|
- #!/usr/bin/env python3
- # -*- coding: utf-8 -*-
- """
- Created on Thu Mar 26 18:48:27 2020
-
- @author: ljia
- """
- import numpy as np
- import networkx as nx
- from gklearn.utils.graph_files import load_dataset
- import os
-
-
- class Dataset(object):
-
- def __init__(self, filename=None, filename_targets=None, **kwargs):
- if filename is None:
- self.__graphs = None
- self.__targets = None
- self.__node_labels = None
- self.__edge_labels = None
- self.__node_attrs = None
- self.__edge_attrs = None
- else:
- self.load_dataset(filename, filename_targets=filename_targets, **kwargs)
-
- self.__substructures = None
- self.__node_label_dim = None
- self.__edge_label_dim = None
- self.__directed = None
- self.__dataset_size = None
- self.__total_node_num = None
- self.__ave_node_num = None
- self.__min_node_num = None
- self.__max_node_num = None
- self.__total_edge_num = None
- self.__ave_edge_num = None
- self.__min_edge_num = None
- self.__max_edge_num = None
- self.__ave_node_degree = None
- self.__min_node_degree = None
- self.__max_node_degree = None
- self.__ave_fill_factor = None
- self.__min_fill_factor = None
- self.__max_fill_factor = None
- self.__node_label_nums = None
- self.__edge_label_nums = None
- self.__node_attr_dim = None
- self.__edge_attr_dim = None
- self.__class_number = None
-
-
- def load_dataset(self, filename, filename_targets=None, **kwargs):
- self.__graphs, self.__targets, label_names = load_dataset(filename, filename_targets=filename_targets, **kwargs)
- self.__node_labels = label_names['node_labels']
- self.__node_attrs = label_names['node_attrs']
- self.__edge_labels = label_names['edge_labels']
- self.__edge_attrs = label_names['edge_attrs']
-
-
- def load_graphs(self, graphs, targets=None):
- # this has to be followed by set_labels().
- self.__graphs = graphs
- self.__targets = targets
- # self.set_labels_attrs()
-
-
- def load_predefined_dataset(self, ds_name):
- current_path = os.path.dirname(os.path.realpath(__file__)) + '/'
- if ds_name == 'Acyclic':
- pass
- elif ds_name == 'COIL-DEL':
- ds_file = current_path + '../../datasets/COIL-DEL/COIL-DEL_A.txt'
- self.__graphs, self.__targets, label_names = load_dataset(ds_file)
- elif ds_name == 'COIL-RAG':
- ds_file = current_path + '../../datasets/COIL-RAG/COIL-RAG_A.txt'
- self.__graphs, self.__targets, label_names = load_dataset(ds_file)
- elif ds_name == 'COLORS-3':
- ds_file = current_path + '../../datasets/COLORS-3/COLORS-3_A.txt'
- self.__graphs, self.__targets, label_names = load_dataset(ds_file)
- elif ds_name == 'Fingerprint':
- ds_file = current_path + '../../datasets/Fingerprint/Fingerprint_A.txt'
- self.__graphs, self.__targets, label_names = load_dataset(ds_file)
- elif ds_name == 'FRANKENSTEIN':
- ds_file = current_path + '../../datasets/FRANKENSTEIN/FRANKENSTEIN_A.txt'
- self.__graphs, self.__targets, label_names = load_dataset(ds_file)
- elif ds_name == 'Letter-high': # node non-symb
- ds_file = current_path + '../../datasets/Letter-high/Letter-high_A.txt'
- self.__graphs, self.__targets, label_names = load_dataset(ds_file)
- elif ds_name == 'Letter-low': # node non-symb
- ds_file = current_path + '../../datasets/Letter-high/Letter-low_A.txt'
- self.__graphs, self.__targets, label_names = load_dataset(ds_file)
- elif ds_name == 'Letter-med': # node non-symb
- ds_file = current_path + '../../datasets/Letter-high/Letter-med_A.txt'
- self.__graphs, self.__targets, label_names = load_dataset(ds_file)
- elif ds_name == 'Monoterpenoides':
- ds_file = current_path + '../../datasets/Monoterpenoides/dataset_10+.ds'
- self.__graphs, self.__targets, label_names = load_dataset(ds_file)
- elif ds_name == 'MUTAG':
- ds_file = current_path + '../../datasets/MUTAG/MUTAG_A.txt'
- self.__graphs, self.__targets, label_names = load_dataset(ds_file)
- elif ds_name == 'SYNTHETIC':
- pass
- elif ds_name == 'SYNTHETICnew':
- ds_file = current_path + '../../datasets/SYNTHETICnew/SYNTHETICnew_A.txt'
- self.__graphs, self.__targets, label_names = load_dataset(ds_file)
- elif ds_name == 'Synthie':
- pass
-
- self.__node_labels = label_names['node_labels']
- self.__node_attrs = label_names['node_attrs']
- self.__edge_labels = label_names['edge_labels']
- self.__edge_attrs = label_names['edge_attrs']
-
-
- def set_labels(self, node_labels=[], node_attrs=[], edge_labels=[], edge_attrs=[]):
- self.__node_labels = node_labels
- self.__node_attrs = node_attrs
- self.__edge_labels = edge_labels
- self.__edge_attrs = edge_attrs
-
-
- def set_labels_attrs(self, node_labels=None, node_attrs=None, edge_labels=None, edge_attrs=None):
- # @todo: remove labels which have only one possible values.
- if node_labels is None:
- self.__node_labels = self.__graphs[0].graph['node_labels']
- # # graphs are considered node unlabeled if all nodes have the same label.
- # infos.update({'node_labeled': is_nl if node_label_num > 1 else False})
- if node_attrs is None:
- self.__node_attrs = self.__graphs[0].graph['node_attrs']
- # for G in Gn:
- # for n in G.nodes(data=True):
- # if 'attributes' in n[1]:
- # return len(n[1]['attributes'])
- # return 0
- if edge_labels is None:
- self.__edge_labels = self.__graphs[0].graph['edge_labels']
- # # graphs are considered edge unlabeled if all edges have the same label.
- # infos.update({'edge_labeled': is_el if edge_label_num > 1 else False})
- if edge_attrs is None:
- self.__edge_attrs = self.__graphs[0].graph['edge_attrs']
- # for G in Gn:
- # if nx.number_of_edges(G) > 0:
- # for e in G.edges(data=True):
- # if 'attributes' in e[2]:
- # return len(e[2]['attributes'])
- # return 0
-
-
- def get_dataset_infos(self, keys=None):
- """Computes and returns the structure and property information of the graph dataset.
-
- Parameters
- ----------
- keys : list
- List of strings which indicate which informations will be returned. The
- possible choices includes:
-
- 'substructures': sub-structures graphs contains, including 'linear', 'non
- linear' and 'cyclic'.
-
- 'node_label_dim': whether vertices have symbolic labels.
-
- 'edge_label_dim': whether egdes have symbolic labels.
-
- 'directed': whether graphs in dataset are directed.
-
- 'dataset_size': number of graphs in dataset.
-
- 'total_node_num': total number of vertices of all graphs in dataset.
-
- 'ave_node_num': average number of vertices of graphs in dataset.
-
- 'min_node_num': minimum number of vertices of graphs in dataset.
-
- 'max_node_num': maximum number of vertices of graphs in dataset.
-
- 'total_edge_num': total number of edges of all graphs in dataset.
-
- 'ave_edge_num': average number of edges of graphs in dataset.
-
- 'min_edge_num': minimum number of edges of graphs in dataset.
-
- 'max_edge_num': maximum number of edges of graphs in dataset.
-
- 'ave_node_degree': average vertex degree of graphs in dataset.
-
- 'min_node_degree': minimum vertex degree of graphs in dataset.
-
- 'max_node_degree': maximum vertex degree of graphs in dataset.
-
- 'ave_fill_factor': average fill factor (number_of_edges /
- (number_of_nodes ** 2)) of graphs in dataset.
-
- 'min_fill_factor': minimum fill factor of graphs in dataset.
-
- 'max_fill_factor': maximum fill factor of graphs in dataset.
-
- 'node_label_nums': list of numbers of symbolic vertex labels of graphs in dataset.
-
- 'edge_label_nums': list number of symbolic edge labels of graphs in dataset.
-
- 'node_attr_dim': number of dimensions of non-symbolic vertex labels.
- Extracted from the 'attributes' attribute of graph nodes.
-
- 'edge_attr_dim': number of dimensions of non-symbolic edge labels.
- Extracted from the 'attributes' attribute of graph edges.
-
- 'class_number': number of classes. Only available for classification problems.
-
- All informations above will be returned if `keys` is not given.
-
- Return
- ------
- dict
- Information of the graph dataset keyed by `keys`.
- """
- infos = {}
-
- if keys == None:
- keys = [
- 'substructures',
- 'node_label_dim',
- 'edge_label_dim',
- 'directed',
- 'dataset_size',
- 'total_node_num',
- 'ave_node_num',
- 'min_node_num',
- 'max_node_num',
- 'total_edge_num',
- 'ave_edge_num',
- 'min_edge_num',
- 'max_edge_num',
- 'ave_node_degree',
- 'min_node_degree',
- 'max_node_degree',
- 'ave_fill_factor',
- 'min_fill_factor',
- 'max_fill_factor',
- 'node_label_nums',
- 'edge_label_nums',
- 'node_attr_dim',
- 'edge_attr_dim',
- 'class_number',
- ]
-
- # dataset size
- if 'dataset_size' in keys:
- if self.__dataset_size is None:
- self.__dataset_size = self.__get_dataset_size()
- infos['dataset_size'] = self.__dataset_size
-
- # graph node number
- if any(i in keys for i in ['total_node_num', 'ave_node_num', 'min_node_num', 'max_node_num']):
- all_node_nums = self.__get_all_node_nums()
-
- if 'total_node_num' in keys:
- if self.__total_node_num is None:
- self.__total_node_num = self.__get_total_node_num(all_node_nums)
- infos['total_node_num'] = self.__total_node_num
-
- if 'ave_node_num' in keys:
- if self.__ave_node_num is None:
- self.__ave_node_num = self.__get_ave_node_num(all_node_nums)
- infos['ave_node_num'] = self.__ave_node_num
-
- if 'min_node_num' in keys:
- if self.__min_node_num is None:
- self.__min_node_num = self.__get_min_node_num(all_node_nums)
- infos['min_node_num'] = self.__min_node_num
-
- if 'max_node_num' in keys:
- if self.__max_node_num is None:
- self.__max_node_num = self.__get_max_node_num(all_node_nums)
- infos['max_node_num'] = self.__max_node_num
-
- # graph edge number
- if any(i in keys for i in ['total_edge_num', 'ave_edge_num', 'min_edge_num', 'max_edge_num']):
- all_edge_nums = self.__get_all_edge_nums()
-
- if 'total_edge_num' in keys:
- if self.__total_edge_num is None:
- self.__total_edge_num = self.__get_total_edge_num(all_edge_nums)
- infos['total_edge_num'] = self.__total_edge_num
-
- if 'ave_edge_num' in keys:
- if self.__ave_edge_num is None:
- self.__ave_edge_num = self.__get_ave_edge_num(all_edge_nums)
- infos['ave_edge_num'] = self.__ave_edge_num
-
- if 'max_edge_num' in keys:
- if self.__max_edge_num is None:
- self.__max_edge_num = self.__get_max_edge_num(all_edge_nums)
- infos['max_edge_num'] = self.__max_edge_num
-
- if 'min_edge_num' in keys:
- if self.__min_edge_num is None:
- self.__min_edge_num = self.__get_min_edge_num(all_edge_nums)
- infos['min_edge_num'] = self.__min_edge_num
-
- # label number
- if 'node_label_dim' in keys:
- if self.__node_label_dim is None:
- self.__node_label_dim = self.__get_node_label_dim()
- infos['node_label_dim'] = self.__node_label_dim
-
- if 'node_label_nums' in keys:
- if self.__node_label_nums is None:
- self.__node_label_nums = {}
- for node_label in self.__node_labels:
- self.__node_label_nums[node_label] = self.get_node_label_num(node_label)
- infos['node_label_nums'] = self.__node_label_nums
-
- if 'edge_label_dim' in keys:
- if self.__edge_label_dim is None:
- self.__edge_label_dim = self.__get_edge_label_dim()
- infos['edge_label_dim'] = self.__edge_label_dim
-
- if 'edge_label_nums' in keys:
- if self.__edge_label_nums is None:
- self.__edge_label_nums = {}
- for edge_label in self.__edge_labels:
- self.__edge_label_nums[edge_label] = self.get_edge_label_num(edge_label)
- infos['edge_label_nums'] = self.__edge_label_nums
-
- if 'directed' in keys or 'substructures' in keys:
- if self.__directed is None:
- self.__directed = self.__is_directed()
- infos['directed'] = self.__directed
-
- # node degree
- if any(i in keys for i in ['ave_node_degree', 'max_node_degree', 'min_node_degree']):
- all_node_degrees = self.__get_all_node_degrees()
-
- if 'ave_node_degree' in keys:
- if self.__ave_node_degree is None:
- self.__ave_node_degree = self.__get_ave_node_degree(all_node_degrees)
- infos['ave_node_degree'] = self.__ave_node_degree
-
- if 'max_node_degree' in keys:
- if self.__max_node_degree is None:
- self.__max_node_degree = self.__get_max_node_degree(all_node_degrees)
- infos['max_node_degree'] = self.__max_node_degree
-
- if 'min_node_degree' in keys:
- if self.__min_node_degree is None:
- self.__min_node_degree = self.__get_min_node_degree(all_node_degrees)
- infos['min_node_degree'] = self.__min_node_degree
-
- # fill factor
- if any(i in keys for i in ['ave_fill_factor', 'max_fill_factor', 'min_fill_factor']):
- all_fill_factors = self.__get_all_fill_factors()
-
- if 'ave_fill_factor' in keys:
- if self.__ave_fill_factor is None:
- self.__ave_fill_factor = self.__get_ave_fill_factor(all_fill_factors)
- infos['ave_fill_factor'] = self.__ave_fill_factor
-
- if 'max_fill_factor' in keys:
- if self.__max_fill_factor is None:
- self.__max_fill_factor = self.__get_max_fill_factor(all_fill_factors)
- infos['max_fill_factor'] = self.__max_fill_factor
-
- if 'min_fill_factor' in keys:
- if self.__min_fill_factor is None:
- self.__min_fill_factor = self.__get_min_fill_factor(all_fill_factors)
- infos['min_fill_factor'] = self.__min_fill_factor
-
- if 'substructures' in keys:
- if self.__substructures is None:
- self.__substructures = self.__get_substructures()
- infos['substructures'] = self.__substructures
-
- if 'class_number' in keys:
- if self.__class_number is None:
- self.__class_number = self.__get_class_number()
- infos['class_number'] = self.__class_number
-
- if 'node_attr_dim' in keys:
- if self.__node_attr_dim is None:
- self.__node_attr_dim = self.__get_node_attr_dim()
- infos['node_attr_dim'] = self.__node_attr_dim
-
- if 'edge_attr_dim' in keys:
- if self.__edge_attr_dim is None:
- self.__edge_attr_dim = self.__get_edge_attr_dim()
- infos['edge_attr_dim'] = self.__edge_attr_dim
-
- return infos
-
-
- def print_graph_infos(self, infos):
- from collections import OrderedDict
- keys = list(infos.keys())
- print(OrderedDict(sorted(infos.items(), key=lambda i: keys.index(i[0]))))
-
-
- def remove_labels(self, node_labels=[], edge_labels=[], node_attrs=[], edge_attrs=[]):
- for g in self.__graphs:
- for nd in g.nodes():
- for nl in node_labels:
- del g.nodes[nd][nl]
- for na in node_attrs:
- del g.nodes[nd][na]
- for ed in g.edges():
- for el in edge_labels:
- del g.edges[ed][el]
- for ea in edge_attrs:
- del g.edges[ed][ea]
- if len(node_labels) > 0:
- self.__node_labels = [nl for nl in self.__node_labels if nl not in node_labels]
- if len(edge_labels) > 0:
- self.__edge_labels = [el for el in self.__edge_labels if el not in edge_labels]
- if len(node_attrs) > 0:
- self.__node_attrs = [na for na in self.__node_attrs if na not in node_attrs]
- if len(edge_attrs) > 0:
- self.__edge_attrs = [ea for ea in self.__edge_attrs if ea not in edge_attrs]
-
-
- def cut_graphs(self, range_):
- self.__graphs = [self.__graphs[i] for i in range_]
- if self.__targets is not None:
- self.__targets = [self.__targets[i] for i in range_]
- # @todo
- # self.set_labels_attrs()
-
-
- def trim_dataset(self, edge_required=False):
- if edge_required:
- trimed_pairs = [(idx, g) for idx, g in enumerate(self.__graphs) if (nx.number_of_nodes(g) != 0 and nx.number_of_edges(g) != 0)]
- else:
- trimed_pairs = [(idx, g) for idx, g in enumerate(self.__graphs) if nx.number_of_nodes(g) != 0]
- idx = [p[0] for p in trimed_pairs]
- self.__graphs = [p[1] for p in trimed_pairs]
- self.__targets = [self.__targets[i] for i in idx]
- # @todo
- # self.set_labels_attrs()
-
-
- def __get_dataset_size(self):
- return len(self.__graphs)
-
-
- def __get_all_node_nums(self):
- return [nx.number_of_nodes(G) for G in self.__graphs]
-
-
- def __get_total_node_nums(self, all_node_nums):
- return np.sum(all_node_nums)
-
-
- def __get_ave_node_num(self, all_node_nums):
- return np.mean(all_node_nums)
-
-
- def __get_min_node_num(self, all_node_nums):
- return np.amin(all_node_nums)
-
-
- def __get_max_node_num(self, all_node_nums):
- return np.amax(all_node_nums)
-
-
- def __get_all_edge_nums(self):
- return [nx.number_of_edges(G) for G in self.__graphs]
-
-
- def __get_total_edge_nums(self, all_edge_nums):
- return np.sum(all_edge_nums)
-
-
- def __get_ave_edge_num(self, all_edge_nums):
- return np.mean(all_edge_nums)
-
-
- def __get_min_edge_num(self, all_edge_nums):
- return np.amin(all_edge_nums)
-
-
- def __get_max_edge_num(self, all_edge_nums):
- return np.amax(all_edge_nums)
-
-
- def __get_node_label_dim(self):
- return len(self.__node_labels)
-
-
- def __get_node_label_num(self, node_label):
- nl = set()
- for G in self.__graphs:
- nl = nl | set(nx.get_node_attributes(G, node_label).values())
- return len(nl)
-
-
- def __get_edge_label_dim(self):
- return len(self.__edge_labels)
-
-
- def __get_edge_label_num(self, edge_label):
- el = set()
- for G in self.__graphs:
- el = el | set(nx.get_edge_attributes(G, edge_label).values())
- return len(el)
-
-
- def __is_directed(self):
- return nx.is_directed(self.__graphs[0])
-
-
- def __get_all_node_degrees(self):
- return [np.mean(list(dict(G.degree()).values())) for G in self.__graphs]
-
-
- def __get_ave_node_degree(self, all_node_degrees):
- return np.mean(all_node_degrees)
-
-
- def __get_max_node_degree(self, all_node_degrees):
- return np.amax(all_node_degrees)
-
-
- def __get_min_node_degree(self, all_node_degrees):
- return np.amin(all_node_degrees)
-
-
- def __get_all_fill_factors(self):
- """
- Get fill factor, the number of non-zero entries in the adjacency matrix.
-
- Returns
- -------
- list[float]
- List of fill factors for all graphs.
- """
- return [nx.number_of_edges(G) / (nx.number_of_nodes(G) ** 2) for G in self.__graphs]
-
-
- def __get_ave_fill_factor(self, all_fill_factors):
- return np.mean(all_fill_factors)
-
-
- def __get_max_fill_factor(self, all_fill_factors):
- return np.amax(all_fill_factors)
-
-
- def __get_min_fill_factor(self, all_fill_factors):
- return np.amin(all_fill_factors)
-
-
- def __get_substructures(self):
- subs = set()
- for G in self.__graphs:
- degrees = list(dict(G.degree()).values())
- if any(i == 2 for i in degrees):
- subs.add('linear')
- if np.amax(degrees) >= 3:
- subs.add('non linear')
- if 'linear' in subs and 'non linear' in subs:
- break
-
- if self.__directed:
- for G in self.__graphs:
- if len(list(nx.find_cycle(G))) > 0:
- subs.add('cyclic')
- break
- # else:
- # # @todo: this method does not work for big graph with large amount of edges like D&D, try a better way.
- # upper = np.amin([nx.number_of_edges(G) for G in Gn]) * 2 + 10
- # for G in Gn:
- # if (nx.number_of_edges(G) < upper):
- # cyc = list(nx.simple_cycles(G.to_directed()))
- # if any(len(i) > 2 for i in cyc):
- # subs.add('cyclic')
- # break
- # if 'cyclic' not in subs:
- # for G in Gn:
- # cyc = list(nx.simple_cycles(G.to_directed()))
- # if any(len(i) > 2 for i in cyc):
- # subs.add('cyclic')
- # break
-
- return subs
-
-
- def __get_class_num(self):
- return len(set(self.__targets))
-
-
- def __get_node_attr_dim(self):
- return len(self.__node_attrs)
-
-
- def __get_edge_attr_dim(self):
- return len(self.__edge_attrs)
-
-
- @property
- def graphs(self):
- return self.__graphs
-
-
- @property
- def targets(self):
- return self.__targets
-
-
- @property
- def node_labels(self):
- return self.__node_labels
-
-
- @property
- def edge_labels(self):
- return self.__edge_labels
-
-
- @property
- def node_attrs(self):
- return self.__node_attrs
-
-
- @property
- def edge_attrs(self):
- return self.__edge_attrs
-
-
- def split_dataset_by_target(dataset):
- from gklearn.preimage.utils import get_same_item_indices
-
- graphs = dataset.graphs
- targets = dataset.targets
- datasets = []
- idx_targets = get_same_item_indices(targets)
- for key, val in idx_targets.items():
- sub_graphs = [graphs[i] for i in val]
- sub_dataset = Dataset()
- sub_dataset.load_graphs(sub_graphs, [key] * len(val))
- sub_dataset.set_labels(node_labels=dataset.node_labels, node_attrs=dataset.node_attrs, edge_labels=dataset.edge_labels, edge_attrs=dataset.edge_attrs)
- datasets.append(sub_dataset)
- return datasets
|