diff --git a/深度学习笔记/前馈神经网络/feedforward_neural_network.py b/深度学习笔记/前馈神经网络/feedforward_neural_network.py index e46e592..97a2c71 100755 --- a/深度学习笔记/前馈神经网络/feedforward_neural_network.py +++ b/深度学习笔记/前馈神经网络/feedforward_neural_network.py @@ -1,4 +1,5 @@ -import numpy as np +import numpy as np +from keras.datasets import imdb def sigmoid(z): ''' @@ -105,4 +106,21 @@ def predict(X_new, parameters, threshold=0.5): else: activations[l] = sigmoid(prev_activations[l]) prediction = (activations[L] > threshold).astype("int") - return prediction \ No newline at end of file + return prediction + +def vectorize_sequences(sequences, dimension=10000): + + results = np.zeros((len(sequences), dimension)) + for i, sequence in enumerate(sequences): + results[i, sequence] = 1. # 索引results矩阵中的位置,赋值为1,全部都是从第0行0列开始的 + return results + +(train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=10000) + +# Our vectorized training data +x_train = vectorize_sequences(train_data) +# Our vectorized test data +x_test = vectorize_sequences(test_data) + +y_train = np.asarray(train_labels).astype('float32') +y_test = np.asarray(test_labels).astype('float32') \ No newline at end of file