|
|
@@ -1,4 +1,5 @@ |
|
|
|
import numpy as np
|
|
|
|
import numpy as np
|
|
|
|
from keras.datasets import imdb
|
|
|
|
|
|
|
|
def sigmoid(z):
|
|
|
|
'''
|
|
|
@@ -105,4 +106,21 @@ def predict(X_new, parameters, threshold=0.5): |
|
|
|
else:
|
|
|
|
activations[l] = sigmoid(prev_activations[l])
|
|
|
|
prediction = (activations[L] > threshold).astype("int")
|
|
|
|
return prediction |
|
|
|
return prediction
|
|
|
|
|
|
|
|
def vectorize_sequences(sequences, dimension=10000):
|
|
|
|
|
|
|
|
results = np.zeros((len(sequences), dimension))
|
|
|
|
for i, sequence in enumerate(sequences):
|
|
|
|
results[i, sequence] = 1. # 索引results矩阵中的位置,赋值为1,全部都是从第0行0列开始的
|
|
|
|
return results
|
|
|
|
|
|
|
|
(train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=10000)
|
|
|
|
|
|
|
|
# Our vectorized training data
|
|
|
|
x_train = vectorize_sequences(train_data)
|
|
|
|
# Our vectorized test data
|
|
|
|
x_test = vectorize_sequences(test_data)
|
|
|
|
|
|
|
|
y_train = np.asarray(train_labels).astype('float32')
|
|
|
|
y_test = np.asarray(test_labels).astype('float32') |