|
|
@@ -166,7 +166,7 @@ class FFNNModel(): |
|
|
|
param_w[l] = param_w[l] - learning_rate * dw[l]
|
|
|
|
param_b[l] = param_b[l] - learning_rate * db[l]
|
|
|
|
|
|
|
|
if i % 5000 == 4999:
|
|
|
|
if i % 500 == 499:
|
|
|
|
print("第{}批数据的损失率: {}".format(i + 1, cost))
|
|
|
|
rcost = cost
|
|
|
|
|
|
|
@@ -180,22 +180,22 @@ class FFNNModel(): |
|
|
|
|
|
|
|
(train_data, train_labels), (test_data, test_labels) = imdb.load_data(path="imdb/imdb.npz",num_words=10000)
|
|
|
|
|
|
|
|
x_train = train_data[:2000]
|
|
|
|
x_test = test_data[:10]
|
|
|
|
x_train = train_data[:25000]
|
|
|
|
x_test = test_data[:20]
|
|
|
|
|
|
|
|
y_train = train_labels[:2000]
|
|
|
|
y_test = test_labels[:10]
|
|
|
|
y_train = train_labels[:25000]
|
|
|
|
y_test = test_labels[:20]
|
|
|
|
|
|
|
|
model = FFNNModel(x_train, y_train, 16, 100)
|
|
|
|
model.load()
|
|
|
|
### model.load()
|
|
|
|
model.train()
|
|
|
|
|
|
|
|
y_pre = model.predict(x_test)
|
|
|
|
print(y_test)
|
|
|
|
print(y_pre)
|
|
|
|
|
|
|
|
y_pre2 = model.predict(x_train[:10])
|
|
|
|
print(y_train[:10])
|
|
|
|
y_pre2 = model.predict(x_train[:20])
|
|
|
|
print(y_train[:20])
|
|
|
|
print(y_pre2)
|
|
|
|
|
|
|
|
sys.exit()
|