|
- #!/usr/bin/env python3
- # -*- coding: utf-8 -*-
- """
- Created on Tue Sep 22 11:33:28 2020
-
- @author: ljia
- """
- import multiprocessing
-
-
- Graph_Kernel_List = ['PathUpToH', 'WLSubtree', 'SylvesterEquation', 'Marginalized', 'ShortestPath', 'Treelet', 'ConjugateGradient', 'FixedPoint', 'SpectralDecomposition', 'StructuralSP', 'CommonWalk']
- # Graph_Kernel_List = ['CommonWalk', 'Marginalized', 'SylvesterEquation', 'ConjugateGradient', 'FixedPoint', 'SpectralDecomposition', 'ShortestPath', 'StructuralSP', 'PathUpToH', 'Treelet', 'WLSubtree']
-
-
- Graph_Kernel_List_VSym = ['PathUpToH', 'WLSubtree', 'Marginalized', 'ShortestPath', 'Treelet', 'ConjugateGradient', 'FixedPoint', 'StructuralSP', 'CommonWalk']
-
-
- Graph_Kernel_List_ESym = ['PathUpToH', 'Marginalized', 'Treelet', 'ConjugateGradient', 'FixedPoint', 'StructuralSP', 'CommonWalk']
-
-
- Graph_Kernel_List_VCon = ['ShortestPath', 'ConjugateGradient', 'FixedPoint', 'StructuralSP']
-
-
- Graph_Kernel_List_ECon = ['ConjugateGradient', 'FixedPoint', 'StructuralSP']
-
-
- Dataset_List = ['Alkane', 'Acyclic', 'MAO', 'PAH', 'MUTAG', 'Letter-med', 'ENZYMES', 'AIDS', 'NCI1', 'NCI109', 'DD']
-
-
- def compute_graph_kernel(graphs, kernel_name, n_jobs=multiprocessing.cpu_count(), chunksize=None):
-
- if kernel_name == 'CommonWalk':
- from gklearn.kernels.commonWalkKernel import commonwalkkernel
- estimator = commonwalkkernel
- params = {'compute_method': 'geo', 'weight': 0.1}
-
- elif kernel_name == 'Marginalized':
- from gklearn.kernels.marginalizedKernel import marginalizedkernel
- estimator = marginalizedkernel
- params = {'p_quit': 0.5, 'n_iteration': 5, 'remove_totters': False}
-
- elif kernel_name == 'SylvesterEquation':
- from gklearn.kernels.randomWalkKernel import randomwalkkernel
- estimator = randomwalkkernel
- params = {'compute_method': 'sylvester', 'weight': 0.1}
-
- elif kernel_name == 'ConjugateGradient':
- from gklearn.kernels.randomWalkKernel import randomwalkkernel
- estimator = randomwalkkernel
- from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct
- import functools
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernel = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- params = {'compute_method': 'conjugate', 'weight': 0.1, 'node_kernels': sub_kernel, 'edge_kernels': sub_kernel}
-
- elif kernel_name == 'FixedPoint':
- from gklearn.kernels.randomWalkKernel import randomwalkkernel
- estimator = randomwalkkernel
- from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct
- import functools
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernel = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- params = {'compute_method': 'fp', 'weight': 1e-3, 'node_kernels': sub_kernel, 'edge_kernels': sub_kernel}
-
- elif kernel_name == 'SpectralDecomposition':
- from gklearn.kernels.randomWalkKernel import randomwalkkernel
- estimator = randomwalkkernel
- params = {'compute_method': 'spectral', 'sub_kernel': 'geo', 'weight': 0.1}
-
- elif kernel_name == 'ShortestPath':
- from gklearn.kernels.spKernel import spkernel
- estimator = spkernel
- from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct
- import functools
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernel = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- params = {'node_kernels': sub_kernel}
-
- elif kernel_name == 'StructuralSP':
- from gklearn.kernels.structuralspKernel import structuralspkernel
- estimator = structuralspkernel
- from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct
- import functools
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernel = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- params = {'node_kernels': sub_kernel, 'edge_kernels': sub_kernel}
-
- elif kernel_name == 'PathUpToH':
- from gklearn.kernels.untilHPathKernel import untilhpathkernel
- estimator = untilhpathkernel
- params = {'depth': 5, 'k_func': 'MinMax', 'compute_method': 'trie'}
-
- elif kernel_name == 'Treelet':
- from gklearn.kernels.treeletKernel import treeletkernel
- estimator = treeletkernel
- from gklearn.utils.kernels import polynomialkernel
- import functools
- sub_kernel = functools.partial(polynomialkernel, d=4, c=1e+8)
- params = {'sub_kernel': sub_kernel}
-
- elif kernel_name == 'WLSubtree':
- from gklearn.kernels.weisfeilerLehmanKernel import weisfeilerlehmankernel
- estimator = weisfeilerlehmankernel
- params = {'base_kernel': 'subtree', 'height': 5}
-
- # params['parallel'] = None
- params['n_jobs'] = n_jobs
- params['chunksize'] = chunksize
- params['verbose'] = True
- results = estimator(graphs, **params)
-
- return results[0], results[1]
|