|
- #!/usr/bin/env python3
- # -*- coding: utf-8 -*-
- """
- Created on Mon May 11 14:15:11 2020
-
- @author: ljia
- """
- import functools
- import multiprocessing
- import os
- import sys
- import logging
- from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct
- from gklearn.preimage import kernel_knn_cv
-
- dir_root = '../results/xp_1nn.init1.no_triangle_rule.allow_zeros/'
- num_random = 10
- initial_solutions = 1
- triangle_rule = False
- allow_zeros = True
- update_order = False
- test_sizes = [0.9, 0.7] # , 0.5, 0.3, 0.1]
-
- def xp_knn_1_1():
- for test_size in test_sizes:
- ds_name = 'Letter-high'
- knn_options = {'n_neighbors': 1,
- 'n_splits': 30,
- 'test_size': test_size,
- 'verbose': True}
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [0.675, 0.675, 0.75, 0.425, 0.425],
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100,
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'allow_zeros': allow_zeros,
- 'triangle_rule': triangle_rule,
- 'verbose': 1}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'StructuralSP',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'edge_kernels': sub_kernels,
- 'compute_method': 'naive',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 0}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': initial_solutions, # 1
- 'edit_cost': 'LETTER2',
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 0,
- 'verbose': 1,
- 'update_order': update_order,
- 'randomness': 'REAL',
- 'refine': False}
- save_results = True
- dir_save = dir_root + ds_name + '.' + kernel_options['name'] + '/' + ('update_order/' if update_order else '')
-
- if not os.path.exists(dir_save):
- os.makedirs(dir_save)
- file_output = open(dir_save + 'output.txt', 'a')
- # sys.stdout = file_output
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
-
- for train_examples in ['k-graphs', 'expert', 'random', 'best-dataset', 'trainset']:
- # for train_examples in ['expert']:
- print('\n-------------------------------------')
- print('train examples used:', train_examples, '\n')
- mpg_options['fit_method'] = train_examples
- # try:
- kernel_knn_cv(ds_name, train_examples, knn_options, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, load_gm='auto', dir_save=dir_save, irrelevant_labels=None, edge_required=False, cut_range=None)
- # except Exception as exp:
- # print('An exception occured when running this experiment:')
- # LOG_FILENAME = dir_save + 'error.txt'
- # logging.basicConfig(filename=LOG_FILENAME, level=logging.DEBUG)
- # logging.exception('')
- # print(repr(exp))
-
-
- if __name__ == '__main__':
- xp_knn_1_1()
|