|
- #!/usr/bin/env python3
- # -*- coding: utf-8 -*-
- """
- Created on Wed Mar 6 16:03:11 2019
-
- pre-image
- @author: ljia
- """
-
- import sys
- import numpy as np
- import multiprocessing
- from tqdm import tqdm
- import networkx as nx
- import matplotlib.pyplot as plt
-
-
- sys.path.insert(0, "../")
- from pygraph.kernels.marginalizedKernel import marginalizedkernel
- from pygraph.utils.graphfiles import loadDataset
-
-
- ds = {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG.mat',
- 'extra_params': {'am_sp_al_nl_el': [0, 0, 3, 1, 2]}} # node/edge symb
-
- DN, y_all = loadDataset(ds['dataset'], extra_params=ds['extra_params'])
- DN = DN[0:10]
-
- lmbda = 0.03 # termination probalility
- r_max = 10 # recursions
- l = 500
- alpha_range = np.linspace(0.1, 0.9, 9)
- k = 5 # k nearest neighbors
-
- # randomly select two molecules
- np.random.seed(1)
- idx1, idx2 = np.random.randint(0, len(DN), 2)
- g1 = DN[idx1]
- g2 = DN[idx2]
-
- # compute
- k_list = [] # kernel between each graph and itself.
- k_g1_list = [] # kernel between each graph and g1
- k_g2_list = [] # kernel between each graph and g2
- for ig, g in tqdm(enumerate(DN), desc='computing self kernels', file=sys.stdout):
- ktemp = marginalizedkernel([g, g1, g2], node_label='atom', edge_label=None,
- p_quit=lmbda, n_iteration=20, remove_totters=False,
- n_jobs=multiprocessing.cpu_count(), verbose=False)
- k_list.append(ktemp[0][0, 0])
- k_g1_list.append(ktemp[0][0, 1])
- k_g2_list.append(ktemp[0][0, 2])
-
- g_best = []
- dis_best = []
- # for each alpha
- for alpha in alpha_range:
- print('alpha =', alpha)
- # compute k nearest neighbors of phi in DN.
- dis_list = [] # distance between g_star and each graph.
- for ig, g in tqdm(enumerate(DN), desc='computing distances', file=sys.stdout):
- dtemp = k_list[ig] - 2 * (alpha * k_g1_list[ig] + (1 - alpha) *
- k_g2_list[ig]) + (alpha * alpha * k_list[idx1] + alpha *
- (1 - alpha) * k_g2_list[idx1] + (1 - alpha) * alpha *
- k_g1_list[idx2] + (1 - alpha) * (1 - alpha) * k_list[idx2])
- dis_list.append(dtemp)
-
- # sort
- sort_idx = np.argsort(dis_list)
- dis_gs = [dis_list[idis] for idis in sort_idx[0:k]]
- g0hat = DN[sort_idx[0]] # the nearest neighbor of phi in DN
- if dis_gs[0] == 0: # the exact pre-image.
- print('The exact pre-image is found from the input dataset.')
- g_pimg = g0hat
- break
- dhat = dis_gs[0] # the nearest distance
- Dk = [DN[ig] for ig in sort_idx[0:k]] # the k nearest neighbors
- gihat_list = []
-
- i = 1
- r = 1
- while r < r_max:
- print('r =', r)
- found = False
- for ig, gs in enumerate(Dk + gihat_list):
- # nx.draw_networkx(gs)
- # plt.show()
- fdgs = int(np.abs(np.ceil(np.log(alpha * dis_gs[ig])))) # @todo ???
- for trail in tqdm(range(0, l), desc='l loop', file=sys.stdout):
- # add and delete edges.
- gtemp = gs.copy()
- np.random.seed()
- # which edges to change.
- idx_change = np.random.randint(0, nx.number_of_nodes(gs) *
- (nx.number_of_nodes(gs) - 1), fdgs)
- for item in idx_change:
- node1 = int(item / (nx.number_of_nodes(gs) - 1))
- node2 = (item - node1 * (nx.number_of_nodes(gs) - 1))
- if node2 >= node1:
- node2 += 1
- # @todo: is the randomness correct?
- if not gtemp.has_edge(node1, node2):
- gtemp.add_edges_from([(node1, node2, {'bond_type': 0})])
- # nx.draw_networkx(gs)
- # plt.show()
- # nx.draw_networkx(gtemp)
- # plt.show()
- else:
- gtemp.remove_edge(node1, node2)
- # nx.draw_networkx(gs)
- # plt.show()
- # nx.draw_networkx(gtemp)
- # plt.show()
- # nx.draw_networkx(gtemp)
- # plt.show()
-
- # compute distance between phi and the new generated graph.
- knew = marginalizedkernel([gtemp, g1, g2], node_label='atom', edge_label=None,
- p_quit=lmbda, n_iteration=20, remove_totters=False,
- n_jobs=multiprocessing.cpu_count(), verbose=False)
- dnew = knew[0][0, 0] - 2 * (alpha * knew[0][0, 1] + (1 - alpha) *
- knew[0][0, 2]) + (alpha * alpha * k_list[idx1] + alpha *
- (1 - alpha) * k_g2_list[idx1] + (1 - alpha) * alpha *
- k_g1_list[idx2] + (1 - alpha) * (1 - alpha) * k_list[idx2])
- if dnew <= dhat: # the new distance is smaller
- print('I am smaller!')
- dhat = dnew
- gnew = gtemp.copy()
- found = True # found better graph.
- r = 0
- if found:
- gihat_list = [gnew]
- dis_gs.append(dhat)
- else:
- r += 1
- dis_best.append(dhat)
- g_best += ([g0hat] if len(gihat_list) == 0 else gihat_list)
-
- for idx, item in enumerate(alpha_range):
- print('when alpha is', item, 'the shortest distance is', dis_best[idx])
- print('the corresponding pre-image is')
- nx.draw_networkx(g_best[idx])
- plt.show()
|