Browse Source

前馈神经网络二分类测试

master
Mona Lisa 5 years ago
parent
commit
a0d9d15dc9
1 changed files with 20 additions and 2 deletions
  1. +20
    -2
      深度学习笔记/前馈神经网络/feedforward_neural_network.py

+ 20
- 2
深度学习笔记/前馈神经网络/feedforward_neural_network.py View File

@@ -1,4 +1,5 @@
import numpy as np
import numpy as np
from keras.datasets import imdb
def sigmoid(z):
'''
@@ -105,4 +106,21 @@ def predict(X_new, parameters, threshold=0.5):
else:
activations[l] = sigmoid(prev_activations[l])
prediction = (activations[L] > threshold).astype("int")
return prediction
return prediction
def vectorize_sequences(sequences, dimension=10000):
results = np.zeros((len(sequences), dimension))
for i, sequence in enumerate(sequences):
results[i, sequence] = 1. # 索引results矩阵中的位置,赋值为1,全部都是从第0行0列开始的
return results
(train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=10000)
# Our vectorized training data
x_train = vectorize_sequences(train_data)
# Our vectorized test data
x_test = vectorize_sequences(test_data)
y_train = np.asarray(train_labels).astype('float32')
y_test = np.asarray(test_labels).astype('float32')

Loading…
Cancel
Save