remove disconnected graphs from list.
- """
- Gn_new = []
- idx_list = []
- for idx, g in enumerate(Gn):
- if nx.is_connected(g):
- Gn_new.append(g)
- idx_list.append(idx)
- return Gn_new, idx_list
-
-
- # phase 1: initilize.
- # compute set-median.
- dis_min = np.inf
- dis_all, pi_all_forward = median_distance(Gn_candidate[::-1], Gn_median)
- # find all smallest distances.
- idx_min_list = np.argwhere(dis_all == np.min(dis_all)).flatten().tolist()
- dis_min = dis_all[idx_min_list[0]]
-
- # phase 2: iteration.
- G_list = []
- for idx_min in idx_min_list[::-1]:
- # print('idx_min is', idx_min)
- G = Gn_candidate[idx_min].copy()
- # list of edit operations.
- pi_p_forward = pi_all_forward[idx_min]
- # pi_p_backward = pi_all_backward[idx_min]
- Gi_list, pi_i_forward_list = iteration_proc(G, pi_p_forward)
- G_list += Gi_list
-
- G_list, _ = remove_duplicates(G_list)
- if connected == True:
- G_list, _ = remove_disconnected(G_list)
-
- import matplotlib.pyplot as plt
- for g in G_list:
- nx.draw_networkx(g)
- plt.show()
- print(g.nodes(data=True))
- print(g.edges(data=True))
-
- # get the best median graphs
- dis_all, pi_all_forward = median_distance(G_list, Gn_median)
- G_min_list, pi_forward_min_list, dis_min = best_median_graphs(
- G_list, dis_all, pi_all_forward)
- for g in G_min_list:
- nx.draw_networkx(g)
- plt.show()
- print(g.nodes(data=True))
- print(g.edges(data=True))
- return G_min_list
-
-
- if __name__ == '__main__':
- from pygraph.utils.graphfiles import loadDataset
- ds = {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG.mat',
- 'extra_params': {'am_sp_al_nl_el': [0, 0, 3, 1, 2]}} # node/edge symb
- # ds = {'name': 'Letter-high', 'dataset': '../datasets/Letter-high/Letter-high_A.txt',
- # 'extra_params': {}} # node nsymb
- # ds = {'name': 'Acyclic', 'dataset': '../datasets/monoterpenoides/trainset_9.ds',
- # 'extra_params': {}}
- Gn, y_all = loadDataset(ds['dataset'], extra_params=ds['extra_params'])
-
- iam(Gn)
|