|
- """Those who are not graph kernels. We can be kernels for nodes or edges!
- These kernels are defined between pairs of vectors.
- """
- import numpy as np
-
- def deltakernel(x, y):
- """Delta kernel. Return 1 if x == y, 0 otherwise.
-
- Parameters
- ----------
- x, y : any
- Two parts to compare.
-
- Return
- ------
- kernel : integer
- Delta kernel.
-
- References
- ----------
- [1] H. Kashima, K. Tsuda, and A. Inokuchi. Marginalized kernels between
- labeled graphs. In Proceedings of the 20th International Conference on
- Machine Learning, Washington, DC, United States, 2003.
- """
- return x == y #(1 if condition else 0)
-
-
- def gaussiankernel(x, y, gamma=None):
- """Gaussian kernel.
- Compute the rbf (gaussian) kernel between x and y:
-
- K(x, y) = exp(-gamma ||x-y||^2).
-
- Read more in the :ref:`User Guide <rbf_kernel>`.
-
- Parameters
- ----------
- x, y : array
-
- gamma : float, default None
- If None, defaults to 1.0 / n_features
-
- Returns
- -------
- kernel : float
- """
- if gamma is None:
- gamma = 1.0 / len(x)
-
- xt = np.array([float(itm) for itm in x])
- yt = np.array([float(itm) for itm in y])
- kernel = xt - yt
- kernel = kernel ** 2
- kernel = np.sum(kernel)
- kernel *= -gamma
- kernel = np.exp(kernel)
- return kernel
-
-
- def polynomialkernel(x, y, d=1, c=0):
- """Polynomial kernel.
- Compute the polynomial kernel between x and y:
-
- K(x, y) = <x, y> ^d + c.
-
- Parameters
- ----------
- x, y : array
-
- d : integer, default 1
-
- c : float, default 0
-
- Returns
- -------
- kernel : float
- """
- return np.dot(x, y) ** d + c
-
-
- def linearkernel(x, y):
- """Polynomial kernel.
- Compute the polynomial kernel between x and y:
-
- K(x, y) = <x, y>.
-
- Parameters
- ----------
- x, y : array
-
- d : integer, default 1
-
- c : float, default 0
-
- Returns
- -------
- kernel : float
- """
- return np.dot(x, y)
-
-
- def kernelsum(k1, k2, d11, d12, d21=None, d22=None, lamda1=1, lamda2=1):
- """Sum of a pair of kernels.
-
- k = lamda1 * k1(d11, d12) + lamda2 * k2(d21, d22)
-
- Parameters
- ----------
- k1, k2 : function
- A pair of kernel functions.
- d11, d12:
- Inputs of k1. If d21 or d22 is None, apply d11, d12 to both k1 and k2.
- d21, d22:
- Inputs of k2.
- lamda1, lamda2: float
- Coefficients of the product.
-
- Return
- ------
- kernel : integer
-
- """
- if d21 == None or d22 == None:
- kernel = lamda1 * k1(d11, d12) + lamda2 * k2(d11, d12)
- else:
- kernel = lamda1 * k1(d11, d12) + lamda2 * k2(d21, d22)
- return kernel
-
-
- def kernelproduct(k1, k2, d11, d12, d21=None, d22=None, lamda=1):
- """Product of a pair of kernels.
-
- k = lamda * k1(d11, d12) * k2(d21, d22)
-
- Parameters
- ----------
- k1, k2 : function
- A pair of kernel functions.
- d11, d12:
- Inputs of k1. If d21 or d22 is None, apply d11, d12 to both k1 and k2.
- d21, d22:
- Inputs of k2.
- lamda: float
- Coefficient of the product.
-
- Return
- ------
- kernel : integer
- """
- if d21 == None or d22 == None:
- kernel = lamda * k1(d11, d12) * k2(d11, d12)
- else:
- kernel = lamda * k1(d11, d12) * k2(d21, d22)
- return kernel
-
-
- if __name__ == '__main__':
- o = polynomialkernel([1, 2], [3, 4], 2, 3)
|