|
- import numpy as np
-
-
- def sum_squares(a, b):
- """
- Return the sum of squares of the difference between a and b, aka MSE
- """
- return np.sum([(a[i] - b[i])**2 for i in range(len(a))])
-
-
- def euclid_d(x, y):
- """
- 1D euclidean distance
- """
- return np.sqrt((x-y)**2)
-
-
- def man_d(x, y):
- """
- 1D manhattan distance
- """
- return np.abs((x-y))
-
-
- def classif_d(x, y):
- """
- Function adapted to classification problems
- """
- return np.array(0 if x == y else 1)
-
-
- def rmse(pred, ground_truth):
- import numpy as np
- return np.sqrt(sum_squares(pred, ground_truth)/len(ground_truth))
-
-
- def accuracy(pred, ground_truth):
- import numpy as np
- return np.mean([a == b for a, b in zip(pred, ground_truth)])
-
-
- def rbf_k(D, sigma=1):
- return np.exp(-(D**2)/sigma)
|