|
- import cv2
- import numpy as np
-
- image=cv2.imread('10008.jpg')
- image = cv2.resize(image, (800, 800))
-
- grayImage = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
- cv2.imshow('grayImage', grayImage)
-
- edgeImage = grayImage
-
- # 直方图均衡
- edgeImage = cv2.equalizeHist(edgeImage)
- cv2.imshow('equalizeHist', edgeImage)
-
- '''
- # 自适应直方图均衡
- clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
- edgeImage = clahe.apply(edgeImage)
- cv2.imshow('createCLAHE', edgeImage)
- '''
-
- # 二值化
- h, w = edgeImage.shape[:2]
- m = np.reshape(edgeImage, [1, w*h])
- mean = m.sum()/(w*h)
- # binary = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY,25,10)
- ret, binary = cv2.threshold(edgeImage, mean, 255, cv2.THRESH_BINARY)
- image_binary = 255 - binary
- cv2.imshow('image_binary', image_binary)
-
- '''
- # 双边滤波
- edgeImage = cv2.bilateralFilter(edgeImage,9,75,75)
- cv2.imshow('bilateralFilter', edgeImage)
- '''
-
- '''
- # 中位模糊
- edgeImage = cv2.medianBlur(edgeImage,5)
- cv2.imshow('medianBlur', edgeImage)
- '''
-
- # 高斯模糊
- edgeImage = cv2.GaussianBlur(grayImage, (3, 3), 1)
- cv2.imshow('GaussianBlur', edgeImage)
-
- '''
- # 平均
- edgeImage = cv2.blur(edgeImage,(5,5))
- cv2.imshow('blur', edgeImage)
- '''
-
- # 边缘检测
- canny = cv2.Canny(edgeImage, 20, 80)
- cv2.imshow('Canny', canny)
-
- kernel = np.ones((5,5),np.uint8)
- dilate = cv2.dilate(canny,kernel,iterations = 1)
- cv2.imshow('dilate', dilate)
-
- '''
- # 轮廓检测
- ret, thresh = cv2.threshold(edgeImage, 127, 255, 0)
- contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
-
- def cnt_area(cnt):
- area = cv2.contourArea(cnt)
- return area
- contours.sort(key = cnt_area, reverse=True)
- print(len(contours))
- for i in range(0, 1):
- cnt = contours[i]
- img = image.copy()
- cv2.drawContours(img, [cnt], 0, (0,255,0), 3)
- cv2.imshow('drawContours_' + str(i), img)
- cv2.drawContours(image, contours, -1, (0,255,0), 1)
- cv2.imshow('drawContours', image)
- '''
-
- laplacian = cv2.Laplacian(edgeImage,cv2.CV_8U)
- # laplacian = cv2.Laplacian(edgeImage,cv2.CV_64F)
- cv2.imshow('laplacian', laplacian)
-
- # 二值化
- h, w = laplacian.shape[:2]
- m = np.reshape(laplacian, [1, w*h])
- mean = m.sum()/(w*h)
- # binary = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY,25,10)
- ret, laplacian_binary = cv2.threshold(laplacian, mean, 255, cv2.THRESH_BINARY)
- cv2.imshow('laplacian_binary', laplacian_binary)
-
- sobelx = edgeImage
- for i in range(0, 6): # 3,6,8有奇效(3: HoughLinesP检测竖线, 6: HoughLines检测竖线, 8:检测横线)
- sobelx = cv2.Sobel(sobelx,cv2.CV_8U,1,0,ksize=5)
- # sobelx = cv2.Sobel(edgeImage,cv2.CV_64F,1,0,ksize=5)
- cv2.imshow('sobelx', sobelx)
-
- sobely = edgeImage
- for i in range(0, 6): # 3,6,8有奇效(3: HoughLinesP检测横线, 6: HoughLines检测横线, 8:检测竖线)
- sobely = cv2.Sobel(sobely,cv2.CV_8U,0,1,ksize=5)
- # sobely = cv2.Sobel(edgeImage,cv2.CV_64F,0,1,ksize=5)
- cv2.imshow('sobely', sobely)
-
- binary_1 = cv2.bitwise_and(dilate, laplacian_binary)
- cv2.imshow('binary_1', binary_1)
-
- sobelx_binary = cv2.bitwise_and(sobelx, binary_1)
- cv2.imshow('sobelx_binary', sobelx_binary)
-
- sobely_binary = cv2.bitwise_and(sobely, binary_1)
- cv2.imshow('sobely_binary', sobely_binary)
-
- lineXImage = sobelx_binary
- lineYImage = sobely_binary
-
- '''
- # 侵蚀
- kernel = np.ones((5,5),np.uint8)
- edgeImage = cv2.erode(edgeImage,kernel,iterations = 1)
- cv2.imshow('erode', edgeImage)
- '''
-
- '''
- # 扩张
- kernel = np.ones((5,5),np.uint8)
- edgeImage = cv2.dilate(edgeImage,kernel,iterations = 1)
- cv2.imshow('dilate', edgeImage)
- '''
-
- '''
- # 开运算
- kernel = np.ones((5,5),np.uint8)
- edgeImage = cv2.morphologyEx(edgeImage, cv2.MORPH_OPEN, kernel)
- cv2.imshow('morphologyEx', edgeImage)
- '''
-
- '''
- # 闭运算
- kernel = np.ones((5,5),np.uint8)
- morphologyEx = cv2.morphologyEx(edgeImage, cv2.MORPH_CLOSE, kernel)
- cv2.imshow('morphologyEx', morphologyEx)
- '''
-
- '''
- # 形态学梯度
- kernel = np.ones((5,5),np.uint8)
- edgeImage = cv2.morphologyEx(edgeImage, cv2.MORPH_GRADIENT, kernel)
- cv2.imshow('morphologyEx', edgeImage)
- '''
-
- '''
- # 顶帽
- kernel = np.ones((5,5),np.uint8)
- edgeImage = cv2.morphologyEx(edgeImage, cv2.MORPH_TOPHAT, kernel)
- cv2.imshow('morphologyEx', edgeImage)
- '''
-
- '''
- # 黑帽
- kernel = np.ones((5,5),np.uint8)
- edgeImage = cv2.morphologyEx(edgeImage, cv2.MORPH_BLACKHAT, kernel)
- cv2.imshow('morphologyEx', edgeImage)
- '''
-
- '''
- # 锐化
- cv2.imshow('edgeImage + edgeImage', edgeImage + edgeImage)
- '''
-
- def findLine(edgeImage, title):
- houghLinesImage = image.copy()
- lines = cv2.HoughLines(edgeImage,1,np.pi/180,200)
- print(len(lines))
- for line in lines:
- rho,theta = line[0]
- a = np.cos(theta)
- b = np.sin(theta)
- x0 = a*rho
- y0 = b*rho
- x1 = int(x0 + 1000*(-b))
- y1 = int(y0 + 1000*(a))
- x2 = int(x0 - 1000*(-b))
- y2 = int(y0 - 1000*(a))
- if (x2-x1) == 0 :
- xielv = (y2-y1)/0.00000001
- else:
- xielv = (y2-y1)/(x2-x1)
- '''
- if (xielv > -0.08 and xielv < 0.08) or xielv > 8.0 or xielv < -8.0 :
- print(xielv)
- '''
- cv2.line(houghLinesImage,(x1,y1),(x2,y2),(0,0,255),2)
- cv2.imshow('houghLinesImage' + title, houghLinesImage)
-
- houghLinesPImage = image.copy()
- thresh_min = min(edgeImage.shape)
- lines = cv2.HoughLinesP(edgeImage, 1.2, np.pi / 180, 160, minLineLength=int(edgeImage.shape[0] * 0.7),maxLineGap=int(thresh_min * 0.5))
- print(len(lines))
- for line in lines:
- x1,y1,x2,y2 = line[0]
- xielv = (y2-y1)/(x2-x1)
- '''
- if (xielv > -0.08 and xielv < 0.08) or xielv > 8.0 or xielv < -8.0 :
- print(xielv)
- '''
- cv2.line(houghLinesPImage,(x1,y1),(x2,y2),(255,0,0),2)
- cv2.imshow('HoughLinesP' + title, houghLinesPImage)
-
- findLine(lineXImage, 'X')
- findLine(lineYImage, 'Y')
-
- '''
- circles = cv2.HoughCircles(edgeImage,cv2.HOUGH_GRADIENT,1,20,param1=50,param2=30,minRadius=0,maxRadius=0)
- circles = np.uint16(np.around(circles))
- for i in circles[0,:]:
- # 绘制外圆
- cv2.circle(image,(i[0],i[1]),i[2],(0,255,0),2)
- # 绘制圆心
- cv2.circle(image,(i[0],i[1]),2,(0,0,255),3)
- '''
-
- '''
- pts1 = np.float32([[56,65],[368,52],[28,387],[389,390]])
- pts2 = np.float32([[0,0],[300,0],[0,300],[300,300]])
- M = cv2.getPerspectiveTransform(pts1, pts2)
- image = cv2.warpPerspective(image, M, (600, 600))
- cv2.imshow('show', image)
- '''
-
- cv2.waitKey(0)
- cv2.destroyAllWindows()
|