|
- """Tests of graph kernels.
- """
-
- import pytest
- import multiprocessing
-
-
- def chooseDataset(ds_name):
- """Choose dataset according to name.
- """
- from gklearn.utils import Dataset
-
- dataset = Dataset()
-
- # no node labels (and no edge labels).
- if ds_name == 'Alkane':
- dataset.load_predefined_dataset(ds_name)
- dataset.trim_dataset(edge_required=False)
- irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']}
- dataset.remove_labels(**irrelevant_labels)
- # node symbolic labels.
- elif ds_name == 'Acyclic':
- dataset.load_predefined_dataset(ds_name)
- dataset.trim_dataset(edge_required=False)
- irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']}
- dataset.remove_labels(**irrelevant_labels)
- # node non-symbolic labels.
- elif ds_name == 'Letter-med':
- dataset.load_predefined_dataset(ds_name)
- dataset.trim_dataset(edge_required=False)
- # node symbolic and non-symbolic labels (and edge symbolic labels).
- elif ds_name == 'AIDS':
- dataset.load_predefined_dataset(ds_name)
- dataset.trim_dataset(edge_required=False)
- # edge non-symbolic labels (no node labels).
- elif ds_name == 'Fingerprint_edge':
- dataset.load_predefined_dataset('Fingerprint')
- dataset.trim_dataset(edge_required=True)
- irrelevant_labels = {'edge_attrs': ['orient', 'angle']}
- dataset.remove_labels(**irrelevant_labels)
- # edge non-symbolic labels (and node non-symbolic labels).
- elif ds_name == 'Fingerprint':
- dataset.load_predefined_dataset(ds_name)
- dataset.trim_dataset(edge_required=True)
- # edge symbolic and non-symbolic labels (and node symbolic and non-symbolic labels).
- elif ds_name == 'Cuneiform':
- dataset.load_predefined_dataset(ds_name)
- dataset.trim_dataset(edge_required=True)
-
- dataset.cut_graphs(range(0, 3))
-
- return dataset
-
-
- @pytest.mark.parametrize('ds_name', ['Alkane', 'AIDS'])
- @pytest.mark.parametrize('weight,compute_method', [(0.01, 'geo'), (1, 'exp')])
- @pytest.mark.parametrize('parallel', ['imap_unordered', None])
- def test_CommonWalk(ds_name, parallel, weight, compute_method):
- """Test common walk kernel.
- """
- from gklearn.kernels import CommonWalk
- import networkx as nx
-
- dataset = chooseDataset(ds_name)
- dataset.load_graphs([g for g in dataset.graphs if nx.number_of_nodes(g) > 1])
-
- try:
- graph_kernel = CommonWalk(node_labels=dataset.node_labels,
- edge_labels=dataset.edge_labels,
- ds_infos=dataset.get_dataset_infos(keys=['directed']),
- weight=weight,
- compute_method=compute_method)
- gram_matrix, run_time = graph_kernel.compute(dataset.graphs,
- parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True)
- kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:],
- parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True)
- kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1],
- parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True)
-
- except Exception as exception:
- assert False, exception
-
-
- @pytest.mark.parametrize('ds_name', ['Alkane', 'AIDS'])
- @pytest.mark.parametrize('remove_totters', [False]) #[True, False])
- @pytest.mark.parametrize('parallel', ['imap_unordered', None])
- def test_Marginalized(ds_name, parallel, remove_totters):
- """Test marginalized kernel.
- """
- from gklearn.kernels import Marginalized
-
- dataset = chooseDataset(ds_name)
-
- try:
- graph_kernel = Marginalized(node_labels=dataset.node_labels,
- edge_labels=dataset.edge_labels,
- ds_infos=dataset.get_dataset_infos(keys=['directed']),
- p_quit=0.5,
- n_iteration=2,
- remove_totters=remove_totters)
- gram_matrix, run_time = graph_kernel.compute(dataset.graphs,
- parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True)
- kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:],
- parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True)
- kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1],
- parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True)
-
- except Exception as exception:
- assert False, exception
-
-
- # @pytest.mark.parametrize(
- # 'compute_method,ds_name,sub_kernel',
- # [
- # # ('sylvester', 'Alkane', None),
- # # ('conjugate', 'Alkane', None),
- # # ('conjugate', 'AIDS', None),
- # # ('fp', 'Alkane', None),
- # # ('fp', 'AIDS', None),
- # ('spectral', 'Alkane', 'exp'),
- # ('spectral', 'Alkane', 'geo'),
- # ]
- # )
- # #@pytest.mark.parametrize('parallel', ['imap_unordered', None])
- # def test_randomwalkkernel(ds_name, compute_method, sub_kernel):
- # """Test random walk kernel kernel.
- # """
- # from gklearn.kernels.randomWalkKernel import randomwalkkernel
- # from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct
- # import functools
-
- # Gn, y = chooseDataset(ds_name)
-
- # mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- # sub_kernels = [{'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}]
- # try:
- # Kmatrix, run_time, idx = randomwalkkernel(Gn,
- # compute_method=compute_method,
- # weight=1e-3,
- # p=None,
- # q=None,
- # edge_weight=None,
- # node_kernels=sub_kernels,
- # edge_kernels=sub_kernels,
- # node_label='atom',
- # edge_label='bond_type',
- # sub_kernel=sub_kernel,
- # # parallel=parallel,
- # n_jobs=multiprocessing.cpu_count(),
- # verbose=True)
- # except Exception as exception:
- # assert False, exception
-
-
- @pytest.mark.parametrize('ds_name', ['Alkane', 'Acyclic', 'Letter-med', 'AIDS', 'Fingerprint'])
- @pytest.mark.parametrize('parallel', ['imap_unordered', None])
- def test_ShortestPath(ds_name, parallel):
- """Test shortest path kernel.
- """
- from gklearn.kernels import ShortestPath
- from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct
- import functools
-
- dataset = chooseDataset(ds_name)
-
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- try:
- graph_kernel = ShortestPath(node_labels=dataset.node_labels,
- node_attrs=dataset.node_attrs,
- ds_infos=dataset.get_dataset_infos(keys=['directed']),
- node_kernels=sub_kernels)
- gram_matrix, run_time = graph_kernel.compute(dataset.graphs,
- parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True)
- kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:],
- parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True)
- kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1],
- parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True)
-
- except Exception as exception:
- assert False, exception
-
-
- #@pytest.mark.parametrize('ds_name', ['Alkane', 'Acyclic', 'Letter-med', 'AIDS', 'Fingerprint'])
- @pytest.mark.parametrize('ds_name', ['Alkane', 'Acyclic', 'Letter-med', 'AIDS', 'Fingerprint', 'Fingerprint_edge', 'Cuneiform'])
- @pytest.mark.parametrize('parallel', ['imap_unordered', None])
- def test_StructuralSP(ds_name, parallel):
- """Test structural shortest path kernel.
- """
- from gklearn.kernels import StructuralSP
- from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct
- import functools
-
- dataset = chooseDataset(ds_name)
-
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- try:
- graph_kernel = StructuralSP(node_labels=dataset.node_labels,
- edge_labels=dataset.edge_labels,
- node_attrs=dataset.node_attrs,
- edge_attrs=dataset.edge_attrs,
- ds_infos=dataset.get_dataset_infos(keys=['directed']),
- node_kernels=sub_kernels,
- edge_kernels=sub_kernels)
- gram_matrix, run_time = graph_kernel.compute(dataset.graphs,
- parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True)
- kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:],
- parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True)
- kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1],
- parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True)
-
- except Exception as exception:
- assert False, exception
-
-
- @pytest.mark.parametrize('ds_name', ['Alkane', 'AIDS'])
- @pytest.mark.parametrize('parallel', ['imap_unordered', None])
- #@pytest.mark.parametrize('k_func', ['MinMax', 'tanimoto', None])
- @pytest.mark.parametrize('k_func', ['MinMax', 'tanimoto'])
- @pytest.mark.parametrize('compute_method', ['trie', 'naive'])
- def test_PathUpToH(ds_name, parallel, k_func, compute_method):
- """Test path kernel up to length $h$.
- """
- from gklearn.kernels import PathUpToH
-
- dataset = chooseDataset(ds_name)
-
- try:
- graph_kernel = PathUpToH(node_labels=dataset.node_labels,
- edge_labels=dataset.edge_labels,
- ds_infos=dataset.get_dataset_infos(keys=['directed']),
- depth=2, k_func=k_func, compute_method=compute_method)
- gram_matrix, run_time = graph_kernel.compute(dataset.graphs,
- parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True)
- kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:],
- parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True)
- kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1],
- parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True)
- except Exception as exception:
- assert False, exception
-
-
- @pytest.mark.parametrize('ds_name', ['Alkane', 'AIDS'])
- @pytest.mark.parametrize('parallel', ['imap_unordered', None])
- def test_Treelet(ds_name, parallel):
- """Test treelet kernel.
- """
- from gklearn.kernels import Treelet
- from gklearn.utils.kernels import polynomialkernel
- import functools
-
- dataset = chooseDataset(ds_name)
-
- pkernel = functools.partial(polynomialkernel, d=2, c=1e5)
- try:
- graph_kernel = Treelet(node_labels=dataset.node_labels,
- edge_labels=dataset.edge_labels,
- ds_infos=dataset.get_dataset_infos(keys=['directed']),
- sub_kernel=pkernel)
- gram_matrix, run_time = graph_kernel.compute(dataset.graphs,
- parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True)
- kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:],
- parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True)
- kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1],
- parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True)
- except Exception as exception:
- assert False, exception
-
-
- @pytest.mark.parametrize('ds_name', ['Acyclic'])
- #@pytest.mark.parametrize('base_kernel', ['subtree', 'sp', 'edge'])
- # @pytest.mark.parametrize('base_kernel', ['subtree'])
- @pytest.mark.parametrize('parallel', ['imap_unordered', None])
- def test_WLSubtree(ds_name, parallel):
- """Test Weisfeiler-Lehman subtree kernel.
- """
- from gklearn.kernels import WLSubtree
-
- dataset = chooseDataset(ds_name)
-
- try:
- graph_kernel = WLSubtree(node_labels=dataset.node_labels,
- edge_labels=dataset.edge_labels,
- ds_infos=dataset.get_dataset_infos(keys=['directed']),
- height=2)
- gram_matrix, run_time = graph_kernel.compute(dataset.graphs,
- parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True)
- kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:],
- parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True)
- kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1],
- parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True)
- except Exception as exception:
- assert False, exception
-
-
- if __name__ == "__main__":
- # test_spkernel('Alkane', 'imap_unordered')
- test_StructuralSP('Fingerprint_edge', 'imap_unordered')
|