|
- #include <stdio.h>
- #include <ctype.h>
- #include <stdlib.h>
- #include <string.h>
- #include <errno.h>
- #include "svm.h"
-
- int print_null(const char *s,...) {return 0;}
-
- static int (*info)(const char *fmt,...) = &printf;
-
- struct svm_node *x;
- int max_nr_attr = 64;
-
- struct svm_model* model;
- int predict_probability=0;
-
- static char *line = NULL;
- static int max_line_len;
-
- static char* readline(FILE *input)
- {
- int len;
-
- if(fgets(line,max_line_len,input) == NULL)
- return NULL;
-
- while(strrchr(line,'\n') == NULL)
- {
- max_line_len *= 2;
- line = (char *) realloc(line,max_line_len);
- len = (int) strlen(line);
- if(fgets(line+len,max_line_len-len,input) == NULL)
- break;
- }
- return line;
- }
-
- void exit_input_error(int line_num)
- {
- fprintf(stderr,"Wrong input format at line %d\n", line_num);
- exit(1);
- }
-
- void predict(FILE *input, FILE *output)
- {
- int correct = 0;
- int total = 0;
- double error = 0;
- double sump = 0, sumt = 0, sumpp = 0, sumtt = 0, sumpt = 0;
-
- int svm_type=svm_get_svm_type(model);
- int nr_class=svm_get_nr_class(model);
- double *prob_estimates=NULL;
- int j;
-
- if(predict_probability)
- {
- if (svm_type==NU_SVR || svm_type==EPSILON_SVR)
- info("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma=%g\n",svm_get_svr_probability(model));
- else
- {
- int *labels=(int *) malloc(nr_class*sizeof(int));
- svm_get_labels(model,labels);
- prob_estimates = (double *) malloc(nr_class*sizeof(double));
- fprintf(output,"labels");
- for(j=0;j<nr_class;j++)
- fprintf(output," %d",labels[j]);
- fprintf(output,"\n");
- free(labels);
- }
- }
-
- max_line_len = 1024;
- line = (char *)malloc(max_line_len*sizeof(char));
- while(readline(input) != NULL)
- {
- int i = 0;
- double target_label, predict_label;
- char *idx, *val, *label, *endptr;
- int inst_max_index = -1; // strtol gives 0 if wrong format, and precomputed kernel has <index> start from 0
-
- label = strtok(line," \t\n");
- if(label == NULL) // empty line
- exit_input_error(total+1);
-
- target_label = strtod(label,&endptr);
- if(endptr == label || *endptr != '\0')
- exit_input_error(total+1);
-
- while(1)
- {
- if(i>=max_nr_attr-1) // need one more for index = -1
- {
- max_nr_attr *= 2;
- x = (struct svm_node *) realloc(x,max_nr_attr*sizeof(struct svm_node));
- }
-
- idx = strtok(NULL,":");
- val = strtok(NULL," \t");
-
- if(val == NULL)
- break;
- errno = 0;
- x[i].index = (int) strtol(idx,&endptr,10);
- if(endptr == idx || errno != 0 || *endptr != '\0' || x[i].index <= inst_max_index)
- exit_input_error(total+1);
- else
- inst_max_index = x[i].index;
-
- errno = 0;
- x[i].value = strtod(val,&endptr);
- if(endptr == val || errno != 0 || (*endptr != '\0' && !isspace(*endptr)))
- exit_input_error(total+1);
-
- ++i;
- }
- x[i].index = -1;
-
- if (predict_probability && (svm_type==C_SVC || svm_type==NU_SVC))
- {
- predict_label = svm_predict_probability(model,x,prob_estimates);
- fprintf(output,"%g",predict_label);
- for(j=0;j<nr_class;j++)
- fprintf(output," %g",prob_estimates[j]);
- fprintf(output,"\n");
- }
- else
- {
- predict_label = svm_predict(model,x);
- fprintf(output,"%g\n",predict_label);
- }
-
- if(predict_label == target_label)
- ++correct;
- error += (predict_label-target_label)*(predict_label-target_label);
- sump += predict_label;
- sumt += target_label;
- sumpp += predict_label*predict_label;
- sumtt += target_label*target_label;
- sumpt += predict_label*target_label;
- ++total;
- }
- if (svm_type==NU_SVR || svm_type==EPSILON_SVR)
- {
- info("Mean squared error = %g (regression)\n",error/total);
- info("Squared correlation coefficient = %g (regression)\n",
- ((total*sumpt-sump*sumt)*(total*sumpt-sump*sumt))/
- ((total*sumpp-sump*sump)*(total*sumtt-sumt*sumt))
- );
- }
- else
- info("Accuracy = %g%% (%d/%d) (classification)\n",
- (double)correct/total*100,correct,total);
- if(predict_probability)
- free(prob_estimates);
- }
-
- void exit_with_help()
- {
- printf(
- "Usage: svm-predict [options] test_file model_file output_file\n"
- "options:\n"
- "-b probability_estimates: whether to predict probability estimates, 0 or 1 (default 0); for one-class SVM only 0 is supported\n"
- "-q : quiet mode (no outputs)\n"
- );
- exit(1);
- }
-
- int main(int argc, char **argv)
- {
- FILE *input, *output;
- int i;
- // parse options
- for(i=1;i<argc;i++)
- {
- if(argv[i][0] != '-') break;
- ++i;
- switch(argv[i-1][1])
- {
- case 'b':
- predict_probability = atoi(argv[i]);
- break;
- case 'q':
- info = &print_null;
- i--;
- break;
- default:
- fprintf(stderr,"Unknown option: -%c\n", argv[i-1][1]);
- exit_with_help();
- }
- }
-
- if(i>=argc-2)
- exit_with_help();
-
- input = fopen(argv[i],"r");
- if(input == NULL)
- {
- fprintf(stderr,"can't open input file %s\n",argv[i]);
- exit(1);
- }
-
- output = fopen(argv[i+2],"w");
- if(output == NULL)
- {
- fprintf(stderr,"can't open output file %s\n",argv[i+2]);
- exit(1);
- }
-
- if((model=svm_load_model(argv[i+1]))==0)
- {
- fprintf(stderr,"can't open model file %s\n",argv[i+1]);
- exit(1);
- }
-
- x = (struct svm_node *) malloc(max_nr_attr*sizeof(struct svm_node));
- if(predict_probability)
- {
- if(svm_check_probability_model(model)==0)
- {
- fprintf(stderr,"Model does not support probabiliy estimates\n");
- exit(1);
- }
- }
- else
- {
- if(svm_check_probability_model(model)!=0)
- info("Model supports probability estimates, but disabled in prediction.\n");
- }
-
- predict(input,output);
- svm_free_and_destroy_model(&model);
- free(x);
- free(line);
- fclose(input);
- fclose(output);
- return 0;
- }
|