|
- #!/usr/bin/env python3
- # -*- coding: utf-8 -*-
- """
- Created on Wed Aug 19 17:24:46 2020
-
- @author: ljia
-
- @references:
-
- [1] S Vichy N Vishwanathan, Nicol N Schraudolph, Risi Kondor, and Karsten M Borgwardt. Graph kernels. Journal of Machine Learning Research, 11(Apr):1201–1242, 2010.
- """
-
- import sys
- from gklearn.utils import get_iters
- import numpy as np
- import networkx as nx
- from control import dlyap
- from gklearn.utils.parallel import parallel_gm, parallel_me
- from gklearn.kernels import RandomWalkMeta
-
-
- class SylvesterEquation(RandomWalkMeta):
-
-
- def __init__(self, **kwargs):
- super().__init__(**kwargs)
-
-
- def _compute_gm_series(self):
- self._check_edge_weight(self._graphs, self.verbose)
- self._check_graphs(self._graphs)
- if self.verbose >= 2:
- import warnings
- warnings.warn('All labels are ignored.')
-
- lmda = self._weight
-
- # compute Gram matrix.
- gram_matrix = np.zeros((len(self._graphs), len(self._graphs)))
-
- if self._q is None:
- # don't normalize adjacency matrices if q is a uniform vector. Note
- # A_wave_list actually contains the transposes of the adjacency matrices.
- iterator = get_iters(self._graphs, desc='compute adjacency matrices', file=sys.stdout, verbose=(self.verbose >= 2))
- A_wave_list = [nx.adjacency_matrix(G, self._edge_weight).todense().transpose() for G in iterator]
- # # normalized adjacency matrices
- # A_wave_list = []
- # for G in tqdm(Gn, desc='compute adjacency matrices', file=sys.stdout):
- # A_tilde = nx.adjacency_matrix(G, eweight).todense().transpose()
- # norm = A_tilde.sum(axis=0)
- # norm[norm == 0] = 1
- # A_wave_list.append(A_tilde / norm)
-
- if self._p is None: # p is uniform distribution as default.
- from itertools import combinations_with_replacement
- itr = combinations_with_replacement(range(0, len(self._graphs)), 2)
- len_itr = int(len(self._graphs) * (len(self._graphs) + 1) / 2)
- iterator = get_iters(itr, desc='Computing kernels', file=sys.stdout, length=len_itr, verbose=(self.verbose >= 2))
-
- for i, j in iterator:
- kernel = self._kernel_do(A_wave_list[i], A_wave_list[j], lmda)
- gram_matrix[i][j] = kernel
- gram_matrix[j][i] = kernel
-
- else: # @todo
- pass
- else: # @todo
- pass
-
- return gram_matrix
-
-
- def _compute_gm_imap_unordered(self):
- self._check_edge_weight(self._graphs, self.verbose)
- self._check_graphs(self._graphs)
- if self.verbose >= 2:
- import warnings
- warnings.warn('All labels are ignored.')
-
- # compute Gram matrix.
- gram_matrix = np.zeros((len(self._graphs), len(self._graphs)))
-
- if self._q is None:
- # don't normalize adjacency matrices if q is a uniform vector. Note
- # A_wave_list actually contains the transposes of the adjacency matrices.
- iterator = get_iters(self._graphs, desc='compute adjacency matrices', file=sys.stdout, verbose=(self.verbose >= 2))
- A_wave_list = [nx.adjacency_matrix(G, self._edge_weight).todense().transpose() for G in iterator] # @todo: parallel?
-
- if self._p is None: # p is uniform distribution as default.
- def init_worker(A_wave_list_toshare):
- global G_A_wave_list
- G_A_wave_list = A_wave_list_toshare
-
- do_fun = self._wrapper_kernel_do
-
- parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=init_worker,
- glbv=(A_wave_list,), n_jobs=self.n_jobs, verbose=self.verbose)
-
- else: # @todo
- pass
- else: # @todo
- pass
-
- return gram_matrix
-
-
- def _compute_kernel_list_series(self, g1, g_list):
- self._check_edge_weight(g_list + [g1], self.verbose)
- self._check_graphs(g_list + [g1])
- if self.verbose >= 2:
- import warnings
- warnings.warn('All labels are ignored.')
-
- lmda = self._weight
-
- # compute kernel list.
- kernel_list = [None] * len(g_list)
-
- if self._q is None:
- # don't normalize adjacency matrices if q is a uniform vector. Note
- # A_wave_list actually contains the transposes of the adjacency matrices.
- A_wave_1 = nx.adjacency_matrix(g1, self._edge_weight).todense().transpose()
- iterator = get_iters(g_list, desc='compute adjacency matrices', file=sys.stdout, verbose=(self.verbose >= 2))
- A_wave_list = [nx.adjacency_matrix(G, self._edge_weight).todense().transpose() for G in iterator]
-
- if self._p is None: # p is uniform distribution as default.
- iterator = get_iters(range(len(g_list)), desc='Computing kernels', file=sys.stdout, length=len(g_list), verbose=(self.verbose >= 2))
-
- for i in iterator:
- kernel = self._kernel_do(A_wave_1, A_wave_list[i], lmda)
- kernel_list[i] = kernel
-
- else: # @todo
- pass
- else: # @todo
- pass
-
- return kernel_list
-
-
- def _compute_kernel_list_imap_unordered(self, g1, g_list):
- self._check_edge_weight(g_list + [g1], self.verbose)
- self._check_graphs(g_list + [g1])
- if self.verbose >= 2:
- import warnings
- warnings.warn('All labels are ignored.')
-
- # compute kernel list.
- kernel_list = [None] * len(g_list)
-
- if self._q is None:
- # don't normalize adjacency matrices if q is a uniform vector. Note
- # A_wave_list actually contains the transposes of the adjacency matrices.
- A_wave_1 = nx.adjacency_matrix(g1, self._edge_weight).todense().transpose()
- iterator = get_iters(g_list, desc='compute adjacency matrices', file=sys.stdout, verbose=(self.verbose >= 2))
- A_wave_list = [nx.adjacency_matrix(G, self._edge_weight).todense().transpose() for G in iterator] # @todo: parallel?
-
- if self._p is None: # p is uniform distribution as default.
- def init_worker(A_wave_1_toshare, A_wave_list_toshare):
- global G_A_wave_1, G_A_wave_list
- G_A_wave_1 = A_wave_1_toshare
- G_A_wave_list = A_wave_list_toshare
-
- do_fun = self._wrapper_kernel_list_do
-
- def func_assign(result, var_to_assign):
- var_to_assign[result[0]] = result[1]
- itr = range(len(g_list))
- len_itr = len(g_list)
- parallel_me(do_fun, func_assign, kernel_list, itr, len_itr=len_itr,
- init_worker=init_worker, glbv=(A_wave_1, A_wave_list), method='imap_unordered',
- n_jobs=self.n_jobs, itr_desc='Computing kernels', verbose=self.verbose)
-
- else: # @todo
- pass
- else: # @todo
- pass
-
- return kernel_list
-
-
- def _wrapper_kernel_list_do(self, itr):
- return itr, self._kernel_do(G_A_wave_1, G_A_wave_list[itr], self._weight)
-
-
- def _compute_single_kernel_series(self, g1, g2):
- self._check_edge_weight([g1] + [g2], self.verbose)
- self._check_graphs([g1] + [g2])
- if self.verbose >= 2:
- import warnings
- warnings.warn('All labels are ignored.')
-
- lmda = self._weight
-
- if self._q is None:
- # don't normalize adjacency matrices if q is a uniform vector. Note
- # A_wave_list actually contains the transposes of the adjacency matrices.
- A_wave_1 = nx.adjacency_matrix(g1, self._edge_weight).todense().transpose()
- A_wave_2 = nx.adjacency_matrix(g2, self._edge_weight).todense().transpose()
- if self._p is None: # p is uniform distribution as default.
- kernel = self._kernel_do(A_wave_1, A_wave_2, lmda)
- else: # @todo
- pass
- else: # @todo
- pass
-
- return kernel
-
-
- def _kernel_do(self, A_wave1, A_wave2, lmda):
-
- S = lmda * A_wave2
- T_t = A_wave1
- # use uniform distribution if there is no prior knowledge.
- nb_pd = len(A_wave1) * len(A_wave2)
- p_times_uni = 1 / nb_pd
- M0 = np.full((len(A_wave2), len(A_wave1)), p_times_uni)
- X = dlyap(S, T_t, M0)
- X = np.reshape(X, (-1, 1), order='F')
- # use uniform distribution if there is no prior knowledge.
- q_times = np.full((1, nb_pd), p_times_uni)
- return np.dot(q_times, X)
-
-
- def _wrapper_kernel_do(self, itr):
- i = itr[0]
- j = itr[1]
- return i, j, self._kernel_do(G_A_wave_list[i], G_A_wave_list[j], self._weight)
|