|
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931 |
- {
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# Multiple layer neural network and back propagation"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## 1. Neurons \n",
- "\n",
- "Neurons are essentially the same as perceptron, only whenm we talk about perceptron, their activation function is step function; While when we talk about neurons, the activation function usually choose sigmoid function or tanh function. As shown in the figure below:\n",
- "\n",
- "\n",
- "\n",
- "The way to calculate the output of a neurons and calculate the output of perceptron is the same. Assume that the input of nurons is vector $\\vec{x}$, and weight vector is $\\vec{w}$(bias term is $w_0$), activation function is sigmoid function, then the output of y is:\n",
- "\n",
- "$$\n",
- "y = sigmod(\\vec{w}^T \\cdot \\vec{x})\n",
- "$$\n",
- "\n",
- "The definitation of sigmoid function is as following:\n",
- "$$\n",
- "sigmod(x) = \\frac{1}{1+e^{-x}}\n",
- "$$\n",
- "\n",
- "Put this into the former formula, we obtain:\n",
- "\n",
- "$$\n",
- "y = \\frac{1}{1+e^{-\\vec{w}^T \\cdot \\vec{x}}}\n",
- "$$\n",
- "\n",
- "Sigmoid is a nolinear function, the domain is (0,1). The function of grapgh is shown as following:\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "The derivative of sigmoid function is:\n",
- "\\begin{eqnarray}\n",
- "y & = & sigmod(x) \\tag{1} \\\\\n",
- "y' & = & y(1-y)\n",
- "\\end{eqnarray}\n",
- "\n",
- "We can see that the derivative of sigmoid function is very interesting, it can use sigmoid function itself to represent. In this way, once the value of sigmoid funtion is being calcualted, it is very convenient to calculate the value of its derivative.\n",
- "\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## 2. What is neural network?\n",
- "\n",
- "\n",
- "\n",
- "Neural is actually multiple neurons connected according to certain rules. The upper graph shows a fully connected neural networks. By observing the upper graph, we can find the rule of it including:\n",
- "\n",
- "* Neurons are laid out in layers. The leftmost layer, called the input layer, receives input data; The rightmost layer is called the output layer, from which we can get the neural network output data. The layers between the input and output layers are called hidden layers because they are not visible to the outside world.\n",
- "* Neurons in the same layer do not have connection with each other.\n",
- "* All the neurons in Nth layer is connect to all neurons in N-1 layer(this is the meaning of full connected), the output of N-1 layer neurons is the input of N layer's input.\n",
- "* Every connection has a weigth.\n",
- "\n",
- "All the rules defined the construction of fully connected neural networks. In fact, there exist many other kind of construction neural network, such as CNN, RNN, they all have different connect rules.\n",
- "\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## 3. Calculate the out put of neurons\n",
- "\n",
- "Neural network is actually a function represent the process from input vector $\\vec{x}$ to output vector $\\vec{y}$, which is:\n",
- "\n",
- "$$\n",
- "\\vec{y} = f_{network}(\\vec{x})\n",
- "$$\n",
- "\n",
- "According to the input, we can calculate the output of neural network. We need firstly assign each value of element in the input vector to the correspond neurons in the output layer. Then, according to the formula, 1 we forward calculate the value of each neurons in every layer until the value of neurons in the last output layer is all calculated. Finally, we can get the output vector of $\\vec{y}$ by combining every vlaue of neurons together\n",
- "\n",
- "Next we will list an example to show this process. Noting every element firstly in the neural network is necessary.\n",
- "\n",
- "\n",
- "\n",
- "As shown in the upper graph, there are three node in the input layer, we note them 1, 2, 3 in turn. The 4 nodes of the hidden layer are numbered 4, 5, 6, and 7, respectively. The last two node in the output layer is 8 and 9. Because our neural network is fully connected network, so we can see that each node is connected to all the nodes in the previous layer. For example, we can see the node 4 in the hidden layer, they have connection with the three node(1, 2, 3) in the input layer. The weight on the connection is $w_{41}$,$w_{42}$,$w_{43}$ respectively. Then, how can we calculate the output value of node 4?\n",
- "\n",
- "In order to calculate the output value of node 4, we must firstly get the output value of all the other upstream node(which is node 1, 2, 3). Node 1, 2, 3 is the input layer node, so that their output value is the input vector $\\vec{x}$ itself. According to the corresponding relationship in the upper graph, we can see that the output value of node 1, 2, 3 is $x_1$,$x_2$,$x_3$ respectively. We want the dimension of input vector is the same with input neurons, while the element of input vector can be free to decide which corresponds to the input nodes. It's also perfectly fine if you want to assign $x_1$ to node 2, however this will have no meaning without mistaking your self.\n",
- "\n",
- "Once we have the output value of node 1, 2 and 3, we can calculate the output value $a_4$ of node 4 according to formula 1.\n",
- "\n",
- "\n",
- "\n",
- "The $w_{4b}$ of above formula is the bias term of node 4, without drawing in the graph. While $w_{41}$,$w_{42}$,$w_{43}$are the weights of node 1, 2, 3 and 4 connections, respectively. When we note weight $w_{ji}$, We put the destination node number $j$ first and the source node number $i$ after.\n",
- "\n",
- "Similarly, we can continue to calculate the output value $a_5$,$a_6$,$a_7$ of node 5, 6, 7. In this way, the output values of the four nodes in the hidden layer are calculated and we can calculate the output value of node 8 of the output layer, $y_1$:\n",
- "\n",
- "\n",
- "\n",
- "In the same way, we can also calculate the value of $y_2$. Thus, all the output value of the output layer node is calculated. When we get the input vector $\\vec{x} = (x_1, x_2, x_3)^T$, the output vector of neural network is $\\vec{y} = (y_1, y_2)^T$. We also see that the dimension of output vector is the same with the number of neurons.\n",
- "\n",
- "\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## 4. A matrix representation of a neural network\n",
- "\n",
- "The calculation of neural network will be very convenient if we use matrix to represent. Let's check the representation of the hidden layer.\n",
- "\n",
- "First, we arrange the calculation of the four nodes of the hidden layer in order:\n",
- "\n",
- "\n",
- "\n",
- "Next, define the input vector of the net $\\vec{x}$ and each node weight vector $\\vec{w}$ in the hidden layer. We let:\n",
- "\n",
- "\n",
- "\n",
- "Substitute into the previous set of expressions, and get:\n",
- "\n",
- "\n",
- "\n",
- "Now, we put the four formula that calculated $a_4$, $a_5$,$a_6$,$a_7$ into one matrix, each formula worked as one row of matrix so that we can use matrix to represent their calculation. Let:\n",
- "\n",
- "\n",
- "\n",
- "Substitute into former group of formula we can get:\n",
- "\n",
- "\n",
- "\n",
- "In formula 2, $f$ is the activation function, in this instance, it is $sigmod$ function. $W$ is the weight matrix of one layer. $\\vec{x}$ is the input vector of some layer. $\\vec{a}$ is the output vector of some layer. Formula 2 shows that the function of each layer of the neural network is to first multiply the input vector left by an array for linear transformation to obtain a new vector, and then apply an activation function to this vector element by element.\n",
- "\n",
- "The algorithm in each layer is the same. For example, for a neural network that contains one input layer, one output layer and three hidden layer, we assume that their weight matrix is $W_1$,$W_2$,$W_3$,$W_4$ respectively. Every hidden layer output is $\\vec{a}_1$,$\\vec{a}_2$,$\\vec{a}_3$ respectively, the input of neural network is $\\vec{x}$, and the output of neural network is $\\vec{y}$. As shown in the figure below:\n",
- "\n",
- "\n",
- "\n",
- "The calculation of output vector in each layer can be represent as:\n",
- "\n",
- "\n",
- "\n",
- "This is the matrix calculation method of neural network output value.\n",
- "\n",
- "If written as a formula:\n",
- "$$\n",
- "\\vec{y} = f(W4 \\cdot f(W3 \\cdot f(W2 \\cdot f(W1 \\cdot \\vec{x}))))\n",
- "$$"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "The process of neural network forward calculation is relatively simple, that is, it is ok to keep doing the calculation layer by layer. The dynamic demonstration is shown in the figure below\n",
- "\n",
- ""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## 5. The training of neural network - Back propagation algorithm \n",
- "\n",
- "Now, we need to know how to get the weight in every connection of neural networks. We can say that neural network is a model, then theses weight is the parameter of the model, which is the thing that model need to learn. However, such parameters as the connection mode of a neural network, the number of layers of the network, and the number of nodes in each layer are not learned, but artificially set in advance. For these parameter that setted in advance, we call it Hyper-Parameters.\n",
- "\n",
- "Back propagation algorithm is actually the application of chain rule. However, this simple and obvious method was invented and popularized nearly 30 years after Roseblatt proposed the perceptron algorithm. For this, Bengio answered:\n",
- "\n",
- "> Many ideas that seem obvious become obvious only in hindsight.\n",
- "\n",
- "According to the general routine of machine learning, we first determine the objective function of the neural network, and then use the stochastic gradient descent optimization algorithm to calculate the parameter value of the minimum objective function\n",
- "\n",
- "We take the sum of error square of all the output layer in the network as the target function:\n",
- "\n",
- "\n",
- "\n",
- "Among them $E_d$ is the error of sample.\n",
- "\n",
- "After that, we can use random gradient descent method to optimize the target function.\n",
- "\n",
- "\n",
- "\n",
- "The random gradient descent algorithm is to find the partial derivative of the error $E_d$with respect to each weight $w_{ji}$, how to find it?\n",
- "\n",
- "\n",
- "\n",
- "Observing the upper graph, we find that weight $w_{ji}$ can only affect the other parts of the network through the input of node $j$, set $net_j$ as the weighted input of node $j$, therefore:\n",
- "\n",
- "\n",
- "\n",
- "$E_d$ is the function of $net_j$, while $net_j$ is the function of $w_{ji}$. According to the chain rule, we can get:\n",
- "\n",
- "\n",
- "\n",
- "In the upper formula, $x_{ji}$ is the input value that node $i$ pass to node $j$, which is the output value of node $i$. \n",
- "\n",
- "About the derivation of formula $\\frac{\\partial E_d}{\\partial net_j}$, we need to distinguish the two case between input layer and hidden layer.\n",
- "\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### 5.1 The training of propagation layer\n",
- "\n",
- "\n",
- "\n",
- "For output layer, $net_j$ can only affect the other parts of the net through affecting the output value $net_j$ of node $j$, which means that $E_d$ is the function of $y_j$ while $y_j$ is the function of $net_j$, among them $y_j = sigmod(net_j)$. Therefore we can use chain rule again:\n",
- "\n",
- "\n",
- "\n",
- "Consdering about the first term of the upper formula\n",
- "\n",
- "\n",
- "\n",
- "Considering about the second term of the formula:\n",
- "\n",
- "\n",
- "\n",
- "Combine the first and second term together, we get:\n",
- "\n",
- "\n",
- "\n",
- "If we let $\\delta_j = - \\frac{\\partial E_d}{\\partial net_j}$, so that a node error term $\\delta$ is the negative of the partial derivative of the network error with respect to the input to this node. Substitute into the upper formula, we get:\n",
- "\n",
- "\n",
- "\n",
- "Put the derive result into random gradient descent formula, we get:\n",
- "\n",
- "\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### 5.2 The training of the weight in hidden layer\n",
- "\n",
- "Now, we need to derive the $\\frac{\\partial E_d}{\\partial net_j}$ of hidden layer.\n",
- "\n",
- "\n",
- "\n",
- "Firstly, we need to define the set as all the direct downstream node $Downstream(j)$ of node $j$. For exmaple, to node 4, the downstream of it is node 8 and 9. We can see that $net_j$ can noly affect $E__c$ by affecting $Downstream(j)$. Set $net_k$ as the downstream node input of node $j$, then $E_d$ is the function of $net_k$, while $net_k$ is the function of $net_j$. Beacuse there are many $net_k$, we should apply full derivative formula to do the derivative as following:\n",
- "\n",
- "\n",
- "\n",
- "Because $\\delta_j = - \\frac{\\partial E_d}{\\partial net_j}$, put this into the upper formula we can get:\n",
- "\n",
- "\n",
- "\n",
- "At here, we have derive the backward propagation algoritm. One thing to note, the trian rule that we derived just now is according to the activation function of sigmoid function, square sum error, fully connected network, ramdom gradient descent optimization algorithm. If we have diferent activation function, error calculation mode, net connection strucutre and optimization, we will have different training rules. Whatever, it is all the same in the derivation of training rules, we noly need to use the chain rule do the derivaiton.\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### 5.3 The specific explanation\n",
- "\n",
- "We assume that evey training sample is $(\\vec{x}, \\vec{t})$, among them vector $\\vec{x}$ is the characteristic of training sample, while $\\vec{t}$ is the target value of sample.\n",
- "\n",
- "\n",
- "\n",
- "Firstly, we use the characteristic of the sample $\\vec{x}$ to calculate the output $a_i$ of every hidden node in neural network and every output value of output layer, according to the algorithm that we introduced in last section. \n",
- "\n",
- "Then, we calculate every node error term $\\delta_i$ according to the following method:\n",
- "\n",
- "* **For output layer node $i$**\n",
- "\n",
- "\n",
- "\n",
- "Among them, $\\delta_i$is the error term of node $i$, $y_i$ is the output value of node $i$. For example, according to the upper graph, the output layer node 8 have output value $y_1$, while the target value of smaple is $t_1$, substitute into upper formula we get the error term of node 8:\n",
- "\n",
- "\n",
- "\n",
- "* **For hidden layer node**\n",
- "\n",
- "\n",
- "\n",
- "Among them, $a_i$ is the output value of node $i$, while $w_{ki}$ is the weight that node $i$ connect to it's next layer $k$. $\\delta_k$ is the next layer error term of node $i$. For example, for hidden layer node 4, the calcultaion method is as following:\n",
- "\n",
- "\n",
- "\n",
- "At last, update weight of every connection.\n",
- "\n",
- "\n",
- "\n",
- "Among them, $w_{ji}$ is the weight from node $i$ to node $j$, $\\eta$ is a constant that represent the learning rate, $\\delta_j$ is the error term of node $j$, while $x_{ji}$ is the output that node $i$ pass to node $j$.\n",
- "For example, the update way of weight $w_{84}$ is as following:\n",
- "\n",
- "\n",
- "\n",
- "Similarly, the update method of weight $w_{41}$ is as following:\n",
- "\n",
- "\n",
- "\n",
- "The input value of bias term is always one. For example, the bias term of node 4 $w_{4b}$should be calculated according to the following method.\n",
- "\n",
- "\n",
- "\n",
- "We have introduced the calculation method and weight updating method for each node error term of neural network. Apparently, to calculate the error term of a node, you need to first calculate the error term of each node connected to the next layer. This requires that the error terms be calculated in order from the output layer and then in reverse order for each hidden layer until the hidden layer is connected to the input layer. This is the meaning of the name backward propagation algorithm. When all the node error term are calculated, we can update all the weight according to formula 5.\n",
- "\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## 6. Why we use activation function\n",
- "Activation function is very important in neural network and it is also important to use activation function. We get to konw the activation funciton in the former section from the perspective of human neurons. The neuron need to propagate backward thorough activation, therefore activation is needed in neural networks, we will understand the necessity of the activation function from math perspective.\n",
- "\n",
- "For a to layer neural network network, if we use A represent activation, then:\n",
- "\n",
- "$$\n",
- "y = w_2 A(w_1 x)\n",
- "$$\n",
- "\n",
- "If we do not use activation function, then the result of neural work is:\n",
- "\n",
- "$$\n",
- "y = w_2 (w_1 x) = (w_2 w_1) x = \\bar{w} x\n",
- "$$\n",
- "\n",
- "We can see that we combined the two layer neural network parameter together, represented in $\\bar{w}$, so that the two layer network is actually one layer neural network while the parameter changes to new $\\bar{w}$. Therefore, if we do not use activation function, whatever how many layer neural network we have, $y = w_n \\cdots w_2 w_1 x = \\bar{w} x$ is changing into a one layer network, so that we must use activation function in every layer.\n",
- "\n",
- "Finally, let's look at the effects of activation functions on neural networks:\n",
- "\n",
- "\n",
- "\n",
- "We can see that when we use the activation, the neurak network can change into any shapes by changing weght, the more complicated neural network can fit more complicate shapes, which is known as the universal approximation theorem for neural networks.The activation function that used in neural network are all nolinear, every time the acitvaiton funciton input a value, we will get a result through a special math calculation. \n",
- "\n",
- "### 6.1 sigmoid activation function\n",
- "\n",
- "$$\\sigma(x) = \\frac{1}{1 + e^{-x}}$$\n",
- "\n",
- "\n",
- "\n",
- "### 6.2 tanh activation\n",
- "\n",
- "$$tanh(x) = 2 \\sigma(2x) - 1$$\n",
- "\n",
- "\n",
- "\n",
- "### 6.3 ReLU activation\n",
- "\n",
- "$$ReLU(x) = max(0, x)$$\n",
- "\n",
- "\n",
- "\n",
- "When the input $x<0$, the output is $0$, while for $x> 0$, the output is $x$. This activation function make network converge rapaidly. It does not saturate, that is, it can resist gradient disappearance, at least in the positive region ($x> 0$). Therefore, neuron will not back propagate all the zero at at least half of the region. Because we use the simple thresholding, the RelU will have a high calculation efficiency.\n",
- "\n",
- "In the network, the different input may contains key characteristic of differrent size, and it will be more flexible if we use the changeable data structure as the container. Assume that the neurons have sparse characteristic, then for different activation way: different numbers(Selective inactivation), different function(Distributed activation). The activation paths generated by the two optimizable structures can better learn the relatively sparse features from the dimension of the effective data and play an automatic de-separation effect. \n",
- "\n",
- "\n",
- "\n",
- "In deep neural network, the dependence to nolinear is much less. What's more, sparse characteristic do not require the network have strong processing linear inseparability mechanism. Therefore, in the deep learning model, it is more suitable to use simple, quickly linear activation function. As shown in the figure, once the activation changes linearly from neuron to neuron, the nonlinear part of the network only comes from the partial selective activation of the neuron. \n",
- "\n",
- "Another reason that we are more prone to use linear activation function is to reduce the Vanishing Gradient Problem when trianing deep netwrok with gradient method.\n",
- "\n",
- "\n",
- "Those of you who have seen the BP derivation know that when you calculate the gradient from the back propagation of the error from the output layer, you multiply the input neuron value of the current layer at each layer to get the first derivative of the activation function.\n",
- "\n",
- "$$\n",
- "grad = error ⋅ sigmoid'(x) ⋅ x\n",
- "$$\n",
- "\n",
- "There are two problems with using the Sigmoid family of bi-terminal saturation (that is, the range is limited) functions:\n",
- "\n",
- "1. sigmoid'(x) ∈ (0,1) Derivative zoom\n",
- "2. x∈(0,1)或x∈(-1,1) Saturation scaling\n",
- "\n",
- "\n",
- "In this way, when passing through each layer, the Error will decay exponentially. Once the recursive multi-layer back propagation is carried out, the gradient will constantly decay and disappear, making the network learning slow down. The gradient of the corrected activation function is 1, and only one end is saturated. The gradient flows well in the back propagation, and the training speed is greatly improved."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## 7. The demo program"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD8CAYAAACfF6SlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzsnXV4FFcXh9+ZWY87Ftzd3WmxYi1taUtdqFGqfPWv7kpdv7ZQ2kKLFbfS4l4kARICIYbEPWsz8/2xEFh2A/EEmPd5+jxldvbek2T3zL3nnvM7gqqqaGhoaGhcWYg1bYCGhoaGRvWjOX8NDQ2NKxDN+WtoaGhcgWjOX0NDQ+MKRHP+GhoaGlcgmvPX0NDQuALRnL+GhobGFYjm/DU0NDSuQDTnr6GhoXEFoqtpA0oiNDRUbdy4cU2boaGhoXFJsWvXrnRVVcMudl+tdf6NGzdm586dNW2GhoaGxiWFIAgJpblPC/toaGhoXIFozl9DQ0PjCkRz/hoaGhpXIJrz19DQ0LgC0Zy/hoaGxhWI5vw1KoSjoAjZZq9pMzQ0NMpIrU311KjdZO49wsZ73ydz7xEEQaDB6F70+/ZJTKEBNW2ahoZGKdBW/hplpig1i2WDHiNjVyyqU0ZxOEleto0Vw56ktrQFVWQZVVFq2gwNjVqL5vw1ykzs98tQ7E63a4rDSV78SVI3RdWQVS5yYpJYNugxfjKOYKZ5FH9PfgNbVl6N2qShURvRnL9Gmck+kIBs9R7nzzt6opqtOYs1I4clfadyamMUKCqKw0nCvPWsGPZUrdmRaGjUFjTnr1Fmwnq1QbKYPK6rikJQhybYsvNRZLna7Tr8wwrXQ+kcR6/YneTGpZC6Obra7dHQqM1ozl+jzDS/fTiGAAuCTiq+JpkM+Daqw8oRT/NbnYn8EjyBPa/Nqta4e1ZUPHKRlx2JqpIbm1xtdmhoXApozl+jzBj8fRi340ua3DQEfYAPpogg6o/qSX7CSWzpOSh2J468Qva98yt73/wFAFVVSV6xnQ33vMvmBz8ideuBSrcrtGtLdF52JACB7RtX+nwaGpcyQm2NhXbv3l3VVD0vHea3u4ucg4ke1/X+Fm5OX8DGu94lceEmnAVWEAUkk4EO/7mJLv+9vdJssOfkM6/VHVjTc+H0jkMy6gnp0YrR/3yMIAiVNpeGRm1FEIRdqqp2v9h92spfo1IoSErzel0usnFi9a6zjh9AUZELbex/+1fyjp2sNBsMAb6M3f4FDcf3RTIbMQT40HLKGIYvf1tz/Boa56EVeWlUCoHtGpG+7ZDHdUOQH8mrduIstHm+SRRIWbmD1vePrTQ7fBtGMGzeK5U2nobG5Yq28teoFHq8PQXJbHS7JlmMdH/7Pgx+FgTJ86MmiGKJMXoNDY2qRXP+GpVCnUGdGL78bcJ6t0HvZyGwXWMGznyWFneOpNmtVyHqJc83qSoNx/etfmM1NDS0sI9G5VFnYEfGbP7M43pAy0h6fzqNrVM/QdBLCAioisLQea9g8PepAUs1NDQ0569RLbS8exSNJvQjZfUuJIOeesO7ofcx17RZGhpXLJrz16g2jMH+NJ00pKbN8EBxOFFVFcmgr2lTNDSqDc35X8Y48gpJ2xGDMdiP4E7NtHTH8yg8kcGmKR+QsnInqCoRAzrQ79un8G9Wr6ZN09CocjTnXwnYc/KJ/ngex+atx+DvQ5tHrqXJjYNr1Nke+GwBO5/+FtGgQ3XK+DQI4+rlb+PXuE6N2VSbUJwyS/s/SkFSKqrTpUN0cv0+lvSdyg1HZqP3rfqQlGx3cPSXtSTM34gxxJ/WD4wlrFebKp9XQwM0519hHAVFLO75EAVJacVKl5l7j5C29QC9Pnq4Rmw6uWEfO5/5FrnIhlzkyq/PPZzCqpFPc93BH7UdAJC8fBu29Oxixw8UF5/F//YXLe+9pkrnl212lg16nOzoY67iN0Eg/ve/6f7WfbR95NoqnVtDA7RUzwoTN3M1BSkZbhLHzgIrMV8voSDFe9VrVXPw0wUeAmeqolCYkk7mnrgasam2kRd3HNnm9LjuLLCSXQ0icEd/+eus4wdQXQ+enU9/gy07v8rn19DQnH8FOb5yB3Kh1eO6aNCRtvVgDVgERanZbrLGZxAkCVum1tgEIKhDE0SD58ZX52smpHPzKp//2Lz1Zx3/OYgGHakb91f5/BoamvOvIJbIMK/Vq6qqYq4TXAMWQcNxfT2qbcGV1RLao1UNWFT7qDu0C/4t6iMaz2b4CHoJU2gAjScOqPL5jSH+4C38pqroA7TaB42qR3P+FaTNQ+PdHAi4ZAvM4UGE921XIza1mjIG34bhbg8AncVEt7fuqZKiKmt6DlEf/cHmhz4mbuYqEhdvYc/rPxM3azVOL7uiyqDoVCY7n/2Wxb0f5u9bXid9Z0yZ3i+IIqPWfUjLe0djCPJF72+h2S1XMWbrZ+TGHSdjT5xHQ5q8+BOsmfAiM31GMztkAtunf4WzhI5mF6PV/WORzAaP6zo/S419bjSuLDRJ50og8c/NbLj7XRS7E1VWCGgdybD5r+LbKKLGbHLkFxHzzRISF23CFB5I20euo87AjpU+T8aeOJYPfhzFIbsOl0UBVEBwPXAkk4FrNswgoFVkpc1ZkJzGoq5TcOQWodgdxRLRA2c+S+Pryr9qz4qKZ+2EFyk6lQWCgM5sZNCvL1BvaBesGTnMb30n9qz84gY1kslAxMCOjFjxTrnmi/r4D3Y/970r/KSCztfEiJXvEtS+Sbl/Bg2N0ko6a86/klCcMtnRx9D7mfFreuXkiS/oeC/ZUfEl3yAIhHRpzridX1XanJumfMDhH1e6Z+oAprBAJh2fiyh50RG6CLLNzpzIm7Cl57hd11mMTIydSdys1ex5dVZx9tQZJLORsds+L7fDtmXmcmpjFIYAH8L7ty+X7Roa51Ja56+lelYSok4iuFOzmjajWrGmZV+8PaKqkhV1DGtaNqawwEqZN2XlDg/HD+AsKKIg4VS5Hr5JS7ai2Bwe1xVZ4fDMVWTsjPVw/OD6u2dFxZfb+RuD/Wk4ThO306h+tJi/RrkR9DpcMZ6LU5k7TGNIgNfriqxgCPS94HudRTZObYoiK/qYm03W1GwULw8UxeagMCWdoI5NEU2eMXpVUfBv2aCMP4GGRs2jOX+NcmMM9CWsTzuv2U7FCAKB7RpjDg+qtHnbP3kDOh/3PgCiQUe9q7piDPYv8X2Hf1rJrxETWX3Nsyzp9TALO9xT3EksYkAHr+/R+ZqpN6wrraaMQTovNVQ06Ajq0JTQri0r+BNpaFQ/mvO/RHDkFZK+M4bCExk1bYobA2c+g0+DMHS+ZvCSuSjqJQbNfq5S52x6yzDaTrsOyWRAH+CDZDYS3qcdA2eVPE/6zhi2PDQDZ34RjtxCnIVWcg4lsXL4dFRVJah9Expd19/toSIa9QS2bkjkmD5Y6gQzesMMwvq0BVFANOhoctMQhq94u1J/Ng2N6kI78K3lqKrKnldnsv/dOYh6CcXmoP7Ingz8+dlaI4msyDL73vqVvW/87BE3F80Gxmz8hJAuLSp9XltmLln747E0CLuoGNuGu94hbtZqUNw/7zpfMyPXvE9Yz9aoikLMt0vY+cx3OHILXVk4gkCXl26n49M3F79HccoIooAgamsnjdpHtTZwFwThf4IgpAqCEFXC64IgCJ8IghAnCMI+QRC6Vsa8VwJHZ68h6r25yEU2HLmFyDYHKSu3s/n+j2ratGJEScKZX+T1wBRZ5eQ/+6pkXmOwP3UGdSqVCmfhiUwPxw8giALW0xk+giiSvHSbS6pDVVFsDhSrnb2v/cyx+Ruw5+Sz/ckvmdvoZuY2voVdL/6A08shsIbGpUBlLV1+BEZe4PVRQIvT/00BvqykeS979r37m0ehlGx1cGzeehz5ReUeV1UUEhZt4q8bX+Hvm193ZdBUYBdoighE8nIgKhp0mEJLjsNXhMKTmfx1w8v8ZBrBT6YRrJv0KkWnMr3eGzmmN5LFs+pZtjkI69UacBWrpaze5fEQcxZa2ffObyzpN42DXyyi6EQGhclpRH8wtzhspKFxqVEpzl9V1fWA92+di/HATNXFViBQEIS6lTH35Y41NcfrdUEUsOeUTwBMVVX+mfwm6299k4Q/1hM/Zx1/Xf8y2x71bMFYWprdMsxrGESURBpe27/c45aEbHewpM9UEhdtRrE7UexOEhZsZEnfR1AcnoJtLe4aiW9kuFtVrc7HRKfnb8V0OnvIlpGLqPOeZ19w7AQFialuDwbZaidz7xFObdC0eDQuPaoraFkfSDrn38mnr2lchDqDO3l1qoYAHyx1Q8o1ZuqmKJKWbHETFnMWWIn9fhnZBxPKNaY5Iphhf76OMTQAvZ8Zna8ZS70QRqx+r0rOJhIXbcaWkeuW7686ZazpOSQu3uJxv97HzNjtX9Dl5TsJ69WGBqN7MeT3l+j8wq3F9/g1q4fopZuXoJMw1w3B6WWnpdidpZaWyE88xaYHPuSPlrezbMgTJC/fVqr3aWhUBbWqyEsQhCm4wkI0bNiwhq2pHXR7/W5SVu7AWWB1OTpBQDIb6P3ptHIfOCYv3+5Vc0dVVFJW7iSwTaNyjVtvaBduOvE7GbsPFxe9VdWhaM7BBJwFns7YWWAl52Ci1/fo/Sx0mD6JDtMneX1d1En0/mQqm+7/ELnQFcsX9Tr0fhaaTBpMXtxxj9+baNTjW4oGOfmJp1jUZQqOvCJUp0xeXAp/bT9Il1fvosOTN170/RoalU11Of8U4Fxxlwanr7mhquo3wDfgyvapHtNqN/7N6zNhz7fse/tXTm3Yh1/z+nR8+ibC+5Rf/Esf4IOo17t0cc5B1Eno/S0VsleUJMJ6tK7QGKUhoE0jdD5mj9W4zsdEQJvyLxyaTb4Kn4bhRL03h/yEVOoO7UyH6ZPQ+ZiIen8uFAnFctmCKGLwsxA5pvdFx9375i/Fjv8McpGdndO/5uTfexk461mMFylQ09CoTCot1VMQhMbAElVV23t57RpgKjAa6AV8oqpqzwuNp6V6Vh35SanMb32nh1yBzsfEDUdnIxp06P19anXHL9nuYH7rOyhITi92qIJOwicynImHfkTUV/66Jiv6GOtvf5vsaJeWUWiP1gyc9WypWmPOa3U7uYc91jsACDodEf3bMeqvDyvVXo0rk2rV9hEE4VdgMBAqCEIy8BKgB1BV9StgGS7HHwcUAndVxrwa5cM3MpyBM59hw53vnK3OVSFiYEfmNroZVZax1A+j75ePUX9Ej5o1tgQkg54xWz5j67TPSFy0CQSBhuP70fuTqRd0/I6CIhIXbcaenU+9q7oS0LL0aqNB7RozftdXWDNyECSpTCt1S/3QEp2/6nSStu0QuUeOa83jNaoNrcjrCsZRUMTJv/ci6iRivltK8rJtbu0fJYuR0es/rrXyBac2R3Psj38QdBLNbh560UKyU5ujWT36GVRVRXUqgErLe6+h18cPV/kuJ2XlDtZOfKn4LOF89AE+XLXwNeoM6lSldmhc/lRrkZdG7ST7wDEOfLaQI7+sxeHlcFTvYybymt4Ed27mKm46r++vXGRn/9u/Aq4c+IRFmzi5fl+xnn1NsvXRz1g1/D8cmDGf6A//YGn/R9n7xs8l3q84nKwd/4JL2iGv6HRzezuH/7ec5OXbq9ze+iN60PP9B7y2jgSXgFxQB03HX6P6qFXZPpc7qqKQf+wkej9Lpckbe51HVdk05QOO/vIXqCqCXmLLwzMYsfJdwnp6HsbmJ6QiGvVuTehPD0Tiki2sHP4fTm7Yh2TUu9oM+vswYvV7BLaumYys9J0xxH6/7OwqWlWRi2zsfWM2TW8Zhl8TzxKSU5uivOb/n0lxjRzdq6rNpvUD46g/qheLOt+HI6+wuOJY52OizcPjLyhKp6FR2Wgr/2oiefk25jSYxIKO9zKn4U2suHo61rRswKWLHzdzFUdmr8GWVfEG6wkLNhL/2zrX6tZqx5lXhCOngDXjnvdoTQjg37KBd2kGQLE6OL7GVfXqyC3EkVdE4fEMVo18usYqWxMWbvJ8UJ0maan33Hlvjv8M2QcTWNj5Pv7s8SAx3yzx+jvyNl5p7jsfv0YRTNj3HS3uHIGlXihBHZvS5/NH6fbWfWUeS0OjImgr/2og+8Ax/rrhFbd478l/9rJq1DO0fmg8W6d+gqATAQFVVhjw09M0uX7QRceV7Q7sWXkYQwPcOkDFfrfUrYCr+P4iO+nbD3mkiRoDfWk9dQIxX/xZup67qootM4/07YcI69Xm4vdXMpJJjyCJqIq78xVE0bU78UJEv/aospdwlSiQf/QEit31cNh2MIGUVTsZ+sfLXsfJiU1i0/0fkrohCkESaDihP32+eLS4Srg0+EaG0/+76Re8R7Y7kK129H6WWp11pXHpoq38q4HoTxZ4rKxVp0z2wUS2PPyxa3Web8WZ74pFb7jjneJdgTcUWWbH09/wS/B4fm8ymV8jJhLz7ZKzr9tLWOUKoDi8r1Z7vDOFbu/cV+pwlCCK2HMLSnVvZdNk0hCvMgyqotBoQj+v79FZTAz46Rkks7E47i6aDAiC4Pb7kgttpKzYTvruWI8xbFl5LOn7CKfW70dVFBSHTOLCTSwf8kSl7YKchVY23vs+swPH8UvotcxrdQfH//q3UsbW0DgXzflXA3lHjntddaqKcjrr5DwEODZ/Q4nj7X7+ew5+vhBnoSusY8/MY9vjX3Bs3noAmt16lUezE9e4AmG9va/UBUGg7cMTGLrgVZc2/0VQHE7C+7QjdesBlvafxkzf0fzebDIx3y2t8nBQQIsG9PzwISSTAZ2PCZ2vGclsZMDMZy748Gp83QCuO/ADnZ6/lbaPXkeD0T29/l0UWSF1U7TH9biZq4oVP4vvdTjJP3aKk//srZSf7e+bX+foL2uRrfbiSuC1454n60J9kjU0yoHm/KuBekO7uAmKnUF1yl4zZ1RFLTGmrTicHPxskUfKoFxoY8+rMwFoduvVhPdrj87X9QAQjXoki5FBs59H8qJdcy7hfdpijggqUZZBEEUki5FeHz9ETmwSK656itTN0ciFNvLjT7L9sS/YdzpDqCppff9YboifTe9PHqHPZ9OYlDynVKEy30YRdH7xNnp99DDBHZsh6D13EKJBh7lOsMf1rKh4r6maqqJcvJdxKchPPMXx1bs8/vayzcH+9+dUeHwNjXPRYv7VQKsHxnLgswVYnTmop8MuOouJyLG9SVy8xcOhCEDkmD5ex7LnFJR40FiQlAa4ZBqGL3uL46t3kbJ6J8bQAJrfejU+DcIuaqsgCIxc8z5rxr9AblyK6yxBFGh6yzAKk9IwhQfS+oGxhHZvxeoxz3mkhzoLrex76xfaPX49Oi8Sz5WJOSKYFnddSEm8ZI7NW8++t38t/nuci2TQEznW8/cf2q0V8b+t8zhPEQShwmma2QcTOPzTSq8tMVVZIfuAd70iDY3yojn/asAY5Mf43V+z5/WfSVq8BUOgL+0enUjzO0ew7dHPOPzDCpyFNhBAMhnoMH1SiZWexmA/9H4WbDZPqefgzs2K/18QReqP6FGuCl3fRhFM2PMtOYeTceQWEtyxqdeq2cw9cW4hkGJUlaLj6fg1rZ3VqrbMXNbf/jaKl92VT8Nwrl76ltcHV7Nbr2LPazNdIZnT4SLRqCeoY1PCerctly2KLLP+9rdIXLgZBLzuLAS9jvASwnUaGuVFc/7VhDkimD6fTqPPp9PcrveaMZUmk4YQP2edq1L1lmGEdm9V4jiCKNLj3SlsmfqJm6OQLEa6V3K6YECLBhd83b9FAwqPe/YUVhUFU0TlNWyvLGxZeZxYt4fUTVEIoreGwwJNJg0mqF1jr+/X+7pkobc/+RVJS7Yg6XU0u3043d68p9wZObHfLSNp0RYPnaViBAGd2UCbh8dz6OvFpKzaiW/DcFo/MI6AVqWXptDQOB/N+ZeSvGMn2TH9K1JW7kRnMdJqyhg6vXDrRWPoF0MQBCL6tSein4cengdOq53EBRspSEyl7bTrSF6+ncKkVII7N6fbm/d6LeCqSjq/dLsr9HPeQ6jVfdfUmv7CZ4j5dgnbHv0c0aBDsTu9n6moeD+APwef+mEM+e3FCtvjyCtk3zu/EfXenBJrEHS+ZuoO6UynF29jzfgXKUxJx1lgRdBJxHyzlCFzXiwxPKihcTE0518KrBk5LO75IPbMfFRFwZlfRNQHv5O59whXLXq9WmzIT0plaZ+p2PMKceYXuZql1A3hupifinPM85NS2f3C/0hZsQO9v4U2j1xL26kTqkxTv+7gzgz6+Tm2Pf4FhclpSBYjbR+5li6v3Fkl85WXrKh4tj32BbLVXuJBOoBkNtD4+oFVbo/icLK0/zRyDyeX7PgtJob88TKh3Vpw8LOFFCSeQra60oVVp4zslNlw17vcdPIPtxoPDY3Sojn/UhD7zVKcBTa3zBy5yMbxNbvJPpRYLTIHm+77gKJTWcWxZmdeEfnWk+yY/jUNx/cj+0ACUe/NwZFXiCorWNOy2fXcd2RHxdPvmyerzK5GE/rTcHw/5CIbkslQZQ+aihD7v+UevQu8YQzyI6TrhcXhKoOEhZvIiz9Z7My94Syy8dd1/0WVFUSDzuu9ss1BdvQxgjs28zKChsaFqX3f1FpI2raDXmOyol4ia3/V518rTpkTa3d75KQrDidxP61kw+1vs/u/P2DPzne7Ry60cWTWagpS0qrUPkEQ0FlMtdLxA9hz8r1X956HLTOP6I/mVbk9qVuivbaEBM7+DlUVudCGYnPgzPdeda3KMnq/ijXf0bhyqZ3f1lpGYLvGiF5kA1RZwb95yRktBclpbLjnXX6rfwPz299N7PfLyl8AVdKBouqKH1OCcxNNBjL3HCnfnJcJja8dUFzzcCHkIhux/1tW5fb4Nq6DZDZ6XBd0kveDci+fGUEUCWgV6VXETkOjNGjOvxS0fnAc0nlSvKJBT1CHpiVqyBelZrGo6/0cmbmaohOZ5BxIYNtjn7P9iS/KPL+ok6g3rKvXHPCLoTicpeoxeznTYHQv6gzs6L3q+TzObbNYVTSbPMxTnkIUMIUGYAjy8/oeQa9zdVjzs6DzM+PbOIJhC16rcls1Ll80518KfBqEMXLdh4R0bYEgiYgGHY0mDmD48rdKfM+BTxYUx9/P4CywEvP1EopSs8psQ79vn8RcNxidnxlEweXILpJdKBp0hHRuXmLq4pWCIIoMW/Q6A358msY3DqbFXSPxaRjucZ9k1NP0lquq3B5TSAAj//oA/1YNkEwGRKOekC4tGL1hBvWGdfFedayTGL/nW/p9+yRXL3mTibEz8W0UUeW2aly+aJ28yoizyIaoky7aI3bpgEdJ3RTlcV0f4MPQ31+i3lXdyjy3bHeQuHATObHJBHVowo6nvyYv1rM1oCCJCJJIg1G96P/DfzAG+nLyeC7xhzMICfOhRZuwy0op0pFfxLF56yk6mUlE/w6E92130Z8v49/DLB/6JIrDiVxoQ+drxq9pXa7Z+An6UmgbVQaqqlKQnIao12E5LSdRkJLGwk734cgpKF446HxMdHx+Mp2euaVa7KouUk/mkZlRSGSjQHx8PcNgGuWjWnv4XknovMRqveHfvD5pWw94HtLanV5XnaVBMuhpcuPg4n/7NAhjxbDTDqzIjs7XjE/DcIYtfBVLnRD0vmYUWeHLDzawa2sSkk5AVSEoxMKzr11NYPClf1iYsSeOFUOfRHHKyFY7klFPxIAOXLXo9Qs+oEO6tOCGo7M5+sta8hNOEd6nHZFj+3hVC60qBEHAN9L9s+BTP8xVDf7qTI6v+RdznSA6TJ9E44lVn4JaXRQW2Pnkrb+Ji01HpxNxOhRGjGvN9bd2uawWJbUdbeVfRWTuO8KSvo+4FUCJBh1hvdow+p+PK20ea0YOR35eQ97RE0T0a0+ja/u7Ob1VSw7x+6zd2G1nY9miKNCybTjPvj680uyoCVRV5dc612M7T/5ashjp8e4U2jw0oYYs07gQH7+5jv27j+M8p6DOYNRx54O96De4aQ1adnmgrfxrmOCOzRgy9yU2T/kAW5arOKz+iB4M+PHpSp3HFBJAu0cnlvj62uUxbo4fQFFU4g6lkZdrxc//4oegtZWo9+d6OH5wpbjGfrdcc/61kIJ8m4fjB7DbnCxfeOCSdP4Oh8yqxQdZv+YIqqrSb3BTRk5oi9FYu91r7bbuEidydC9uTJpDQXIaBn8LhgDfarfBbvVeQSqIgsdD4VIj6sPfS3zNkV/E9ulfIRn0NL1lWI0ceucnnCLnUCL+LRtoKZmnKSxwIEoCePlY5ueVoG9Ui1FVlfdfWcvR2HTsdtf3afG8KP7dkcx/3xmJWI4MvepCc/5VjLe4bmlQVZUTa3dz5Je1CIJAs9uups6gTmWOiXbr05B1K2I9VloBgWaCQy+dmL9sd7gyrU5LGShOGWtqyd3OChJPEf3h7wiiSPTHf9D1jXto/9j11Wbr+tveImnxFkSjHsXmoN7w7gz+7cUql7k+gy0zF8XhxBzh2ZegJgkJ88Fk0nssPERRoEPn2vmAVFUVh0NBrxc9vn8xB1KJj8sodvwADrvM8eQc9v17nM7dLyyOWJPU3sfSJYZss3Psj3848Ml80rYfqnA3q80PfsTaa/9L3I8rOfzjStaMfb5cNQLjb+xAQJAZw+ktqE4nYjTqmPJo30vicC0r+hhL+j3CLMtoZllG8/ctr2PLzkfUSZjCSu6bq9idLqE2WUEusrP7ue+rvNL5DP++9CNJS7YiW+04cgqQrXaOr9rJzqe/qfK5C5LTWDb4cX6rdwNzG9/C/HZ3kb7LsyVlTSGKAnc82AuDUSquW9TpRCw+eibc1KlmjfPClvXxPH7PPKZM+pWHb5vLsoXRbt/to7HpOL30hLBZnRyJSa9OU8uMduBbCeTEJrFs4GM4i2wodieiTipVxklJpO+KZdmgxzy03SWzkbHbvyhzCMNa5GDT30c5uP8kEXX9GDKiJaHh1R+CKitFqVnMa3UHjtzC4ipX0aAjqEMTxm7/kkNf/cnO6d+4NZ0XJNGrlINkMdLro4dpdd81VW737ODx2LPzPa7rLEZuzVtaZQ9dRZaZ1+J2CpJS3X4Hej8LEw/PxBzL9NqTAAAgAElEQVRee2S24+MyWL7wAGmn8mjdvg4jxrUhMKh2KcHu3pbElx9scFvVG4w6JkzqwDXXuVR4t/wTzw9fbsV2XnjVYJS45e7uDBnRslpthtIf+Gor/0pg3Y2vYk3LwZlX5NJiKbBycv0+Dny6oFzjJS/b5lXIS3XKJC/bVubxTGY9w0a1Yup/BnHDbV0vCccPEPv9Mlfj+3N75tqd5BxKIm3bQVo/MI7u79yHMTQARAFznWDqDe8OXuKsgiggeimeqgrO7/RVfL3I7r35TSVxYs1urBk5XjWgDv+0ssrmLQ9Nmofw0FMDeOm90Uy6o2utc/wA82bvcXP84DqYXjIvCuX077hb70j0esmj4FKSRHr1b1xNlpYPzflXkPykVFf/1vO+1HKhjdjvl5drTJ2PyaujEvRStRUg1Qay9sd7l2AWBHIPpyAIAm0ensDNp+Zxe8Eyxh3+ma3BLZG9lD6rskrDcX2rwWoI79fO6/XQnq2rVPwuP+GU112PbLVXSo/hK420VM/dG4DNKmM9vdI3GHU8/+YIGjQMRK+X0Bsk6tT359nXh2PxqZ7znfKiHfhWENUplyi6pjicxfHBsmz1m9w4mN0v/uBlMmg0cUC57KztqKqK7FTQnfPQC+3eisQ/N3u2NlQUt565giAgGQ3Mn7WDhCID1tZdaXpwNwigIiAJMPDn5zAG+1fLz9JrxlSW9X8U2WZHsTsR9Doko54+n0+7+JsrQGgP7x3gdL5mIvp3qNK5L0fq1g/g2BHPTnVmix6T+azQY73IAN6YMZbM9AJU1XWofSmgOf8yUngyk+yoeHwb18G/eX18G9fBUjeYvKMn3O4TjXoESeQn4wgAGo7vS5/PppUq+8KnQRgDfvgPG+5617UDOH1wOeiX52tV3LYyUBSVpfOjWLYgmqJCB8GhPtxydze692lEi7tHsf+d31whsNO9FCSTgbDebQnp3NxjrC3r43E6FVKatSOtXmNCTiWjiiJZ9RsxeXTvavuZgjs0ZULU9xyYMY/0HTEEd25Ou8cmVnm6Z0iXFtQZ2JGT/+wrliAXDTrMEUE0mTSkSue+HLnx9i58/Ma682L+Etff2hnRSxvQ4NBLw+mfQTvwLSWqorDl4Rkc/nElksmAYncS3rcdw+a/QvahRFZeNd0lMVBkQ/IxodqdqIpSvA0XdBI+keFMPPRjqQ+B7bkFHF+9CwSB+sO7V0rIJycmibyjxwnq2BSf+mEVHq+izP91D8sXHnBL/TMYJKY9O5gOXeqRn3iK7U9+ScryHYgmPS3uGknXV+/yKrPx8G1zveaKi5LAV7/cVOuLbkqDI6+Q2O+XkbRkK+Z6IbSdeq1b+07Z7iD6g9+J+W4pss1B44kD6fLS7dW267nciNpznDk/7eZEci5BIWauvbkTfQfV7kK00h74as6/lETPmMfu5//nllkiGvU0um4Ag2c/75JZmL2WgsRTqCrEfrvUo2GHzs/MwJ+eodGE/mWeP/fIcbY99hnH1+xGMhlocedIur15T6m1huy5Bawd/yJp2w+5+tjaHDS9eSh9v3mixtoAOh0yD9021yNTAqBpy1BeendUmcb76att/LMmDvmcmgZBgJZtwnnuzREVtremsecW8Gf3BylMSXet7EUByWSgz2fTaHHnyJo2T6OWoGX7VDIHZsx3c/wAis1BwvwNOK12l8zCtOvo+f6D6H3NXjs1yYU2cg4mlnlua3oOi3s9RPLy7Sg2B46cAmK+Xsya8S+UeozND3xE6tYDyEW24tzzo3PWcWDG/DLbU1nk59tRFO+Lj9QTuWUe7/pbuxBRxw+TybXCN5p0+PmbuHda9Rz0VpSi1Cx2Pvcdf3Z/gLUTX+LU5mi31w9+vpDC5LSzXeUUV7evrdM+w+ml05yGxoW49PfBpUBV1QrnVttzCry/oKjIhVa3ys2gdo3ReXkASBYjgeWQGYj9dqnr0PMcRylb7aRujiZz/1GCO1x4G+q02kmYv9Gjj61caOPAp/Np/8QNZbapMvDzN6LTiTjsnkUy9RsGlnk8H18Dr88Yw54dySQeyyI8wo8efRsWF7jVZgpPZrKo833YswtQ7A4y/o0jZeUO+n71OM1vvRqAhAUbvWY/CaJAxr9xRPT1nmVUEkWpWZxY+y86HxP1hnevtupjjdpB7f9WlBPZZmfXc98T880SnIU2Qru3pPdn0wjr0frib/ZCvWFdSJi/0a2JO4BPw3CP7ksNJ/TD9PQ3FFjtxZ2hzmi2Nxjdq8xzp++K9fqlFyXJ1cD7Is5fLrKVmF/uyC30uKYqCsfX7CZ52VaMIQE0u+1q/KqgG5gkiYyf1JH5v+zxiPlfP7lLucfs1rsh3Xo3rCwzq4V9b87GnpWP4jgdAjvdw3fbtE9pOmkIol6HKcR7RbPqVDAGla12I+qDuex+8QcEvYQgCAiCwNXL3iK8T9keIBpnkWWFNUsP8dfKw9htTrr3acj4Gzvi61c7exVUSthHEISRgiDECIIQJwjCM15ev1MQhDRBEPac/u/eypj3Qqy/7S0OffWnq+BGVUnfEcOKoU+SG+fZ/KQ0dH/7PvQBFkSDK8VLkER0FhN9v37CY1chGfSM2foZjScORDIZkMwGGt84iGs2fVouvfigjk1L7CEc0Cryou83BPp6beUoiCL1rnYPDSpOmTXjnuev61/iwCcL2PvGzyxodzfH5m+46DyqqnJw/0kW/7GfjX8dwVrkWah2PiPHteHWe3sSGu6DTi/SqGkwT7w4lJZty9fzoKo5vnY3i3s+xCz/MSzsdC+JizdXyrgpK3ecdfznoMgKOadz9Ns+eh06i7sKqyCJ+DWrS2CbRqWeK237IXb/90dkqx1nXhGO3ELsOQWsvuY5ZJuXugqNUvHVhxv5Y/YeTqbkkpleyF/LY3n5qWXYbN7FFWuaCh/4CoIgAbHA1UAysAO4WVXVA+fccyfQXVXVqaUdtyIHvvlJqcxvdYfHalnQSbS8ZzR9v3ysXOMWnsgg+uN5pG6OJqBVJO2fvKFMX7rykp9wkj+a3+ZRwBPStQXjdn5VqjFOrt/H6tHPItsdqE4Z0ahH52Ni3I4v3VIQj/yyls33f+hRparzNXPzqXklHjA7HTLvv7qWo4czcNhl9AYJSRJ59vWradikdomLlZeUVTtZe+1/z8bccYXy+n8/naYVTKUsqfObaNRzw9HZWOqGALD3zdnsff1nRIMOVVbwaRDG8JXv4Nuw9C0dNz3wIbHfLXMLIwLo/S0M+uUFIsuxO72S2LklkaXzo8jJttKuYx3GT+qI3Sbz3yeXeoQwjUYdt9zbncFXe+/1XRVUp55/TyBOVdWjpyf+DRgPHLjgu6qQvLgURKPew/mrTpnMvXHlHtdSN4Qe70ypqHllJm7magSd5O78BdeqT5Flcg+nYAjwKXYQ3qgzsCPjdn9F9MfzyDmUSHi/DrSdOt6j7uDI7DVe5QkEUeDUxv3Uv9r7Z2rNshiOxKYXh2/OZPB8/t563v58/CUhIncxdvznazfHD65zkx3Tv66w82//5A2s3xPn9rsXDToi+ndw+7t2em4yrR8YS9r2Q5jCAl19pcv4u3XkFXk4fgDUkqUpNFwsmR/Fojn7ij/nG9cdZefWJCZM6uA1999mc3Jo/8lqdf6lpTKcf30g6Zx/JwPelg4TBUEYiGuX8Liqqkle7qkU/Fs2QPF2MKaXCOla+/4IF+Pw/5a7NG7ORXX1of01YiKKzYHilAnr1YYhc14ssZAsoGUkfb+48K5H8hJeOjOfZCjhNWD92jiv/QEyMwpJPZlPRF0/L++6tMiJ8f6RLUxJR3E4yyXid4ZGE/rT8bnJ7H11JoqiojpljCH+9Hjvfo97jcH+NBjZs9xzNZ44kKQ/N3s4esXhxCcy3JVptH4fxtAAOkyfRIu7Rl4WD++KYrM63Bw/uIoUbVYHh6JPeREVAZ1eJLyWfvarK9VzMdBYVdWOwGrgJ283CYIwRRCEnYIg7ExLK7/8rk/9MBpNHIh0XohCMhpo/+SN5R63plBk701XVKeCPTMPZ4EVxeYgdXM0q0Y/W6G5Wt4zGp2PZ3cv0aAjvF/7kt94wehh7awlKSs+9UO9XjcE+SJUQu/fiL7tQBRRZRlUFWt6LssHP072gWMVHvtcGo7vS8TAjmf/zqKIZDHS4embWDXyPyQu3IQtI5fcmCS2PfoZu//rRWrkCuR4ci6SF9FAWVY5eTwX/0CTx+pfksRaueqHynH+KcC5p44NTl8rRlXVDFVVz+yXvwO6eRtIVdVvVFXtrqpq97CwilWfDvjhP7R7/HoMQX4IOomI/h0Yvf7jau+o5MgrJH1XLEWnMsv1fmeRDb9m9TxUA72hOmVyY5LJ3Hfkovdm7j1C/Ny/yYqKd7veYHQvWtw9CslsQDIb0fmZ0ftbuOrP1y94WD1gaDMMBs/XA4MshNepnSufstL5pTuQLO4LCp3FRKfnJlfKynjzgx+5wkqnQzKqw4kjr4gd//m6wmOfiyhJXPXn6wya/TzNbruaNg+N45oNMyhMScdZ6J4Z5iywEv3B79hzS0h1voIIDDZ71e4HCAv349k3RtC8dRg6nYjeIBEW4ctTLw2rtbIPlRH22QG0EAShCS6nfxNwy7k3CIJQV1XVM+I344CDlTDvBRH1Orq9fjfdXr+7qqfyiqqq/PvKT0S9O8dVUWt30mB0LwbOfMYjY6MkFIeTZQMfc638zlk8C6dXH94UHAW9ROHxDII7NvM6pqOgiNVjniN9R0yx9n14n3Zcteg1dBYTgiDQe8ZU2kydwIk1uzEE+hI5rg96nwtLS1w1pjW7dySTcDQTm9WJweg68H14+oDLJmTQ/LarceYXsfu/P+DIK0QyG+n4zM20e7ziHcIcBUXkHvaSiaaqnFy/v8Ljuw2pKKBCw3F93ZROUzdHF6cmn4to0JF7OIXQbtWvTV+bCAq20KZDHQ7sP4nTcW7zeYnR17UjOMTC82+OIDfHisMuExxqqdWf/Qo7f1VVnYIgTAVWAhLwP1VVowVBeBXYqarqn8A0QRDG4ercmQncWdF5awuy3UHa1oOIBh2hPVoVSyXE/bSK6Pd/R7baiw+ek5dtY8tDM0rdxD1h4SZyYhKRi87LWhJFWtw7mrgfV3i8ptgcFzzX2P7kV6RtPeh2hpC6KYqdz31H74/PJmMFtGhAQIvSt6DT6yWefX04B/adIC4mncAgM736N8JsubwKh1o/OI5W94/BnluI3s9cadIYktGAqNchy55nVYaAylk52nML2DbtM47OWYficBLepx19v3q8uDmQf4v6ZB9M9KgJUexOLCWEvK40HnpqAN98vJl9/6YgSSI6ncjke3rQut3ZbCv/gNIt7moaTdvHC2nbD3Hoi0UUpWbTcHxfmt8+3GuKY9LSrfxz65uuL4uqovMxMWzR64T1aM38dnd5lXIQjXomZyws1ep/0/0fEvvtUo/rksVItzfuIer9uVjTsl0tC3H1AWj94Dh6vOt5SAiu3cgs39EeDwwAvZ+ZW3OWoDic7HltFgc/X4Qjr5Dw3m3p9clUryqaGpXLpgc+5MjM1W5ZapLFSJeX76TDUxU7q1JVlaX9HiFj9+HizwuCgN7fwsSYnzCHB5G27SDLhz7pnspqMtBgdC+G/vFyhea/FDmenMMfs/4l5kAqfgFGrrm2Hf2HNkMQBPLzbOTn2QiL8PV6DlCTaNo+5STm2yUsH/oEcbNWk7JiO9uf/JIlfaZ66PrkJ6WybtKrOHIKcOQW4sgrouhkFquG/wdnobXE5uKCIGD3UlXrDZ8GocVFZeciShJ+TesyfvfXtHl4An7N6hHaoxV9v36C7hdJRZXPzxo6c/1057ANd79L1Ae/Y8/KQ3XKnNq4n2UDHyPv6PFS2axRfnp99DD1R/RAMhnQB/ggGfU0u/Uq2j9R8bBSxu7DZO2PP+v4AVQVxeYg5pslAIT1asPgX1/AUj8U0ahHNOppctMQBs6qWBLBpUjqyTxemb6c3duTyM+zcSI5l5nfbGfBb3sB8PUzUqeef61z/GXhspV3KA+O/CK2Pf6FW/MQudBGblwKh39cQZuHJhRfPzJrldeYu6IoJP65mToDO5KwaJNHPrUhyA9zROk0+ZvfOZL978xx1+QRBCSzgQYjeyLqdfT84EF6fvBgqcYTBIE6Azpycv0+9629IFB3aBcKj6eT8Md6jweEbLUT9cFc+nxevuI4jdKhMxsZtuBV8pNSyY8/SUDryErr35ATkwRe8tBlq52sfUeL/91wXF8ix/bBmpaN3s9SatXYy43Fv+/HbnO6fU3sNpnlCw4wakI7zOaS054vFS7dx1YVkLbtIKLO83koF9o49sd6wNUqL2npVnJikj1z73Fl3Ngy8+j21r3ofc1nUwAFAclipPdn00p9COQbGc7QBa9gCgtA52tGZzHh37w+o9Z9WO6c8j5fPIre31IsFyGZDBgCfOg142FyYpMRvYh7qU6ZjN2HyzWfRtnxjQynzsCO5Xb8tqw8Tvy9h5zYs3UJQe0be29sbzYQep7elSAImMODrljHD3A4Js2r4qwkiaSeyKsBiyofbeV/DoYAHw/htuLXAv34e/IbJC7Y6KoeLrIhiKLX++sO6UxAy0jG//sN+97+ldRNUfg1r0/HZ24mvHfbMtlU/+ruTDr+O1n745FMBgJaRVYogyCwTSMmHvqRmG+WkvHvYUK6tqDVlDGuL7vF5PWBJugkgjppMf/ajqqq7H7pB6Lf/x3RqEexOwnp0pxhi14juGMzwvu0I3VTVPGZgiC69Kla3lO2vglXAhF1/TmR7Ckr7nDKBAVfHn20Ned/DiHdWmIODyTvtBjcGSSLEUOQL/Fz1rll7yAICDoR9XTzEJ2PiaaThxXr/fg1qUu/r5+osF2iJFXqgas5IpjOL97mcd2nQRiR4/qQtHiL26GwZNTT/smakX3WAFtmLjue/oaEP9aDKND0piF0e/NeDAHuSp7xc//mwEfz3D6j6TtjWDP+RUwh/mTsinVVcAugKir1h3en10cPaV2+vDB2YnsO7DvhVs2rN0h07t4A/8DLw/lr2T7nkXM4mZVXT8eWlYcgiCh2B11evoPoGfMoOuFZqCVIEhED2iOZDLS89xoaXdu/Vuf2XgzZ7jgrhV1grbAUtkbFUBxOFrS/m/xjp4pVP0WDjoBWrp2lIJ6N3C7u9RDpO2K8DyQIxQsancVEm6nj6f529etUXUrs3JrIrK+3k5/vOgPsPaAJd9zfs9b3h9DaOFYAVVFI3XoQe2Yu4X3bYQz2Z5b/GK/duQRJZHL2nxctgroUURXFzblczmRmFLLyzwPEHkylbv0ARo1vS2TjyjlsrQjH/viHDfe8hzPvvJagvmaGzHmRBqPOymj93mwy+fEnSzWuZDJw04nfPXYPGu4oikperhWzWV/rnf4ZtFTPCiCIIhF92xE5pk/xlrjesK5esyUC2zaqVsefn5RKQXL5dY/KwpXi+E+dyOP5aX+yemkMR2Mz2PJPPK8+vZyoPTWf3pq576iH4wdXlk7mOVk6AA1G9ULQl67oTDTqi/sEaJSMKAoEBJovGcdfFq6Mb3cl0OP9BzAE+BRnyQh6CZ2Pq5lLdZC57wjz293F/FZ3MK/l7SzocA9Z0cdKvF9VFIpOZeL0om5am7FZHcz8ehv33/wb99wwm4/fXEd6an6Vzjl35m6KCh3Fjd8VRcVuk/nxy23U9M7Yv3l9dL6eiwud2YB/8/pu1zo9PxljkB+C4eKOSrE58ImsnQ1zNKqHy9L5Z+49wrH5G8g9UnkrN/9m9bjuwA+0f2oSdYd1pc2D45mw99syZ++UB0deIcsHP0HOwcTiw7zsAwksH/QYjgLPVWHcz6v5re4N/N5kMr+EjGfLI5947RJV21BVlfdeXss/a+KwFjlwOhT27Ezh5enLKCyouofYwf0nvXa5zMoopCCvZh+eja8f6KoGP/ccSRQwBPoS2rM1u178geVDn2DL1Bk48ou4dv/3hHZt6XWXegbJZKDBNb2w1Lk8muyUFbtd5uTxXIpK0Wnucuay2svYsvNZPeoZsqLiXY1O7E4ix/Zh0Ozny9U+8XzMEcF0e+2uSrC0bMTP/dvTeasqst1JwrwNNL99ePHllJU72PzAR26Faof/twJVVi6q5V/dxB5MZf7sPSQn5VCnrh99BjUh8ViWm2iWqqjYrE42/nWE4WPbVIkdFh8DBflenLzgEu2qSXQWE93eupfN939YLLomGfV0feNeFnWZUiznfWpjFHE/rmLowlfJ3HvEe7MWwaUh1PSWYfT+9JFq/klqHlVVWbogmj/nuoTyFFmh/5Bm3DqlJzrdZbkOviCXlfPfNOUDMv497FbCnrRkK/vf/Y1Oz02uQcsqRmFKutcOS3KRjcKUdLdre16b5eb4z9wX9+NKerx7P3ovIYSa4MC+E3z0+jrsp9ve5eVYORqX4VW52m6TOXakfJLYpWHkuDbMmbnbPa1PL9K9T6NyxXod+UVk7IrFEORLUIemFcr+yjt2kq2PfOKmtilbHWy6931Up1xcZ6I6ZZxOmS0PfoxQwqrfFB7Ejcd+QTJeXmJ7pWXT30c9mrFs+ucoeqPE5Ht6XPT9KUnZbPk7Hqes0L13Q5q3rpjsfE1z2Th/p9VO0p+b3bVLcDm+Q1/+eUk7/9CerdH5mj2yjSSzgdBe7qvhvGPesz0ESXSV7Fez88/OKmLJvCj2707BP9DMqAlt6dozkl9/2FXs+M9wJuZ+PgaDRGTjwCqzceioVpxIyeWf1YfR6SWcToXW7SK488Gy97I99NWfbH/qK0SdDlWW8WkYzvBlb+PbqPQ9ds/l8A8rPGWWVdVd8uMc8hNPIZYQ8w/u1OyKdfwAi3+P8ug2Z7fJ/L3qMJNu74ru9GF5fFwGf62IJT/PRvfeDenVvxF/rYhl7qx/kZ0KiqKydnkM/Yc05dZ7e3A4Jh1roYMWbcLw8b10qqIvG+ev2B2o3ra6XPp9SesP705Q+8Zk7j1SXHwlmQ0Ed25O3SGd3e4N69GKxD+3eMjyCpJY7bK8udlFvPjYEgry7ciywsnjeRw7ksH4GzuSkuhd+A5AkgRk2WW/ILiKawYMq7oKY1EUuG1KT8ZP6sjxpBxCwiyERZS9Ac2pTVFsf+or5EIbMq7dV25MMqtGPs21B34o1w6g8HiGx4IGcDX38RbZEUTaP3ED0R/+4fa5lyxGur5yZ5nnv5zIyfY8HwNQZBWr1YmvXmLt8hh++3EXDruMqkL0nhOsXHyQlMRsnOcsTuw2mQ1rj7BjcyJWqxOnw3V/YJCZux7uTefupZdDrykum0CXwd+HgFaRni+IIvVHXnxLV5sRRJGRaz+g0/O34te8Pv4tGtD5hdsYseo9D4fS5dW70J3XbUqyGOny2l0X7MFbFaz48yCFBS7Hfwa7TWbRnH34laB5bvHR03tAY3Q6EUGA1u0j+O87o/D1q/oVlX+AidbtI8rl+AEOfDLfQy5bVRQKktPI3BNXrjHrD+/uNdtHEEWvrSODuzany8t30v3dKVgahCIadIR0b8nwZW8T1qtqzkwuFZq2CPF63dffiI+vgcICu2tHapOL1042m/P0QsXzSetwKOTl2oofFODa6X76zj/s2JxQRT9F5XHZrPwB+n/3FCuuno5id6DYnUgmAzpfM93fvq+mTaswOrORTs9Nvmj4KrhDU0ZvmMGu574jfUcMlrohdHrhVprcOLh6DD2H6L0n3FZLZ3A6Fbr3jmT92qPYbWdXtQajxDUT2zPmuvZMvrcHRw9n4OdvJKLepdEG0pqa7bHjAlcVuC3DUyemNDSa0I+o9+eQFX2s+CxH52Miclxfjs392+P+rD1HKEhKpc2D42nz4PhyzXm5MumObrzx7Ers9rNqnQajxOR7eyAIArEHU9HpRBznhSOdTqXEcxRvOB0Kc37aTY++jSrT/ErnsnL+Yb3acO3+7zn4+UKyDyQQ3q8draaMwRQSUNOmVSshnZszfNnbNW0GwSE+Xg9qFUUlIT6LcTd0YMm8/SiyiiAIjBjXmtET2rF80QHmzd6DTieiKCpBIRamvzSM0PDaXY0aObYPadsPuTVDAVdIMrRHq3KNKep1jPrnY2K/WcKR2WvQWUy0emAstsw8Ehdt8jjcVxWV+Ln/VLj5y+VIo6bBvPjOSBb8tpdjcZmE1/Fl/KSOtOlQBwCzWV9yXUcZ6z3STuWjKKpHQ/faxGXl/AF8G0WU2MlKo3oZNaEt/+5I8vq9ORaXwdTpAxk1vg25OVb8Akzo9RIH959k/i97cNjl4hXYqRN5fPDaX7z5ydgyxc2TE7LY+NcRrFYn3Xo3pH3nulWqu9Rqyhhivl5MQXLa2bMZi5Gur91VIRkFnclA22nX0XbadcXXoj78vVhQ8FwUp4zTS+2HhovIxkFMe2aw19datA7DaNJjLXI/YzEYJcZe34HFv+9HEAVUVUWRVVRVLT6bOh//AFOtdvxwGTp/jeolPTWfX/63k/3/Hkevl+g/tBnXT+6MwaijZdtw/ANM5GR7HrhLOoncHCuBwRaCQ8/2qF215JBHRoaqqGSkFZCUkE3DUurtrFkWw5wfd+F0yigKbP4nno5d6vHQ9IFV9qXU+5oZt/MrDn29mMSFmzCFBdJ22rXUHdKl0udqMLoXu1/8weO6ZNITOaZPpc93JSBKItNfGsa7L6/BbnMiIOB0Klx7cydGT2jH0JEt+Xd7Mk6nTKfuDdi5JfH0Z8z9Iaw3iIy7sUMN/RSlR3P+GuWmIN/Oy9OXkZ9rQ1Vdh7l/LY8hMT6TZ15zFZ716NuQdSsPe66QVJU69T3Dcbk53jOzRFGgIM/m9bXzycu18tsPu3A4zj5EbFYn+/49zv7dx+nUvf4F3l0x9H4WOjw1iQ5PTaqyOQACWzekzdQJHPx8YfEuQ2cx0uy2qwnt1tLtXltmLoe+Wszxtbvxb1aPtm060MIAACAASURBVNOuI6h9E7IPJhDz7VKKTmYSOboXjW8cXO1JAbWNyMZBzPh+IoeiT1FY6KB12wh8/V3JBr5+RgYMa1Z87/AxrWnaIoTZ3+0g4WgWiqJituiYMKkjV40uX5ivOtGcv0a52bA2DluRe6s7h0PhSGw6CUczadQ0mDHXd2DrhgSKCu3FDwCDUeLGO7piMHhmq3TvFUnC0UyPQzdZVkrM1jif6L0nkHQCjvNS4W1WJ9s3H6tS51+d9HhnCg3H9eXIz6tRZYWmNw+lzmD31N/Ck5n82fV+7Nn5yFY7p9bv48gva2nzyLUc/GQBisOJ6pRJWryF6BnzGb3+4yu6gxe4dgBtO9Yt1b3NW4Xx0nujURQVa5EDk1lf68M9Z7hsUj01qp/4uAyPQi1wtQFMSsgCICjYwuszxjB0VCvCInzw9TMgyyrzftnD3Fm7cTrc3z94ZEtCQn3Qn3kwnJZYuOnObhhNpVuV6vWS643n2yUKl506Y0S/9vT98nH6ffMkdYd08TjT2PvaTKwZOcXNXVRZQS60EfXub8hFtuICMmeBleyDCcT+b3m1/wyXA6IoYPExXDKOH7SVv0YFaNAoEP02yWOVDlCn3tnuUEHBFsZMbM+mdUcoKnSgqlCQZ2fV4kOcSMrl0ecGF99rNut55YPR/L3qMP/uSMY/0MTV17SmZZvSK1C271IPb3nZep3IgKHNPK7b7TLLF0Sz4a8jKIpKn0FNGDuxPabLoEl30tJtqA7Pv4+3AjG50Eb8b+to+/CEqjesnBTk21m3Mpa9u1IICfVh+NjWNG1RvcWLlwua89coN4OubsGyBdGu2PppZ6LTidSt70+zlu5fyDXLYrCfUwwD4LDL7N9znFMncomoe/ZhYTLrGTm+LSPHl08x1WjU8dhzQ/j4jXWuloWqS8Rr/E0dPRyFS0l0DfFxGcUPsZWLDrJvVwqvvD8aUbq0N8eGAB8KynC/3t9SZbacjyIrbF4fzz+r41Bklf5DmzJgWPMSRdby82y8+PiS4sIqQYBd2xK588He9BvctNrsvlzQnP8FsOcWcHz1LlBV6g3vjsHf5+JvuoLwDzDxwtsj+eHzrcTFpCFKIt37NOT2+3t5hB/iD6e7qXWeQacTSUnKcXP+lUGbDnX45Mfr2bvrODark3ad62C2GFBkxc2hx0SnepwxOBwyqSfy2LMrha49vVSNX0K0fex6tj3yKc7Ccw7SdSKSTodsc7jlr+t8TLR+YGy12fblhxvZuzMF2+lCv8RjmezYnMDD0wdyKOoUkiTStmOd4lDdikUHyM22FmfXnEkymPX1dnr1a1SszVPbyMkuYve2JBRFpXP3BoSE1Q4/ckU4f9lmZ9dz3xP73VIcBVbCe7el92fTLtgU/dj8Day//S1EyfWBUpwyA356mibXD6ousy8J6kcG8sLbI3E6FUSBElfKkU2COBh1ykO8TXYqbiGiysRo0tOzXyN2bkng1f+sICe7CL1e4qrRrZg4uTOSJHL0cLrHuQOA1erkaGz6Je/8W9w5gqy9Rzj09WIkowHVKf+/vfMOj6rM/vjnnZpOEggphBZ6b5GOggiIDQv2tbvq6q513WXtfUVdu65iW1b3Z8MGFor03nsnBUIKhPQ65c77+2OGkDAzpM9MyPt5njyZmXvnvmduJue+97znfA+R/Toz/I37WDr9GexllUgk0qbR+95pPksTTTuUx7ZNR2uk9VotGvv3HOf+W+e41m1AIrl/xnj6DYpn68ajHivGJXD0SCFdutUtIcCXrF6Wymfvr6tqofzlp5u55uYhzSZPXh9ahfNffsOLHJ2/oSol7via3fx67oNcvuNjwrvEue1fcSyfFTe9hFZhpbpbWHnzy8SO7kdIgooxnk5teuiTLurN0t8O1HD+RqOOHn1iSEg8lfKpaQ6EEGdcOJNSsm/XMVIPniAyOoTkUZ0we1nI3bszhw/fWF21MG3R7Cz6ZR9Wq8Yf7jyHtjGhGI16NM29sCdQZmiNQQjBiDfvY8CM68nfepCQxBiiBzhDJNcc+YrspVuxnCgmdtwAQhN9J1G8f/cxHB4KpE7eHVZ38m+9tIw3P73Kq76TpjkCUk2zsKCCz95f57Ym9s3nWxkwNIF4D6nOvqRlBzTrQEl6Dkd/2+AmuOWw2Njz5nce35P27Qo8ZYsApH2zvKlNbBW0jQnlsZemkNSjrVOp06hj9PgkHvjHeAAOp+bz3N9+447p/+OP1/4fn7y7lkoPnZasVo1/PrGQN15cypwvtjH7g/U8fOd3ZGZ4Vgn94cvtbhlJVovG8oUHsVTaGDK8I0azntMLfw0GPSPHdWmKjx4QhMRFkzh1RJXjB9AZ9HSYlEzS9ef71PEDhEcEoa9rAxUBm9dlMOWyPm7NdXQ6QccuUcTEBp70x5b1GR69iENzsH6V/4XfznrnX7w/o6rvbnUcNjt5Ww96fI+9rMJj20OHzd7i5aH9SeekaJ5+9SI+mXMjH31zA7ffNwpzkJH8E2W89PgCUg6cQErn7G/t8lTngu1pLJi7h9SDeVgq7ThcXb5KS628/9pKj2Meyynx+LrQCYoKKzGZ9DzxzwvpnBSNwajDYNTRoVMbHntxMsEhrVf7vrkZNrJjndMiHZozh37o8I5ccmV/jEY9wSFGTGY9iZ0ieWBGYIZiNc3hKanKJQ/huXeFLznrwz4RvTrisLjPIHVGA22H9vTwDuh48Ui2Pfc52mlNNHRmI4kX17/Bh6Im+tPWBRb/tt9tMdhmc5By8ARHjxSS2OlUI5eVS1LcU0slHMsqIf9EWQ2pCIDOXaMpLMh0S20UQFRbZ2ZLXEIEz/7rYooKK5AOSWS07zJeWitBwUb+/twk3nppGeXlVoRwzuJtVg3b6YkBAgYMTQBg2rUDueDiXqQdyqNNZDAd6yj34Q+GnJPI1//Z4va6waBn2MhOfrCoJmf9zD+8SxyJF41AH1RzFqcPMtLvwas8vieqf1d6/fFiDKGuxtlCYAgNosetF55xkdifaFYbxYcysZWU+9uUenMkrcDjQp5eryMn6zQpZG/iisKz8OJVNw52qyQ2mfVces2AqkXFk7SJDFaO34d07d6W1z++ksdfmsKM5yfz7uyrGTqyE+agU3NSk9m5QF89KSA0zEz/wQkB7fgB2rUP46obB2E06dHpBEI4u9JdcElvOidF+9s8hFcJUz+TnJwsN23a1CTH0ixWtjz5Gftn/Yy9rJL2o/ox8p2/ED3IveDnJFJKcpZvJ+V/i0E66HbjBcSNH3xGVUjNamP7C1+w/6Nf0CosdJhyDue8ejdhnRrWwq+u7H7rO7Y+9R+kw+Es879xIqPee6DF6LR8/+U2fv1+t9uMz2jS88IblxDX4dQ//k9f72DenF01dHsAEhIj+Oe7nvXrUw7k8tV/tnA4NZ82kUFcevUAxp3frVkVPhUNQ0rJ9k2ZrFmehsGgY9zEblWSy4HESb9Zl+9QVkYR61al4dAkyaM6ec1KklKSkV5AUWElXbu3bXADIyHEZillcq37tQbn7yt+v+xxshZvrdJzF3odpqhwrto/G3NU8zQkSftmGavueLVmy75gM91vmczo9x9sljGbmqLCCmbc91NV9S84HX+/QfE89PiEGvtaLXb++cRCsjKKqKy0YzYb0Bt0/OOFSXTq6v/ZlC+RDge56/diLSqj/ai+jZKN9jqGlFQcK8AYFuzz/s+BSGWFjS8/28yaZanYbBq9+8dy890jamSsNYSC/HJee3YxuTml6PQCu83BpdP7M+3agfU+lnL+PqZw72HmJv/JrZGHPtjMkGduYcCjzaPy+OPgP1KwI9XtdX2QiRvyfmwxIl05WcX875ON7NmRg9lsYPyUHlxx3SC30Aw4m8Hs3JpF6oETRLULYcSYzvVanF2/Kp15c3ZRVFhB736xXHXj4GarNWguivZnsODCv2PJL0YIgcOmkTzzj/T98xVNNkbGr+tZc/frWPKKkA7odPloxn70V4zhrTc09tJjC0ipXrAoICTEyMz3phER6bw4HkkvYN+uHCLaBDFkeEevacjVeeavv3I4NR9HtT7kZrOBPz0yliH1rDWpq/NvkgVfIcSFwFuAHvhYSvnyadvNwH+BYUAecK2UMr0pxg4U8nekojPoOb1cSKuwkLt+b7ONW56V53WbtaisxTj/uIQIHnlyYp321ekEg4Z1YNCw+qtzfvnZJhb/ur8qxLRx7RF2bsniuTcupn1cy2gXKR0OFkz5G2UZuTUWOjbN+Ii2Q3sSO7pfo8fI23qQpdc8W6NT2JGf1rCk8FmmzJ/Z6OO3RA6n5pOWklczOUGCzepg6cKDXDp9ALPeXM3mdUeQUqI36Jj9wQZmPD/pjDH+4zklHD1SWMPxg7N/8IJ5e+vt/OtKoxd8hRB64D1gKtAXuF4Icbooyx1AgZSyO/AGcNZ9eyK6JSAd7ouWOrORyL7N18szZmQf3JLUAWN4MMHtIz28o3VSXmblxccWMP+nvTXWFqRDYrHYmTdnlx+tqx+56/diKShxW+HWKqzse/+nJhlj52vfVCmBnsRhsXFsxQ5K0nOaZIyWRnZmkcf0VJtN43BqPmtXpLFl/RGsroylygo75WVW3nxpqff2kDjF6k7PgDtJSXHdelg0hKaY+Q8HDkkpUwGEEF8B04A91faZBjzjejwHeFcIIWSgxpwaQNthPYns05n8HSk4rKdqBPQmA73uvqTZxh324h3kLN2GvcICrpmDPsTM8NfvRehaRjKXpdLGvt3O5tm9+rZvsEaLlJL9u49zPKeETl2jaiysffT2GlL253p8n8Mh2bUti+f+9huZGUW0ax/KVTcMZuiIwJF2cNg19r77A/tn/eLU5veQvoyUVJ4oapLxSg5mVn2fqqMzGyk7ctxjZXxLpLTEQmFBBe1jw2qV+07oGOk2Owfn+lSXbm1ZtvAgFou7VEhZqZUjaQVeZ/+JnSM9FoMZjDqGNeN3sCmcfwcgo9rzo8DpyfBV+0gp7UKIIqAtcKIJxg8IhBBMXvgKa+55nSM/rkY6JNEDkxg962FCOzRf9WT0gCQuXf8eW56ZTe66vYR3jWPQE3+gw6RaQ34BwYbV6Xz09hrnzEeCTi944B/j6dWvfhlSxUWVvPzEQvJyy5DSqQnTrWcMDz95PprmYMfmTK/9VgEK8srJP+FMkz16uJB/v76yQWqRFoudr/+zmVVLU7FZNfoMiOXmu0bUyFhqCEuvfobMRZvdGrZXxxASRJcrxzVqnJPEjhvgNpEB5+w/sl/z3cn6CqtV49N317Jx7WEMBh3SAZddO4BLruzv9T2dukTRrWc7Du07UZVt5qxW1zN+cg+2bTzq8X1COAu+vGE06rnp7uH8599OKQgpnReUNm2CmHJZ82kABVSRlxDiLuAugE6d/F8EUV/MkWFM+OopNKsNh82OMdQ32RGRfbtw/jdP+2SspiT3WAkfvbXGJb9wasb0+gtLeOvT6fXS0//svXXkZBXXcPCH9ufy49fbmXRx7zOm5AkPNQJWi8Y3s7cw+ryu9UoJfeP5JRzan1sVWtqzI4dn//YbM9+fRkSboDofpzp5Ww/W6vj1IWYienag282TGzTG6fR7eDoH/zMfq70cXOFMfYiZ3n+6jKC2/tWkaQo+n7WeTeuOYLc5qmL4P329g3YxoYwc19Xr+x564ny+mb2FlUtSsNs0+gyI46a7hhPRJogxE5LIOFzg1oPaYNDTpZa8/jHjk4jvEMGin/eRf6KcgcMSmDClJyGhzVdl3hTOPxOofm+S6HrN0z5HhRAGoA3Ohd8aSClnAbPAme3TBLb5Bb3J2GJy7P3J6mVpaB5uo5GwZUMGo8+r26zbZtPY7mFmb7NqrPw9hav/MITwCDP5ee4FcEajDodDerwrKC6qxGrV6pStAc4sj5SDJ2quKUinHcsWHuSyqxvW1Dt3wz6vxW3h3TsQ3jWOzleOo/vNkzEENY2zCO0Qw2WbPmDzE5+QvXgrpqhw+j98NT3vvKhJju9PLBY7a5anuVWVWy0a8+bsOqPzN5sN3HTXcG66a7jbtvMu6M6G1YdJO+SUHzEadQid4N6/jqtTX4ikHu24+6Gx9f9ADaQpnP9GoIcQoitOJ38dcMNp+8wFbgHWAtOBJWdTvF/RMMpLLW4SzwCaQ1JRfiqmLaXk0P5cMtILaR8XRt+B8TUW3hwO6XVBzWbTEEJw230jeWfmcuw2Bw6HRG8QmM0Gnnv9El599neOZblrAJmDDB5TTb2RlVHodUEwPcV7VlZthHZo5zGTTB9kouedUxn4t+sbfOwzEd41nvH/e6JZju1PKsqsXu/migoqGnxcg1HP35+bxM6tWezenk2byGDGTEgiMiow6yMa7fxdMfw/Awtwpnp+KqXcLYR4DtgkpZwLfAJ8LoQ4BOTjvEAoWjmDkhNZtugQlkp3Eb3+g50NtC2VNl59ZjFH0gpwSIleJ4iMDuHxlyZX5VWbzQY6J0WTdqimg9XpBEPOSQRg4NAOPDVzKgvm7iU7q5je/WKZfGlv2kQGc8V1g/j0vbU1btdNZj0XX9mvXj1ZExLbeF4QNOobVc7fYco5GMODsZVV1FiEFQY9PW6Z0uDjtlYiIoMJDja6aUQJQb3ahXqiMWnIvqZJ0kGklL9KKXtKKbtJKV90vfaUy/EjpayUUl4tpewupRx+MjNI0brpOzCOvgPjaoRVzGYD51/Ys6qz1/f/t530lHwsFjs2q0ZlpZ3cYyV8+v66Gse648+jCA4xVjV+N5kNREQGce0tQ6v26dglijvvH82TL1/I1TcNoY3r4jHq3K7ccHsyYeFmDAYdQcFGLrmqP5dc5X3xzxOdukaT1KMdBuOpfyshwGjSMWFyjzO+t6LcyorfDzFvzk727T5W405GZzRw0Yo3aTukB/ogE/pgM2FJ8UxZ+ArBsU1b1VySnsPmxz9h+R9e5MCnvzmzyM4ydDrBDXck15CH1ukE5iAD0/8wxI+W+RZV4avwKw7NwaZ1GaxdnorBqOfcC7rTf3B81W35fTd9Q2mJuwPS6wUffnV9jbBMSXElK34/RFZGEUk92zFmfFK9Fo0dDklFuZXgYGODe/daKp3l/6uXpWK3OejdL5ab7h5+xvL/tEN5zHxqEQ5NYrPZMZoM9Ogdw0NPnO/WJKc86wSa1U5Y59gm1ybKWryFxdOexGG347DaMYQGEZoYwyXr3m0W6QhfUlFhY8FPe9iw+jCmIAMXXNSL6LYhzPtuF7k5pfToHcO0awfWqdK7vMzKidwyYtqHBqTst5J3UJwV3HPDVzXi/yfR6QQffnldrbnZ/kRKWauDrjhRyJsXvYLhSCbl4W3I7NoHS0gYJrOe624dxsSpvXxjq8PB1x2vpSI7v8brOrORAY9ey9DnbvP4vmPZxSz8eR/ZmcX06tueiRf2IiyiaarKHQ5Zr7CbN6xWjacf/oXcY6VVKZpms56R47py+5/r3rbSoTn43yebWL7oEHqDDk1zMGFyD66/PblJ7GwqfCrvoFA0F0OHd2TtyrQaLf+EcGZGBLLjh9oVH0uPHOPHofcQU1iG3qHhyM0iIX0/O0ZNpji6PcsXHfKZ8y8+mImt2D0bymGxkfbNMo/Of9+uY/zr+cXY7Q4cmuTA7mMs+mUfz/3rYre+CvVh/+5jfP7RBjLSCwkKNnLBxb248vpBXqtga2P9ynTyTpTVUIK1WDTWLE/j4qv6Ext/ZlkPu93BsgUHmPvtToqLKp0ZXK5jLVt0kIjIIC6d3rBMLn/SMkpAFa2Wa24ZSmRUcJXGu8msJyTUxB1/8U2j8eZk0z8+wlZUit7hdCQ66cCg2em5fY1rD9/dletDzEgvhUiGUPf6BCkln7y7BqtFq7ow22wOykqsfPd/2xpsx5H0Al57bjEZ6c62nJUVNhbO3cvsD9Y3+Ji7t2d5TCrQ6QWHvFR9n0RKyRsvLOHr/26hqLDSYz3I/J+aT7urOQnsqZOi1RMZFczL701j/cp0Ug+eICGxDWMmJAVkw+76kjl/I3hwuCGlxQTrNMZN9F3joLCO7Yns15n8rSk1NKoMIUH0/pN7n4SSosqqiujqOBxOPf66UFlhIz01n/AIMx06OnWofp6z0y0Lx2rVWLMslWtuGtqgkFJ0u1BnmOa0tGIhqDUN88Ce4xzcl+tWuFWdsjKr122BjHL+ioDHbDZw7gXdGT6mM6uWpDDrzdW0jQll4kW9qpxGS8QQGoy1oNR9g4AuvdrXmiHU1Ez49hnmT3gYS36xUyLDrtHl6nPpefuFbvuazAav9yVBIbUvsi/8eR/f/ndLVew8Nj6Ch588n4z0Qo8d2QxGPbnHSxvk/MdP7sGiX/ahVZv8CwEhoSb69D+zjMiBvcfd24aeRueugd1RzBvK+StaBGWlVp756y8UFlRgtWjodIKVi1P40yPjAkqArT70+dNlbHvxi5qyDQY97cYP4/aXpjZLp7Gjhws4nFZA+7gwuveKqTFGeJc4pqd8Qfay7ZRnnqD9qL5EdPecrx4UbGTQ0A7s2JJZowWnyaxn0kW9sNsd7N2ZQ1mphd7942rMsPfuzOHbz7c4ZT1cjjXzSCGvP7+EzknRZGcVI0+rl7DbHLSPa1jGUfu4cO6fMZ4P31zlDFM5JHEJEdw/47xas7raRAVjNOk9ho1Oft4b7zynQXb5G+X8FS2CBXP3kJ9XXlWS73BIrFaNj99ZwzvJVzd4MdCf9H/0WvK2p5Axdw06kwFpdxA1oCuTvnm8yR2/3abx9szl7N2Rg04nkED72DD+/vwkwiNOxfSFTkfC+XXLdb/z/lH867klZBwuQK/XYbdpDB/dmV79Ynnw9jlVi6Ka3cElV/Xn8usGAbBg3l63MIrDITmWXcyVNwxi8/oMrJZTztZk1jNuYrdGhfoGDEng7U+nk3W0CJPZUOfeDeeM7sz/feKedSiEs0jxyusHBUQ/3oagnL+iRbBp7RE3LRZwqiVmZhTRKcCbeXtCZ9Az4asnKU7JomBHKmFd42g7uHni/PO+28WeHTk1QhhZR4v45N21PPjYhDO80zuhYWaeemUqR9ILyDteSqeu0URFB/Pgnd+76dD/8sNuevWLpc+AOIoLKz0eT6/XERpqYsbzk/ji440cTskjONTElMv6cMkVjW9Qo9PrSOxcv+9JcLCRvz83iXdfWU5JkfMzhYWbuO9v59GtZ7tG2+RPlPNXtAi8FdNomiS4HoVcTUnaoTwOp+UTGxdOr36xDc71juiWQES3hCa2ribLFhx0i11rmmTH5iysFnuj0mY7dYmquvge2HMcS6V7XYbVorFk/gH6DIhjUHIH0lPy3MT0NLuDzknRBAUbefqVqQ22p6np2r0tr314BdlHi5FIEhLbNEtIztco569oEUy6pBdH0vNrhAt0OkGHjm2IifVt9anVYuf1F5aQcsDZjkInBFFtQ3jsxVN6Q4FG9Rz3msgzas3XF4vF7tUxlpc7s2IyDhe6OX6hg6tvHlKvimxfIoQgoWPLl7KuTssLlCpaJSPGdmHC5J4YjU7tHXOQgZi4MO6fMd7ntvz0zQ4O7TuB1aJhtTj1ho7nlPDJu2t9bktdGZyc6PHOJKFjmyaVKOjRO8ajUqvZbGDk2K6kp+SxfZN70xODQU+nLi0zdt5SUTN/RYtACKcY19Qr+pJy4ASRkcF069XOL7ffKxanuM2kNU2yc2s2VquGydSwNpTNyTU3D2H39mzKy61YLRpGow69QcedfxndpOMEBRu5+e7h/PfDDdjtGg6HUxq7U9coRp3bhYW/7EOzu+dy2qwau3dk07uW1EtF06Gcv6JFERUdQvLIml3eykotbFx7hMpyG/2HJJDYqW65/1lHi9i7M4ewcDNDzkmsc9zb7iWEIpE4NAdOZfPGY7c72LzuCFvWZxAWYWb8pB50bODCdmR0CC+/dxkrl6RyaH8uCR0iGD+5B5HRIU1ia3XGTexO525tWb7wACXFVoaN7MiwkZ0wGHSEhZkxGHVuoSajSU94ePMU7kkpWbbwIHO/2UlRYQXxiW244fZk+g2Kb5bxWgpK2E3Rotm1LYu3/rkMgUDTHOh0gnETu3HTXcO93hVIKZn9wXpWLXUqi+v1Ap1Ox9+evYCu3dt6fE91Zr21mrUrauoNIZwLn9ffNozotqGN7tlrt2nMfOp3DqflY6m0o9M5QyM33z3cp5W/TU15mZWH7vyOyoqaefMms55/fXhFs6yZ/Pbjbn74cgeW6umjJj2PPDXxrLzTqKuwm4r5K1osVqvGOzNXYLVoWCx27HYHVqvGqiWp7NqW7fV9m9YeYc2yNGxWzdkjoMJOeZmVN15c6rEZy+lcc/NQ2kSe0hsyGHXo9YKsjCLefnk5Tz70My/MmO9RirqurF2RzuHU/KriIofD+Xn/O2sDlRXu2TQthZBQE488NZHwCDNBwQaCgo2EhJp48LEJzeL4Nc3BT9/srOH4wXku53yxtcnHa0mosI+ixbJvV47H1y0WOysXpzBgiOf0yeWLDrk5A3Bq8acdOkG3njFnHDcyKpiZ713GmuVppB48gaXSztYNR7Fatapq19RDeXz4xioeeWpiPT+Vk/Wr0j3aqNfrOLD3OAOHulfeWipt7N6eg5SSfoPiAzZzpmef9rz92XRSDp5AOiCpZzu3vgVnwuGQ7N6ezaF9uURGBzN8TBdCwzwvWpeWWDzWh4Az7NeaUc5f0WJxOCR4We8tyC+jrNTisSrUe9qj8OooTsccZGTClJ5MmNKTJx/62SlVUA3N7mDPzhxKiy0N0qMJ9qKPI6WkssLGnC+2cvxYKX36xzL6vK7s3XWM919b6Qp1SRwOyV0PjOGc0Z3rPbYv0Ol19Ohd/5aJVqvGK08v4khaAZZKOyaznq9nb+Hvz03yGLILDTOj1wtsHm6WapNyPttRzl/R4rDbNNatTGfdynSsXjRX0lPyeeC275h2zQAuvbqm1vro87qSevCEI6E9uAAAG21JREFUm8SAEDSoarOs1LOqo04nKC+3ujn/PTuy+Xr2VrIzi2gbE8pVNw52W8SeMKUH2zYddbNRr9fx8dtr0TQHdruDbRuOMm/OLoqLKt2KuD58czXdesUQ3bbpF3X9xaJf9nE4Jb/qYus8PxrvvbqCVz+43G2dx2DQMfWKfvzy/a4a59Jo0tW7TefZhor5K1oUdpvGS48vZPaH69m5NasqRn96DrvVomGzacyds5Ptm2tKDI+Z0I3uvWJOxewNOkwmPfc8PBaDsf6ZOgOGJKDTu9+CBAUZaRdTs6nJ7u3ZvPHCUtJT8rBU2snKKOLDN1axemlKjf36Dozn4iv6YTDqqmLjoeEmDAZd1foGOENcBXnlHnPrkZINq9Pr/XkCmdVLUtzusgCKCis4nlPi8T3TrhnAldcPIsyVTSQESAnv/2slH7y+ymN4rTWgZv6KFsW6lekcPVzoNiOWSHR6UTMDB+dFYOG8vQwadipGbjDoePTpiezYmsWurVmEtwli7IRutI1pWPepy68byOb1R6got2G3ORA6gdGg47Z7R7qpRn49e4ub87JaNL7+71ZGj0+qMXO9/LpBjJ/cg727jhESaiI2PpwnH/zZbXxvi9R2uwNLxdnl2LzWdUjwFgMUQnDhtL7oDTq+/HQTDgdV4b1Na4+gaQ7ue/Tc5jE4gFHOX9Gi2LjmiMeZmsmoR0qwau6zQk9ZNzq9jsHJiQxOTmy0TVHRIbz09mUs+mUfe3bk0D42jAun9fWo9pjtZZGxxBW2Ob3WIDI6hFHndgWcs1uHt9RsZ6i/BkaTnoHDPEsyByLlZVbKSq20bRfiVWp55LgufP/VdreLfHS7EK+Sz1JKZr3pTM89/fTZbBpbN2Q0eG2mJaOcv6JFERpuqrptr4Gn1wCjUe8Tvf+INkFcdcNgrrrB+z5SSkLCTFjzK9y2BQUbMNZSGdwmMpiu3dqScuCE+2xfUuO8mM0GRozrUqe6BX9jqbTx8Ttr2bIhA51OYDIZuOaWIVRW2Nm9LZuY2FAmXtSb8AgzSxYccNP6NwcZuO9v53m9K9i+OZPN6zM8fj8A9AYdhYUVyvkrFIHM+Rf2ZOOaw25hn6BgE9NvGMTnH2/EZtWQ0jnzjYoOZtLFvf1kbU2++s9mSorc5YxNZj2XXNW/TlIV9z56Lv98YiHFhRVVjUlOIqVz7WPI8EQmTOlJ/8Eto4L136+vYtfWrKpQjNWi8em76zAYdNjtzsK9Fb+n0H9IAsUe+ugGBRnOWNW9dnma12Ys4DxvddX3P5tQzl/RoujeK4bpNw7m28+3YjDqkVJiNht49OmJdOwSRYfOUSz6eR8F+eUMTu7A+Mk9mlS4rKHk5Zax+Nf9bmqWAEOHd+SiOurVR7cNYeZ701i7Io1P3lnjtl3oBDGxYV5rHKpjs9qZN2cXKQfz6NQ1ksumD/D5uSrML2fX1ixsHlJsTy5qn2zcs3WD59l7RbmN3GMlxMZ7rqo+U6Mfg0HHFdcPCkg9puZGOf86YikoYe+7P3L0t/WEdIih30PTiR3d+AYTivoz5bK+jD2/G/v3HCckxETPPjFVMeJuPdvR7eGxfrbQnX27jjlt9ODk9HpRL4E6nU4QGmbCZDZQUV4zgV2zOziSVlDrMXKyinns/nlVWUK7tmYx/8e9PPXqVLp2812oqCC/AoNR79H5n463sI3N7sAc5L2gbcyEJDatdV8rEgL+eP9oRrrWVFobyvnXgcq8IuYOvZvK3CK0SiuIfWT+tp4Rb/+FnrcHTtOJ1kRomJmhw1tO796TaxVuCAhvE+Rhw5lJSGxTo3fuSQwGXZ3i/K8++7tbeqjDIXnlyUX8+/+uq7c9DSW+Q0Sj+wkIqNEj+HT6Doxj/JQeLJl/ACklep0OieT+GePrdId0tqKcfx3Y/focKo4X4rC4ZllSYi+3sP7B90i6YSKGIP+HFRSBTf/BCZ7DD5IGpWO2jwtn4JAEdmzNOlXcJZzrHBfUssZhtWqcOFbmcVt5uY3szCLiO/imcUlQsJHLrh7A3G93uq3jVMfjIr8Lcy1qrEIIbrg9mfGTe7BzSxZBwQaSR3VqVE/gswHl/OtAxi/rTjn+agidoHBXGu2Se/nBKoU/yT9RxoJ5ezm0L5eEjpFMvbwvCYneHabBoKP/4HjWrzrstm3VslSuuWUoIaH1m0Tc/dAYPnl3Hds2HcVuc9C7f3tuvPOcWit6a1Py3bYx02fOH+DS6QNoHxfOL9/toqiokj794xBCsnHNEfQG57pO25hQItoEcWDP8RqL3Hq9YPT4uoVtEhLbnPFv1NpQzr8OBMV4ziRw2DTM0a0vS6C1k5NZzDOP/orVqqHZHaQezGPdyjQeefLMEsGZGZ5z/A0GHdmZRbUKylUn7VAe/3puMTabhk4n0OsFI8d2oUPH2nsZmM3OimFv6qD+kHkfMbYLI8Z2qXpuqbQx+dI+5OWWEdU2lKQebSnIr+CFv8+nrMyCzaphNOqJiQvj6puG+NzeswHl/OtAv4emk7t2N/byU8VCwqAnamAS4UmtN2bYWvnqP5uprLBVhSEcDonVovHZv9cx871pXt8XlxDB0SOFbsVYdptGdLu6VxfbbBqvPvO7m6bQ5x9tpGuPdnVq+HLzPecw6w33bCGDQTBwqP++01aLndkfrGfdqnSEEASHGLnpruF069mO6LYhvPLB5WzbdJTj2SV07BJFv0HxHttT+pq83DJyj5eSkNiGiAas4fgD5fzrQMeLRjD46VvY+sxsdCYDDpudyD6dmfjDc/42TeEH9u465jH+fDynhIoKG8FepJQvuqIfO7Zk1hQYM+rpPySeqHp01Nq9LdtjyqjdrrH890P84c5zaj3GmPO6sXNzFutXHa4KoxiNgnMn9SSxc8O6hTUFs95aw7aNGVU5/zarxkdvriYyMpiefdtjMOjcRPD8icVi59+vrWTXtmwMRh12m8a5k7rzhzuHB8RF6Uwo519HBjx6Lb3uvoS8LQcJjo0isk9gSuUqmp+QEM8hE51OYDyDMFy3nu2495FxzP5gPaUlFiRwzuhO3PqnEfUa35ne6e78HQ68ipt54u6HxjJ6fBJrlqUhhDMlsilaG1aUW1m3Mp3szGK6dmtL8uhOZzwvJykuqmRrNcd/EqtVY96cnQ3ujdCcfD5rA7u2ZWOzaVVS4SsXpxAXH8HkS/v42bozo5x/PTBFhBI/frC/zVD4mQsu6c2PX20/bQavY8S4rrU2JRkyvCODz0mkqLCS4BBjrZkqnug9INZjmic4VUOPZRd7LXiqjhCCgUM7eGwM01CyM4t4YcZ8rFYNq0XDHGTg+y+38fQrF9Uqn1CQV47BoPfYU+F4TmmT2dhU2G0aa1ekuV+sLBrz5+4NeOffKElnIUS0EGKREOKg67fH+0UhhCaE2Ob6mduYMRUKfzP1sj6MOrcrRqOe4BAjRpOePgPiuPmu2sMt4HS6kVHBDXL84BSSm+LFsWh2B798v7tBx60LUkrWLE/l+RnzefKhn/nl+101iqc+ensNZaXWqgujpdJO3olyvv1iS63HjksIx+Eh51+nE/TsU/fFcF9hs2luOkMnKS/z3OMhkGjszH8GsFhK+bIQYobr+d897FchpVRTZsVZgU6v4/b7RnHlDYPJyigkJjaMmFjfZn0NHdGRRb/sc5e2lpB68ESzjfvZe+tYt/JUi8mM9AJ++3EPT7x8IVHRwaQdynNbD9HsDjauOcJt944647HNQUYumd6fn7871XhFCDCZDW4NeQKBoGAjbWNC3e5KhIDe/QK/MXxjm7lMA2a7Hs8GLm/k8RSKFkNkVDB9B8bXyfFbLHZWL0vl1x92c3Df8UanU7ZrH+Zx1ikEJNQh3bMh5GQVs2ZFWo2ZvpRQUmzhiQfmkZFe6LUSy1OzG09cdvUAbrt3JImdIgmPMDNsZCeeeW1qQAqvCSG47d6RmMx6hGtxV68XBAUbufbWoX62rnYaO/OPlVJmux7nAN4ud0FCiE2AHXhZSvljI8dVKFoMGekF/POJhdjtDuw2DYNRT88+7Xnw8Qn1alxencioYIaO6MiWDUdrtG80mvTN1p7w4N5crxksNpuD155b7EVWW8eY8Ul1GkMIwejzkhh9Xt329zd9B8bz1Myp/PbjbrKOFtO9dwxTp/VtcGMgX1Kr8xdC/A7Eedj0ePUnUkophPA2nekspcwUQiQBS4QQO6WUKafvJIS4C7gLoFOnwEnnUigaipSSd2Yur5GTr2l29u8+xpLf9jdqUfCPD4zhq882s+L3Q9jtDtrHh3PrPSPoVIc8/4YQERnkWZ/Ixekic+Cc8XfsGs2V1w9qFpsCgY5dorjrwcATE6yNWp2/lPICb9uEEMeEEPFSymwhRDxw3MsxMl2/U4UQy4AhgJvzl1LOAmYBJCcn+77MUKFoYo7nlFCQV+72+sn0xUmX9K6Xomd1jEY9N901nBvvSMZud7h1ATuJlBJNkw2+yzhJ/8HxmIMMVNZDi0iv1/HUzAsb/BkVzUdjY/5zgVtcj28Bfjp9ByFElBDC7HrcDhgD7GnkuApFi0A68NZaluJiC7/+0PjMHJ1e59Hxa5qDOV9s5Z4bvuKOq//HjD//xO7t2R6OUDf0eh3/eGEyofXQINLsDuX4A5TGOv+XgUlCiIPABa7nCCGShRAfu/bpA2wSQmwHluKM+Svnr2gVxCaEey/3l/DrD833r/D5rA0smLfXOVOXkH20mDdfXEraobwGHzO+Qxve/Owq+g2Kw2DQVaW6hoV7uCAIzqh1pPAvwh8iTnUhOTlZbtq0yd9mKPxI7rFS1q1Mw1ppZ9A5iXTr2a5FziJTD57g2Ud/87r9s+//0ORSAGWlVh647Vv3JikChpyTyIOPTWj0GLnHSsg6Wkx8hwjsdgfP/e037DYNm82B0ajDYNTz1CtTlZKmjxFCbJZSJte2n6rwVQQka5an8ul765AOiaY5mD9vLyPHduH2P49qcReApB7t6JAYQebRYrdtcQnhzaIBk3+iDL3BQ4csCVle1EXrS0xseI0015nvT2Pp/AOkp+bTJSmaCRf2pE2k9yYrCv+inL8i4CgrtfLpe+tqpDBaLRrrVx9mxLgu9B/c8pRU/3DXcN54YSnWap/JZNZzw+11qwquL+1iwzx2yBICOiVFN8uYbSKDufy6szer52yjsTF/haLJ2bUtC72HoiBLpZ11K9J9b1AT0HdgPI8+ewF9BsQR0SaIXn3b88iTExmU3HS6OtUJDjZywUW9MJlrCqoZTXqmBWC1bGPIPVbCvDk7+faLrRzal+uXfgQtETXzVwQcznaH7s5fCNA3Ml3Rn/Ts054Zz0/y2XjX3DyUNlHBzP9xD6UlFrp0a8sNdwyrk95/beQeK0XTHMTGh/s1DLd6WSqfvb8Oh0Pi0BwsnLeXEWO6cMdfWl540Nco568IOPoPjsfhcA9ZGE36OleKKpyCaFOn9WXqtL5NdsyczGLenrmc4zklCAFh4Wb+9Mg4evZp32Rj1JWyUiufve8eHtyw5jAjz22Z4UFf0nKnUYqzlqBgI/c9ei4msx6TWY/BqMNo0jPp4t707Ot7J6NwYrdpvPT4ArIyCrG5JJvzT5Tz2rOLKSqs8Lk9u7dnu+4Sa9KSw4O+RM38FQHJ4ORE3vjoKjatP4K10s7AoR2I61C7Rr2i+dixJQuLxe6m3+PQJKuWpHDxlc2jKeQNb1lSQtRdSK41o5y/ImAJizAzflIPf5vRZBQXVlBYUEFsQkSDtfz9SUF+ucf2kTabRt4JdwmL5qb/4HiPi7sSOHq4kP27j9GrBUgr+wsV9lEomgFNc1Q5JovFzjszl/PQH7/nxccW8Oebv+Hn73b5xI7KChsH9h7nWLZ7jUF96d4rxqOwmznI4Bf9+qBgI/f99VyMJl3N7DAJKQdO8Nqzi1m/Kt3ndrUUWt70Q6EIYA7sOc5/P1zP0SOFmEwGxk/pQWF+Bds3ZWK3Oapa/v30zQ5iYsMYMbZLs9kyf+4evvtiG3qDDs3uoGOXKB58bDwRDSy86pwUzYAhCezcmlXVbMVo1BEbH87QER2b0vQ6ExMXRlCwkdJii9s2q1Xji482cs7ozgHfTN0fqJm/QtFEHD1SyKvP/k7G4UKkdM74l8w/wIbV6VXNvU9itWj80oyz/51bs/juf9uwWjUqym1YrRrpKXm8/fLyRh33vkfP5bpbnemi8YkRXDp9AE/8c0qjFUMbgpSSt15aRkmxxVsPGSoqbBTm+z4k1RJQM3+Foon49ftdbnIK1dMQT6ewsLLZbPntx91uLR41TZKemk/usVJiYsMadFy9XsfEqb2YOLVXU5jZKLIzi8nPK3MG+b0gpSSkHiqkrQk181comoiM9EKvDb1PR+hEs8bJi7xcWPR6HaUl7iGSlojNqqE7QyGX0ahn+JjOBAUbfWhVy0E5f4WiiejSva3H2LJeLzCaTv2r6XSCILOBq25sPh2cQcM6YDC6/3tLKenQqXl6/Pqajp0jMRj1HrfpdIJB53Tg1j+N9LFVLQfl/BWKJuLiK/thNNV0RiaznnMnduevT13AgKEJxCVEMPb8bjz/5sXExjdf3cLUy/sSFm6ucQEwmfVcf9swTCbPDrOlodPruOfhsc5CQNeag8msJ75DBK98cDl/+dt5LTKl1lcoPX+Fogk5nJrP/z7ZRMr+XEJCTUy+tDcXX9EPnYdK1OamtNjC/Hl72bklk6i2IVw4ra9fUjKbmxPHS1nx+yEK8srpNzie5FGd/bIAHSjUVc9fOX+FQqE4i6ir82+9l0eFohVhqbSxb9cxDqfmK8ljBaBSPRWKs57liw7yxccb0et1OBySyKhgHnlqIrHx4bW/WXHWomb+CsVZTOrBE3zx0UasFmexl6XSzvGcEl595nd1B9DKUc5foTiLWfzrfrfqYimhuKiSlAMn/GSVIhBQzl+hOIspKqz0KH2g04mzpthL0TCU81cozmKGDE906+MLYLc56N4rxg8WKQIF5fwVirOYsed3I6Z9WI3CLpNZz7RrBxIWbvajZQp/o7J9FIqzGLPZwNOvTmXZokNsWnuE0DATky7uTb9B8f42TeFnlPNXKM5yzEFGplzahymX9vG3KYoAQoV9FAqFohWinL9CoVC0QlTYR6FQ+ASLxc7iX/ezflU65iADE6f2YviYzogzaPIrmg/l/BUKRbNjs2k8//f55GQVV3U3Sz+Uz/49x7n5ruF+tq51osI+CoWi2dmw6jDHc0pqtLW0WOysWHSI3GMlfrSs9aKcv0KhaHZ2bs3EUml3e12nFxzYm+sHixTK+SsUimYnqm0Ier17bF8IiGgT5AeLFMr5KxSKZmf85B7oT+tmJgQEBRvpNzDOT1a1bhrl/IUQVwshdgshHEIIr51jhBAXCiH2CyEOCSFmNGZMhULR8oiNj+Dev44jJNREULABk1lPbEIE/3h+sl9aXCoan+2zC7gS+NDbDkIIPfAeMAk4CmwUQsyVUu5p5NgKhaIFMWR4R96ZfTUZ6QWYzQbiEyNUmqcfaZTzl1LuBWr7Aw4HDkkpU137fgVMA5TzVyhaGQaDjq7d2/rbDAW+ifl3ADKqPT/qek2hUCgUfqLWmb8Q4nfA04rM41LKn5rSGCHEXcBdAJ06dWrKQysUCoWiGrU6fynlBY0cIxPoWO15ous1T2PNAmYBJCcnqwajCoVC0Uz4IuyzEeghhOgqhDAB1wFzfTCuQqFQKLzQ2FTPK4QQR4FRwC9CiAWu1xOEEL8CSCntwJ+BBcBe4Bsp5e7Gma1QKBSKxtDYbJ8fgB88vJ4FXFTt+a/Ar40ZS6FQKBRNh5AyMEPrQohc4HC1l9oBJ/xkTn1QdjYtys6mRdnZtASinZ2llDG17RSwzv90hBCbpJReq4gDBWVn06LsbFqUnU1LS7HTE6quWqFQKFohyvkrFApFK6QlOf9Z/jagjig7mxZlZ9Oi7GxaWoqdbrSYmL9CoVAomo6WNPNXKBQKRRMRsM6/Hr0C0oUQO4UQ24QQm3xpo2v8FtHTQAgRLYRYJIQ46Pod5WU/zXUutwkhfFaJXdv5EUKYhRBfu7avF0J08ZVtp9lRm523CiFyq53DO/1g46dCiONCiF1etgshxNuuz7BDCDHU1za67KjNzvFCiKJq5/IpX9vosqOjEGKpEGKP63/9AQ/7BMQ5rRdSyoD8AfoAvYBlQPIZ9ksH2gWynYAeSAGSABOwHejrYztfAWa4Hs8AZnrZr9QP57DW8wPcC3zgenwd8HWA2nkr8K6vbTvNhnOBocAuL9svAn4DBDASWB+gdo4HfvbnuXTZEQ8MdT0OBw54+LsHxDmtz0/AzvyllHullPv9bUdt1NHOqp4GUkorcLKngS+ZBsx2PZ4NXO7j8c9EXc5PdfvnABOF7zuBBMLfsVaklCuA/DPsMg34r3SyDogUQsT7xrpT1MHOgEBKmS2l3OJ6XIJTpuZ0WfqAOKf1IWCdfz2QwEIhxGaXJHQgEgg9DWKllNmuxzlArJf9goQQm4QQ64QQvrpA1OX8VO0jnXpRRYCvu4LU9e94levWf44QoqOH7f4mEL6PdWWUEGK7EOI3IUQ/fxvjCjcOAdaftqklnVOg8W0cG0UT9QoYK6XMFEK0BxYJIfa5ZhRNhi97GjSGM9lZ/YmUUgohvKV5dXadzyRgiRBip5QypaltPYuZB3wppbQIIe7Gebdyvp9taqlswfl9LBVCXAT8CPTwlzFCiDDgO+BBKWWxv+xoKvzq/GXjewUgpcx0/T4uhPgB5615kzr/JrCzzj0NGsOZ7BRCHBNCxEsps123o8e9HOPk+UwVQizDOctpbudfl/Nzcp+jQggD0AbIa2a7TqdWO6WU1W36GOdaS6Dhk+9jY6nuYKWUvwoh3hdCtJNS+lxLRwhhxOn4/yel/N7DLi3inFanRYd9hBChQojwk4+ByTibygcagdDTYC5wi+vxLYDbHYsQIkoIYXY9bgeMwTe9lutyfqrbPx1YIl0rbT6kVjtPi/NehjM+HGjMBW52ZaiMBIqqhQQDBiFE3Ml1HSHEcJz+ytcXfFw2fALslVK+7mW3FnFOa+DvFWdvP8AVOONmFuAYsMD1egLwq+txEs6Mi+3AbpxhmICzU57KBjiAcxbtDzvbAouBg8DvQLTr9WTgY9fj0cBO1/ncCdzhQ/vczg/wHHCZ63EQ8C1wCNgAJPnpe1mbnf90fRe3A0uB3n6w8UsgG7C5vpt3APcA97i2C+A912fYyRmy6fxs55+rnct1wGg/2TkW59riDmCb6+eiQDyn9flRFb4KhULRCmnRYR+FQqFQNAzl/BUKhaIVopy/QqFQtEKU81coFIpWiHL+CoVC0QpRzl+hUChaIcr5KxQKRStEOX+FQqFohfw/oaLbTj3zR4oAAAAASUVORK5CYII=\n",
- "text/plain": [
- "<Figure size 432x288 with 1 Axes>"
- ]
- },
- "metadata": {
- "needs_background": "light"
- },
- "output_type": "display_data"
- }
- ],
- "source": [
- "% matplotlib inline\n",
- "\n",
- "import numpy as np\n",
- "from sklearn import datasets, linear_model\n",
- "import matplotlib.pyplot as plt\n",
- "\n",
- "# generate sample data\n",
- "np.random.seed(0)\n",
- "X, y = datasets.make_moons(200, noise=0.20)\n",
- "\n",
- "# generate nn output target\n",
- "t = np.zeros((X.shape[0], 2))\n",
- "t[np.where(y==0), 0] = 1\n",
- "t[np.where(y==1), 1] = 1\n",
- "\n",
- "# plot data\n",
- "plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Spectral)\n",
- "plt.show()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD8CAYAAACfF6SlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzsnXd4FNX3h9+Z2Z5GQgol9N47oVelKU1UVBQ7oiAWfnZRv9iwISD2CghK7x0s9C4ltNBTgBTSk62z8/tjcWXZDaQnwLzP4/PI7Mzcs5vdM/eee87nCIqioKKioqJyayGWtQEqKioqKqWP6vxVVFRUbkFU56+ioqJyC6I6fxUVFZVbENX5q6ioqNyCqM5fRUVF5RZEdf4qKioqtyCq81dRUVG5BVGdv4qKisotiKasDciL0NBQpWbNmmVthoqKisoNxd69e1MURQm73nnl1vnXrFmTPXv2lLUZKioqKjcUgiCcy895athHRUVF5RZEdf4qKioqtyCq81dRUVG5BVGdv4qKisotiOr8VVRUVG5BVOevUiTsOWZkq62szVBRUSkg5TbVU6V8k3rgFFue+JTUA6cQBIHIAVF0/n48htCgsjZNRUUlH6gzf5UCY05KY1X357m0NwbFIeO0O4hftZM1vcdTXtqCOmUZxeksazNUVMotqvNXKTAxP67CaXN4HHPaHWSduUjS1ugysspFxvE4VnV/nhn6vsw09uevEe9jTcsqU5tUVMojqvNXKTDpR84hW3zH+bNOXyhla/7DcimDFZ3GkrglGpwKTruDcws3sab3/5WbFYmKSnlBdf4qBSYsqhGSyeB1XHE6CW5WC2t6Nk5ZLnW7Tvy8xvVQusLRO20OMk8mkLTtcKnbo6JSnlGdv0qBqTuyD7ogE4JGch+TDDr8a1Ribd9X+L3SMOaEDGH/u7NKNe6eFn0G2exjRaIoZMbEl5odKio3AqrzVykwukA/Bu3+mlr39UQb5IchIpiq/duTfe4i1pQMnDYH9qxcDn70Gwc+mAOAoijEr9nF5sc/ZtvTn5O040ix2xXauj4aHysSgApNaxb7eCoqNzJCeY2Ftm3bVlFVPW8cFjV5lIyjsV7HtYEm7k9ZzJZHPyZ2yVYcORYQBSSDjmYv30ert0YWmw22jGwWNngYS0omXF5xSHotFds1YMDfUxAEodjGUlEprwiCsFdRlLbXO0+d+asUCzlxyT6Py2YrF9bv/c/xAzgV5Fwrhyb9RtbZi8Vmgy7In4G7vqL64E5IRj26ID/qj7qTPqsnqY5fReUq1CIvlWKhQpMapOw85nVcFxxA/Lo9OHKt3heJAglrd9PwqYHFZod/9Qh6L/xfsd1PReVmRZ35qxQL7SaNQjLqPY5JJj1tJz2JLsCEIHl/1QRRzDNGr6KiUrKozl+lWKjUvQV9Vk8irEMjtAEmKjSpSbeZr1HvkX7UefA2RK3kfZGiUH1wp9I3VkVFRQ37qBQflbo1585t072OB9WvRocvxrFj7DQErYSAgOJ00mvh/9AF+pWBpSoqKqrzVykV6j/WnxpDOpOwfi+STkuVPm3Q+hnL2iwVlVsW1fmrlBr6kEBqD+9Z1mZ44bQ7UBQFSacta1NUVEoN1fnfxNizcknefRx9SAAhLeqo6Y5XkXvhEltHfUbC2j2gKER0bUbn7/+PwDpVyto0FZUSR3X+xYAtI5vDUxZyduEmdIF+NHp2KLXu7VGmzvbI9MXseeV7RJ0GxSHjFxnG7asnEVCzUpnZVJ5wOmRWdnmOnLgkFIdLh+jipoOs6DSWe07NRutf8iEp2Wbn9JyNnFu0BX3FQBqOHkhYVKMSH1dFBVTnX2TsOWaWt3+GnLhkt9Jl6oFTJO84QtTnY8rEpoubD7Ln1e+RzVZksyu/PvNEAuv6vcJdR39RVwBA/OqdWFPS3Y4fcBefnfn9D+o/cUeJji9bbazq/gLph8+6it8EgTPz/6Lth0/S+NmhJTq2igqoqZ5F5uTM9eQkXPKQOHbkWDj+7QpyEnxXvZY0R79Y7CVwpjid5CakkLr/ZJnYVN7IOnke2erwOu7IsZBeCiJwp+f88Z/jB1BcD549r3yHNT27xMdXUVGdfxE5v3Y3cq7F67io05C842gZWATmpHQPWeN/ESQJa6ra2AQguFktRJ33wlfjb6Riy7olPv7ZhZv+c/xXIOo0JG05VOLjq6iozr+ImKqF+axeVRQFY6WQMrAIqg/q5FVtC66sltB2DcrAovJH5V6tCKxXFVH/X4aPoJUwhAZRc1jXEh9fXzEQfIXfFAVtkFr7oFLyqM6/iDR6ZrCHAwGXbIExPJjwTk3KxKYGo+7Ev3q4xwNAYzLQ5sPHS6SoypKSQfTnC9j2zBROzlxH7PLt7H/vV07OWo/Dx6qoODAnprLnte9Z3mEMfz3wHil7jhfoekEU6f/nZOo/MQBdsD/aQBN1HriNO3dMJ/PkeS7tP+nVkCbrzAU2DJnATL8BzK44hF0vfYMjj45m16PBUwORjDqv45oAU5l9b1RuLVRJ52Igdtk2Nj/2MU6bA0V2EtSwGr0XTcS/RkSZ2WTPNnP8uxXELt2KIbwCjZ+9i0rdmhf7OJf2n2R1jxdw2mXX5rIogAIIrgeOZNBxx+apBDWoVmxj5sQns7T1KOyZZpw2u1siutvM16h5V+Fn7WnRZ9g4ZALmxDQQBDRGPd1/e5MqvVphuZTBooaPYEvLdjeokQw6Iro1p++ajwo1XvSUBex7/UdX+EkBjb+Bvms/JrhprUK/BxWV/Eo6q86/mHA6ZNIPn0UbYCSg9q2TJ764+ROkR5/J+wRBoGKrugza802xjbl11Gec+GWtZ6YOYAirwPDz8xAlHzpC10G22phb7T6sKRkexzUmPcNiZnJy1nr2T5zlzp76F8moZ+DOLwvtsK2pmSRuiUYX5Ed4l6aFsl1F5Ury6/zVVM9iQtRIhLSoU9ZmlCqW5PTrt0dUFNKiz2JJTscQVqFYxk1Yu9vL8QM4cszknEss1MM3bsUOnFa713Gn7OTEzHVc2hPj5fjB9XdPiz5TaOevDwmk+iBV3E6l9FFj/iqFRtBqcMV4rk9xrjD1FYN8HnfKTnQV/K95rcNsJXFrNGmHz3rYZElKx+njgeK02slNSCG4eW1Eg3eMXnE6CawfWcB3oKJS9qjOX6XQ6Cv4E9axic9sJzeCQIUmNTGGBxfbuE3H34PGz7MPgKjTUOW21uhDAvO87sSMtfwWMYz1d7zGiqgxLGn2uLuTWETXZj6v0fgbqdK7NQ1G3Yl0VWqoqNMQ3Kw2oa3rF/EdqaiUPqrzv0GwZ+WSsuc4uRculbUpHnSb+Sp+kWFo/I3gI3NR1Ep0n/16sY5Z+4HeNB53F5JBhzbID8moJ7xjE7rNynuclD3H2f7MVBzZZuyZuThyLWQci2Ntn5dQFIXgprWocVcXj4eKqNdSoWF1qt3ZEVOlEAZsnkpYx8YgCog6DbXu60mfNZOK9b2pqJQW6oZvOUdRFPZPnMmhj+ciaiWcVjtV+7Wn26+vlRtJZKcsc/DD3zjw/q9ecXPRqOPOLdOo2KpesY9rTc0k7dAZTJFh1xVj2/zoR5yctR6cnt93jb+Rfhs+Jax9QxSnk+Pfr2DPqz9gz8x1ZeEIAq3eHknzV+53X+N0yAiigCCqcyeV8kepNnAXBOEnQRCSBEGIzuN1QRCEaYIgnBQE4aAgCK2LY9xbgdOzNxD9yTxksxV7Zi6y1U7C2l1se+rzsjbNjShJOLLNPjdMkRUu/n2wRMbVhwRSqXuLfKlw5l5I9XL8AIIoYLmc4SOIIvErd7qkOhQFp9WO02LjwLu/cnbRZmwZ2ewa/zXzatzPvJoPsHfCzzh8bAKrqNwIFNfU5Reg3zVe7w/Uu/zfKODrYhr3pufgx797FUrJFjtnF27Cnm0u9H0Vp5NzS7fyx73/46/733Nl0BRhFWiIqIDkY0NU1GkwhOYdhy8KuRdT+eOed5hh6MsMQ1/+HD4Rc2Kqz3Or3dkByeRd9Sxb7YRFNQRcxWoJ6/d6PcQcuRYOfvQ7KzqP4+hXSzFfuERufDKHP5vnDhupqNxoFIvzVxRlE+D7V+diMDBTcbEDqCAIQuXiGPtmx5KU4fO4IArYMgonAKYoCn+P+IBND37AuQWbODP3T/64+x12PufdgjG/1Hmgt88wiCiJVB/apdD3zQvZZmdFx7HELt2G0+bAaXNwbvEWVnR6FqfdW7Ct3qP98K8W7lFVq/Ez0OKNBzFczh6yXspE1PjOs885e4Gc2CSPB4NssZF64BSJm1UtHpUbj9IKWlYF4q74d/zlYyrXoVKPFj6dqi7ID1PlioW6Z9LWaOJWbPcQFnPkWIj5cRXpR88V6p7GiBB6L3sPfWgQ2gAjGn8jpioV6bv+kxLZm4hdug3rpUyPfH/FIWNJySB2+Xav87V+Rgbu+opW7zxCWFQjIgdE0XP+27R880H3OQF1qiD66OYlaCSMlSvi8LHSctoc+ZaWyI5NZOvoySyoP5JVPV8kfvXOfF2nolISlKsiL0EQRuEKC1G9evUytqZ80Oa9x0hYuxtHjsXl6AQByaijwxfjCr3hGL96l0/NHcWpkLB2DxUa1SjUfav0asV9F+Zzad8Jd9FbSW2KZhw9hyPH2xk7cixkHI31eY02wESzl4bT7KXhPl8XNRIdpo1l61OTkXNdsXxRq0EbYKLW8B5knTzv9bmJei3++WiQkx2byNJWo7BnmVEcMlknE/hj11FaTXyUZuPvve71KirFTWk5/wTgSnGXyMvHPFAU5TvgO3Bl+5SOaeWbwLpVGbL/ew5O+o3EzQcJqFuV5q/cR3jHwot/aYP8ELValy7OFYgaCW2gqUj2ipJEWLuGRbpHfghqVAONn9FrNq7xMxDUqPAThzojbsOvejjRn8wl+1wSlXu1pNlLw9H4GYj+dB6YBbdctiCK6AJMVLuzw3Xve+CDOW7H/y+y2cael77l4l8H6DbrNfTXKVBTUSlOii3VUxCEmsAKRVGa+njtDmAsMACIAqYpitL+WvdTUz1Ljuy4JBY1fMRLrkDjZ+Ce07MRdRq0gX7luuOXbLOzqOHD5MSnuB2qoJHwqxbOsGO/IGqLf16Tdvgsm0ZOIv2wS8sotF1Dus16LV+tMRc2GEnmCa/5DgCCRkNElyb0/2NysdqrcmtSqto+giD8BvQAQgVBiAfeBrQAiqJ8A6zC5fhPArnAo8Uxrkrh8K8WTreZr7L5kY/+q85VIKJbc+bVuB9FljFVDaPT189TtW+7sjU2DySdlju3T2fHuOnELt0KgkD1wZ3pMG3sNR2/PcdM7NJt2NKzqXJba4Lq519tNLhJTQbv/QbLpQwESSrQTN1UNTRP5684HCTvPEbmqfNq83iVUkMt8rqFseeYufjXAUSNxPEfVhK/aqdH+0fJpGfApinlVr4gcdthzi74G0EjUef+XtctJEvcdpj1A15FURQUhxNQqP/EHURNGVPiq5yEtbvZOOxt917C1WiD/LhtybtU6t6iRO1Qufkp1SIvlfJJ+pGzHJm+hFNzNmL3sTmq9TNS7Y4OhLSs4ypuuqrvr2y2cWjSb4ArB/7c0q1c3HTQrWdflux4bjrr+rzMkamLODx5ASu7PMeB93/N83yn3cHGwW+6pB2yzJeb29s48dNq4lfvKnF7q/ZtR/tPR/tsHQkuAbngZqqOv0rpUa6yfW52FKeT7LMX0QaYik3e2Oc4isLWUZ9xes4foCgIWontY6bSd+3HhLX33ozNPpeEqNd6NKG/fCNiV2xnbZ+Xubj5IJJe62ozGOhH3/WfUKFh2WRkpew5TsyPq/6bRSsKstnKgfdnU/uB3gTU8i4hSdwa7TP//98U12oDokrabBqOHkTV/lEsbfkk9qxcd8Wxxs9AozGDrylKp6JS3Kgz/1IifvVO5kYOZ3HzJ5hb/T7W3P4SluR0wKWLf3LmOk7N3oA1regN1s8t3sKZ3/90zW4tNhxZZuwZOWwY9IZXa0KAwPqRvqUZAKfFzvkNrqpXe2Yu9iwzuecvsa7fK2VW2XpuyVbvB9Vl4lb6zp335fj/Jf3oOZa0fJJl7Z7m+HcrfH5Gvu6Xn/OuJqBGBEMO/kC9R/piqhJKcPPadPzyOdp8+GSB76WiUhTUmX8pkH7kLH/c8z+PeO/Fvw+wrv+rNHxmMDvGTkPQiICAIjvpOuMVat3d/br3lW12bGlZ6EODPDpAxfyw0qOAy32+2UbKrmNeaaL6Cv40HDuE418ty1/PXUXBmppFyq5jhEU1uv75xYxk0CJIIorT0/kKouhanfggonNTFNlHuEoUyD59AafN9XDYefQcCev20GvBOz7vkxETx9anJpO0ORpBEqg+pAsdv3rOXSWcH/yrhdPlh5eueY5ssyNbbGgDTOU660rlxkWd+ZcCh6ct9ppZKw6Z9KOxbB8zxTU7z7bgyHbFojc//JF7VeALpyyz+5XvmBMymPm1RvBbxDCOf7/iv9dtecxyBXDafc9W2300ijYfPZnvcJQgitgyc/J1bnFTa3hPnzIMitNJjSGdfV6jMRnoOuNVJKPeHXcXDToEQfD4vORcKwlrdpGyL8brHta0LFZ0epbETYdQnE6cdpnYJVtZ3fPFYlsFOXItbHniU2ZXGMSc0KEsbPAw5//4p1juraJyJarzLwWyTp33OetUnM7LWSdXIcDZRZvzvN++N37k6JdLcOS6wjq21Cx2vvAVZxduAqDOg7d5NTtx3VcgrIPvmbogCDQeM4Reiye6tPmvg9PuILxjE5J2HGFll3HM9B/A/DojOP7DyhIPBwXVi6T95GeQDDo0fgY0/kYko56uM1+95sOr5l1duevIz7R440EaP3cXkQPa+/y7OGUnSVsPex0/OXOdW/HTfa7dQfbZRC7+faBY3ttf97/H6TkbkS02dyXwxkFvkHatPskqKoVAdf6lQJVerTwExf5Fccg+M2cUp5JnTNtpd3B0+lKvlEE518r+iTMBqPPg7YR3borG3/UAEPVaJJOe7rPfQPKhXXMl4R0bY4wIzlOWQRBFJJOeqCnPkBETx5rb/o+kbYeRc61kn7nIrue/4uDlDKGSpOFTA7nnzGw6THuWjtPHMTx+br5CZf41Img54SGiPh9DSPM6CFrvFYSo02CsFOJ1PC36jM9UTcXpvH4v43yQHZvI+fV7vf72stXOoU/nFvn+KipXosb8S4EGowdyZPpiLI4MlMthF43JQLWBHYhdvt3LoQhAtTs7+ryXLSMnz43GnLhkwCXT0GfVh5xfv5eE9XvQhwZR98Hb8YsMu66tgiDQb8OnbBj8JpknE1x7CaJA7Qd6kxuXjCG8Ag1HDyS0bQPW3/m6V3qoI9fCwQ/n0OSFu9H4kHguTowRIdR79FpK4nlzduEmDk76zf33uBJJp6XaQO/PP7RNA878/qfXfoogCEVO00w/eo4TM9b6bImpyE7Sj/jWK1JRKSyq8y8F9MEBDN73Lfvf+5W45dvRVfCnyXPDqPtIX3Y+N50TP6/BkWsFASSDjmYvDc+z0lMfEoA2wITV6i31HNKyjvv/BVGkat92harQ9a8RwZD935NxIh57Zi4hzWv7rJpN3X/SIwTiRlEwn08hoHb5rFa1pmayaeQknD5WV37Vw7l95Yc+H1x1HryN/e/OdIVkLoeLRL2W4Oa1CevQuFC2OGWZTSM/JHbJNhDwubIQtBrC8wjXqagUFtX5lxLGiBA6fjGOjl+M8zgeNXUstYb35MzcP12Vqg/0JrRtgzzvI4gi7T4exfax0zwchWTS07aY0wWD6kVe8/XAepHknvfuKaw4nRgiiq9he3FhTcviwp/7SdoajSD6ajgsUGt4D4Kb1PR5vdbfJQu9a/w3xK3YjqTVUGdkH9p88HihM3JiflhF3NLtXjpLbgQBjVFHozGDOfbtchLW7cG/ejgNRw8iqEH+pSlUVK5Gdf75JOvsRXa/9A0Ja/egMelpMOpOWrz54HVj6NdDEAQiOjclorOXHp4XDouN2MVbyIlNovG4u4hfvYvcuCRCWtalzQdP+CzgKklavj3SFfq56iHU4Mk7yk1/4X85/v0Kdj73JaJOg9Pm8L2nouB7A/4K/KqG0fP3CUW2x56Vy8GPfif6k7l51iBo/I1U7tmSFhMeYsPgCeQmpODIsSBoJI5/t5KecyfkGR5UUbkeqvPPB5ZLGSxv/zS21GwUpxNHtpnoz+aTeuAUty19r1RsyI5LYmXHsdiycnFkm13NUipX5K7jM9w55tlxSex78ycS1uxGG2ii0bNDaTx2SIlp6lfu0ZLuv77Ozhe+Ijc+Gcmkp/GzQ2n1v0dKZLzCkhZ9hp3Pf4VsseW5kQ4gGXXUvLtbidvjtDtY2WUcmSfi83b8JgM9F7xDaJt6HJ2+hJzYRGSLK11YccjIDpnNj37MfRcXeNR4qKjkF9X554OY71biyLF6ZObIZivnN+wj/VhsqcgcbH3yM8yJae5YsyPLTLblIrtf+pbqgzuTfuQc0Z/MxZ6ViyI7sSSns/f1H0iPPkPn78aXmF01hnSh+uDOyGYrkkFXYg+aohDz02qv3gW+0AcHULH1tcXhioNzS7aSdeai25n7wmG28sddb6HITkSdxue5stVO+uGzhDSv4+MOKirXpvz9UsshyTuP+ozJilqJtEMln3/tdMhc2LjPKyfdaXdwcsZaNo+cxL63fsaWnu1xjpxr5dSs9eQkJJeofYIgoDEZyqXjB7BlZPuu7r0Ka2oWhz9fWOL2JG0/7LMlJPDfZ6goyLlWnFY7jmzfVdeKLKMNKFrzHZVbl/L5ay1nVGhSE9GHbIAiOwmsm3dGS058Mpsf/5jfq97DoqaPEfPjqsIXQOW1oai44sfk4dxEg47U/acKN+ZNQs2hXd01D9dCNluJ+WlVidvjX7MSklHvdVzQSL43yn18ZwRRJKhBNZ8idioq+UF1/vmg4dODkK6S4hV1WoKb1c5TQ96clMbS1k9xauZ6zBdSyThyjp3Pf8muF78q8PiiRqJK79Y+c8Cvh9PuyFeP2ZuZyAFRVOrW3HfV81Vc2WaxpKgzore3PIUoYAgNQhcc4PMaQatxdVgLMKEJMOJfM4Lei98tcVtVbl5U558P/CLD6PfnZCq2rocgiYg6DTWGdaXP6g/zvObItMXu+Pu/OHIsHP92BeaktALb0Pn78Rgrh6AJMIIouBzZdbILRZ2Gii3r5pm6eKsgiCK9l75H119eoea9Paj3aD/8qod7nSfptdR+4LYSt8dQMYh+f3xGYINIJIMOUa+lYqt6DNg8lSq9W/muOtZIDN7/PZ2/H8/tKz5gWMxM/GtElLitKjcvaievAuIwWxE10nV7xK7s+hxJW6O9jmuD/Og1/22q3NamwGPLNjuxS7aSERNPcLNa7H7lW7JivFsDCpKIIIlE9o+iy88vo6/gT8aJeFJ2H8e/ejjhnZveVEqR9mwzZxduwnwxlYguzQjv1OS67+/SPydY3Ws8TrsDOdeKxt9IQO3K3LFlGtp8aBsVB4qikBOfjKjVYLosJ5GTkMySFk9iz8hxTxw0fgaavzGCFq8+UCp2lRZZp8+TE59CcLNa6PNY8agUnFLt4XsrofERq/VFYN2qJO844r1Ja3P4nHXmB0mnpda9Pdz/9osMY03vyw7MbEPjb8Sveji9l0zEVKkiWn8jTlnmrxHvE7t4C6JWQlFc/WT7//EZpsoVC2VHeeLS/pOs6TUep0NGttiQ9FoiujbjtqXvXfMBXbFVPe45PZvTczaSfS6R8I5NqDawo0+10JJCEAT8q3l+F/yqhrmqwSfO5PyGfzBWCqbZS8OpOazkU1BLC1tGNhuHvkXyjqOIei1Oq53Gzw+jzfuFL5ZTKTjqzL+ESD14ihWdnvUogBJ1GsKiGjHg7ynFNo7lUganft1A1ukLRHRuSo2hXTyc3pEvFrHntR887BA0EhFdmtL/j8nFZkdZoCgKv1W6G+tV8teSSU+7j0fR6JkhZWSZyrXYMGQCCWt2e6TfavwMdPr6eeo8eHsZWnZzoPbwLWNCmteh57y3MVWp6NKQ12up2q89vYu5KMxQMYgmzw2jw9Sx1Lq3h9ds9+hXy7z0YhSHTNL2I1hSvPWBbiSiP53n5fjBleIa88PqMrBI5XpY07JIWLvbq+7CkWPh0Gfzy8iqoiFbbRz8+HcWNnyYBfVHsv/dWflrilTGqGGfEqTagCjujZtLTnwyukATuiD/UrfBV0cvcIUcHHnpydwgRE/O21nYs83seukbJJ2W2g/0LpNN7+xziWQciyWwfqSaknkZW0YOoiTiKzHZegNORhRFYV3/1zxqgQ5+OIe4Fdu5Y9sX5br6WnX+JYyvuG5+UBSFCxv3cWrORgRBoM5Dt1Ope4sCx0RrDO3C8W+Xe3X3MlYOyZfEc3lBttldmVaXf0xOh4wlKe9uZzmxiRyePB9BFDk8ZQGt33+cps/fXWq2bnroQ+KWb3fHtKv0aUuP3yeUuMz1v1hTM3HaHRgjvPsSlCX+1cPR+BtdKrZXIGgkqva9bqSiTFAUBdlqR9JrvX5/iZsPkbL7mEcRqGyxkX40loQ1u6l2R4fSNjffqGGfYkK22ji74G+OTFtE8q5jRe5mte3pz9k49C1O/rKWE7+sZcPANwpVI9BywkMYK4WgMV1u7KLToPEz0PWXV26IzbW0w2dZ0flZZpkGMMs0gL8eeA9rejaiRsIQlnffXKfN4RJqk53IZhv7Xv+xxCud/+Wft38hbsUOZIsNe0YOssXG+XV72PPKdyU+dk58Mqt6vMDvVe5hXs0HWNTkUVL2erekLCsEUaTj1y8gmfTuwkVRp0UX5EfLtx8uY+u8OfXbRuZVv49f/e9gTuhQDn061+O3nbzzKLLVW3rDkW0meceR0jS1wKgbvsVARkwcq7o9j8NsxWlzIGqkfGWc5EXK3hhWdX/eK1YvGfUM3PVVgUMY9mwzJ2eu4+Jf+wmoW5WGTw28IXLEzUlpLGzwMPbMXHeVq6jTENysFgN3fc2xb5ax56XvPOKrgiT6lHKQTHqiPh9DgyfvKHG7Z4cMxpae7XVcY9LzYNbKEnvoOmWZhfVGkhOX5PEZaANMDDsxE2N4+ZHZTtkbQ/TZN0AeAAAgAElEQVRn88g6dZ5KPVrS5IW73emu5YVzS7fy94j3PX6HGpOBlm89RLOX7wPg1JyNbBv9uZdch8ZkoN1no2n41MBStRnUDd9S5c97J2JJzsCRZXZpseRYuLjpIEe+WFyo+8Wv2ulTyEtxyMSv2lng+2n9jTR6ZjA9571N2w+euCEcP0DMj6tcje+v7Jlrc5BxLI7knUdpOHoQbT96En1oEIgCxkohVOnTFnxo9QuigOijeKokyGufxWG2+W5+U0xc2LAPy6UMnxpQJ2asLbFxC0Nom/r0mPMmA3d+RbuPRpU7xw/wz4SfvSZgjlwLByfNcXfTqzG0C5Je6yW/Imglat/Xs9RsLQyq8y8i2XFJrv6tV/2o5VwrMT8WLuNE42fw6agErVRqBUjlgbRDZ3xLMAsCmScSEASBRmOGcH/iQkbmrGLo0Z/JOnUenN4OVpEVqg/qVApWQ3jnJj6Ph7ZvWKLid9nnEn2uemSLrVh6DN9qZJ296PO4I8fqnulrjHoGbJpCcNOaSAYdkkFHYINq9P/jszJJ8CgIqvMvIopDzlN0zWl3oChKgeP/te7t4dtJKFBjWNfCmFnuURQF+ar0v9C2DVyx4atxOj165gqCgKTX8c9bv5B9LtH7fFGg26+vow8JLG6zfRI1dSzaABPiZT0oQatB42+k45fjrnNl0Qht57sDnMbfSESXZiU69s1IXp3StEEmDzXVCo1qMOTADwyLmcldx35h2NFf8tT8Kk+ozr+A5F5M5fyGvWSedMkq+NeshKmy95JV1GsRJJEZ+r7M0Pflj3vewZyYmq8x/CLD6Przy0hGPdpA1xdNYzLQ47c3y1XctjhQnE4OfDiHORWHMNPUn3k17+fsos0A1Husv6sj2BUPQsmgI6xDYyq2rOt1r9O//eEKE12NIBBZipkkIc1qMyT6RxqNHUJE12Y0HD2QIQe+J7R1/RIdt2KrelTq1txDMVTUaTBGBFNrePkOQZRH2k560kt9VTLpaf3e4z4nZ36RYfhXvzFCqqBu+OYbxelk+5ipnPhlLZJBh9PmILxTE3ov+h/px2JZe9tLLokBsxXJz4Bic6A4ne5luKCR8KsWzrBjv+R7E9iWmcP59XtBEKjap22xhHwyjseRdfo8wc1r41e17FM9973zC4c/ne+xaSuZ9PReNJGqfdqSHZvIrvFfk7B6N6JBS71H+9F64qM+ZTbmhA3FeinT67igkXgwfZk74+lGxp6VS8yPq4hbsQNjlYo0HjvUo32nbLNz+LP5HP9hJbLVTs1h3Wj19shSW/XcbCSs38Oel78j43gcpqqhtHrnYeqMKHnxv6KQ3w1f1fnnk8NTF7LvjZ88nJSo11Ljrq70mP2GS2Zh9kZyYhNRFIj5fqV3BkCAkW4zXqXGkC4FHj/z1Hl2Pj+d8xv2IRl01HukH20+eDzfWkO2zBw2Dp5A8q5jrj62Vju17+9Fp+9eLLNCFNlmZ07oEJ/NSkKjGjJw+5cFut/2MVOI+XG1Z02DKBDRpRkD/vq8qOaWObbMHJa1fZrchBRXXrkoIBl0dJw+jnqP9Ctr81TKCWq2TzFzZOoir5Jtp9XOuUWbcVhsLpmFcXfR/tOn0fobfXZqknOtZByNLfDYlpQMlkc9Q/zqXTitduwZORz/djkbBr+Z73tsG/05STuOIJut7tzz03P/5MjURQW2p7iwpmbl2TA96+T5At+v9ftPEFCnCprLKySNvxFDaBBdf3qpSHaWFuakNPa8/gPL2o5m47C3Sdx22OP1o18uITc++b+CIqer29eOcdNv+GptldLnlqjwVRSlyLnVtowc3y84FeRci0flZnCTmq4qxqseAJJJT4VCyAzEfL/SlXJ2RRaLbLGRtO0wqYdOE9Ks9jWvd1hsnFu0xUtPRc61cuSLRTR98Z4C21QcGEKDEPVanxk9hfmc9BX8GXLgB+JWbCf1wGkCalem5t3d8r06KktyL6aytOWT2NJzcNrsXPrnJAlrd9Ppmxeoe1ns7NziLT4/K0EUuPTPSSI6+c4yygtzUhoXNv6Dxs9AlT5tS636WKV8cNPO/GWrjV3jv2ZWwB38ormd5VHPkLz7WKHvV6V3K9+bPNXDvbovVR/SGUPFQIQr5IH/1WyPHBBV4LFT9sb4/NGLkkT64bPXvV42W/PML7dn5nodU5xOEtbtYefz09n/7qw8U96KiqiRaDnhIa9YvGTS0+a9xwp9zxpDutDq7ZHUfej2G8LxAxz8YDa2tOz/HtCXe/juHPcFTrsrjGWo6LuiWXE40QcXLK0w+rN5zK/5AFtHT2bTyA+ZW/lukrYfvv6FKnnidMgcnrKAhY0eYV6N+9n54ldYU733oMoLxeL8BUHoJwjCcUEQTgqC8KqP1x8RBCFZEIT9l/97ojjGvRabHvqQY98scxXcKAopu4+zptd4d5ZOQWk76Um0QSZEnauXryCJaEwGOn37oteqQtJpuXPHdGoO6+bK/TXqqHlvd+7Y+kWh9OKDm9fOs4dwXuloV6Kr4O+zlaMgilS53TM06HTIbBj0Bn/c/TZHpi3mwPu/srjJY+4MnGuhKAoX/trPwQ/ncGLGWux5NCm/kiYv3E3UtDH416yEqNcS0roety9/v9ymJp7fuI/l7Z9hVuCdLGnxBLHLtxXLfRPW7nY7+Stxyk4yLufoN37uLq8HpSCJBNSpTIVGNfI9VvKuY+x76xdkiw1Hlhl7Zi62jBzW3/E6stVHXYVKvvh7xPvsffMnMo/HkROXxLGvlrGs3TPlVuGzyBu+giBIQAxwOxAP7AbuVxTlyBXnPAK0VRRlbH7vW5QN3+y4JBY1eNhrtixoJOo/PoBOXz9fqPvmXrjE4SkLSdp2mKAG1Wg6/p4C/egKS/a5iyyo+5BXAU/F1vUYtOebfN3j4qaDrB/wGrLNjuKQEfVaNH4GBu3+2kNx8tScjWx7arJXlarG38j9iQvznEnLNjvr+r9Kyq5jrqYqRh2iRkP/PycT0qJOAd9x+SRh3R42Dn3LQ8RLMunp8uNL1C5iKmVend9EvZZ7Ts92N9458MFsDrz3K6JOgyI78YsMo8/ajwqUYrh19GRifljlVQynDTTRfc6bVCvE6vRW4uyizRz6+HfMiWlU6d2KlhNG4si1sKzt0x7fDXAVbEZ9/gz1nyh5WZF/Kc1OXu2Bk4qinL488O/AYKDMVI2yTib4jCUrDpnUAycLfV9T5Yq0+2hUUc0rMCdnrkfQSJ7OX3DN+pyyTOaJBHRBftfszFWpW3MG7fuGw1MWknEslvDOzWg8drCX6uOp2Rt8yhMIokDilkNUvd33d+ro9CUukavL5fD/ZvD8OXwidx395YYQkbseu1/+1uvHLeda2f3St0V2/k3H38Om/Sc9PntRpyGiSzOPv2uL10fQcPRAkncdwxBWwdVXuoCfrT3L7LMKGiVvaQoVFwc//p0DE//T6z85Yx3nFm+h5YSRCJL338GRY+HC3wdK1fnnl+Jw/lWBuCv+HQ/4mjoMEwShG65VwguKosT5OKdYCKwfidPXxphWomLr8l95dzUnflrtXbykuPrQ/hYxDKfVjtMhExbViJ5zJ+Qp4xtUvxqdvrr2qkfyEV76dzxJl8drwImf13jpoIBLZTLr9AUC61S55rg3AhnHfX9lcxNScNodhRLx+5caQ7rQ/PURHJg4E6dTQXHI6CsG0u6Tp7zO1YcEEtmvfaHHqjmsG3HLtnk5eqfdgV+1cFem0aaD6EODaPbScOo92u+meHgXFXuOmf0TZ3p8zxXZiT3bwoW/9/us9Bf12nL73S+tDd/lQE1FUZoD64EZvk4SBGGUIAh7BEHYk5xcePldv6ph1BjWzbs6T6+j6fh7C33fsuJfEamrURxObKlZOHIsOK12krYdZt2A14o0Vv3HB6Dx8y6GEnUawjs3zfvCa4UPy2ktSUHxqxrq87gu2N9jc7+wRHRqAqKIIsugKFhSMlnd4wXSj5wt8r2vpPrgTkR0a/7f31kUkUx6mr1yH+v6vUzskq1YL2WSeTyOnc9NZ99bPxfr+DcqGcfifO7ZKXYHmScSMIYHI0ieLlXUSOVy1g/F4/wTgCt3HSMvH3OjKMolRVH+fVz+ALTxdSNFUb5TFKWtoihtw8KKVn3a9eeXafLC3eiCAy73rG3GgE1TSr2jkj0rl5S9MfmWdrgah9lKQJ0qkI+Jl+KQyTweT+rBU9c9N/XAKc7M+4u06DMexyMHRFHvsf5IRh2SUY8mwIg20MRty9675mZ13Uf6ej1sAUxVKrrsvwlo+fbDXlpDGpOBFq+PKJaZ8banP3eFlS6HZBS7A3uWmd0vf1vke1+JKEnctuw9us9+gzoP3U6jZwZxx+ap5CakuJqsXPGwduRYOPzZfGyZeaQ630KYKod4NUX6l4Calej/12TCOzVB1GuRDDr8a1Wiz5qPym3TpOII++wG6gmCUAuX078PeODKEwRBqKwoyoXL/xwEHC2Gca+JqNXQ5r3HCp0yWFQUReGf/80g+uO5ropam4PIAVF0m/lqvmUGnHYHq7o975r5XTF5/nd24UvBUdBK5J6/REhz35us9hwz6+98nZTdx93a9+Edm3Db0nfRmAwIgkCHqWNpNHYIFzbsQ1fBn2qDOro0dq5B42eHErd8O5f+OYkj24zGz4Cgkejx+4SbJmRQ96HbcWSb2ffWz9izcpGMepq/ej9NXih6hzB7jpnMEz4y0RSFi5sOFfn+Hrd0OkGB6oM6eSidJm077BIqvApRpyHzRAKhbUpWm6i8Y6oSSqWeLbnwxz8eYVjJpKfZy/fhVzWMAX9PwZKcjsNiwy8yrFx/94vs/BVFcQiCMBZYC0jAT4qiHBYEYSKwR1GUZcA4QRAGAQ4gFXikqOOWF2SbneQdRxF1GkLbNXBLJZycsY7Dn85HttjcG8/xq3ay/ZmpdP3llXzd+9ySrWQcj0U2X5W1JIrUe2IAJ39Z4/Wa02q/5r7GrvHfkLzjqMeXN2lrNHte/4EOU/5LxgqqF0lQvch82QmukFr/PydzfuM+krcfwVi5IrWG90AX6Jfve9wINHx6EA2euhNbZi7aAGOxSWNIeh2iVoMse+9V6YKK5zO0Zeawc9x0Ts/9E6fdQXjHJnT65gV3c6DAelVJPxrrFaZz2hyY8gh53Wr0+O1NNj88ifg1uxE1EqJOS9TUMVTq1tx9jiGsQhlamH9UbR8fJO86xrGvlmJOSqf64E7UHdnHZ4pj3Mod/P3gB64fi6Kg8TPQe+l7hLVryKImj/qUchD1WkZcWpKv2f/WpyYT8/1Kr+OSSU+b9x8n+tN5WJLT3UtRjZ+Bhk8Pot3H3puE4FqNzPIf4PXAANAGGHkwYwVOu4P9787i6JdLsWflEt6hMVHTxvpU0VQpXraOnsypmes9stQkk55W7zxCs/8r2l6Voiis7Pwsl/ad+C90IQhoA00MOz4DY3gwyTuPsrrXeM9UVoOOyAFR9FrwTpHGvxFJPxbL3jd+JHHTQQxhQTR7+X7qPtwHQRCwpmZiuZRJQK3KhardKUlUbZ9Ccvz7Fazu9SInZ60nYc0udo3/mhUdx3oVamTHJfHn8InYM3KwZ+ZizzJjvpjGuj4v48i15NlcXBAEbD6qan3hFxnqLiq7ElGSCKhdmcH7vqXRmCEE1KlCaLsGdPr2RdpeJxXVV79RwN05bPNjHxP92XxsaVkoDpnELYdY1e15sk4XXGtHpWBEfT6Gqn3bIRl0aIP8kPRa6jx4G01fLHpY6dK+E6QdOuMZs1YUnFY7x79bAUBYVCN6/PYmpqqhiHotol5Lrft60m1W0ZIIbkSyTp9nRYcx7s3vjGNx7Bg7jX/+58pV0YcEElQvstw5/oJwS2j75Bd7tpmdL3zlkcol51rJPJnAiV/W0OiZIe7jp2at8xlzdzqdxC7bRqVuzTm3dKtXPrUuOABjRP40+es+0o9DH8311OQRBCSjjsh+7RG1Gtp/9jTtP3s6X/cTBIFKXZtzcdNBz6W9IFC5Vytyz6dwbsEmrweEbLER/dk8On5ZuOI4lfyhMerpvXgi2XFJZJ+5SFDDasXWvyHjeJzP9payxUbawdPuf1cf1IlqAztiSU539ZG4QeQxipsDH8x2qwP8iyPXQvQn82g2/l6PZi43KurM/wqSdx5F1Hg/D+VcK2cXbAJcrfLiVu4g43i8z8YhikPGmppFmw+fQOtv/C8FUBCQTHo6TB+X700g/2rh9Fr8PwxhQWj8jWhMBgLrVqX/n5MLnVPe8avn0Aaa3HIRkkGHLsiPqKljyIiJR/Qh7qU4ZC7tO1Go8VQKjn+1cCp1a15ox29Ny+LCX/vJiPmvLiG4aU3fje2NOkLbNfQ4JggCxvDgW9bxAyRtP+Lz8xK1UqElYsob6sz/CnRBfq5MCF+vVQjgrxHvE7t4i6t62GxFEEWf51fu2ZKg+tUY/M93HJz0G0lbowmoW5Xmr95PeIfGBbKp6u1tGX5+PmmHziAZdAQ1qFakDIIKjWow7NgvHP9uJZf+OUHF1vVoMOpO14/dZPD5QBM0EsEt1Jh/eUdRFPa9/TOHP52PqNfitDmo2KouvZe+S0jzOoR3bELS1mj3noIguvSp6j/ev4wtL38E1qnqc89Ottpvms1v1flfQcU29TGGVyDrquWeZNKjC/bnzNw/PbJ3EAQEjejWpNf4Gag9ordb7yegVmU6f/tike0SJalYN1yNESG0nPCQ13G/yDCqDepI3PLtHpvCkl5L0/FlI/usAtbUTHa/8h3nFmwCUaD2fT1p88ETXg3Cz8z7iyOfL/T4jqbsOc6GwRMwVAzk0t4YVwW3AIpToWqftkR9/oza5csHzV+7n/N/7PMIAUsGHdXu7HDTtFJVs32uIuNEPGtvfwlrWhaCIOK02Wn1zsMcnroQ8wXvQi1Bkojo2hTJoKP+E3dQY2iXcp3bez1km529r//I8e9W4MixENq2Ph2mjyPsqtCASungtDtY3PQxss8mulU/RZ2GoAauleWVMuPLo54hZfdx3zcSBPeERmMy0GjsYNpOKn2dqhuJs4u3sGPsNLcsc+37e9Hxy+fKfThMbeNYBBSnk6QdR7GlZhLeqQn6kEBmBd7pszuXIImMSF923SKoGxHF6fTZw+BmJCchmcOfLyBpazRBDarTZPw9122SUxqcXfA3mx//BEfWVS1B/Y30nDuByP7/yWjNrzOC7DP5670gGXTcd2G+1+pBxRPF6XRtfgf6lXun/y9qqmcREESRiE5NqHZnR/eSuErv1j6zJSo0rlGqjj87Lomc+MLrHhWEW8XxZ546z5JmT1xWJj3GqdkbWNFxLAnry76HdOrB016OH1xZOqlXZOkARPaPQtDmL/VQ1GvdfQJU8kYQRYwRITeM4y8It8avuxho9+lodEF+7iwZQSuh8XM1cykNUg+eYlGTR1nU4GEW1h/J4maPk3aNLl6K04k5MRWHD3XT8ow9x8z2Z6fxa9BAZhj7sWHIBLLPJZbomHte/Q5bZo47B16Rnci5VraNnkJZr4wD61Z19yS+Eo1RR2Ddqh7HWrwxAn1wAILu+lt5Tqsdv2rhxWanyo3HTen8Uw+c4uyizWSeKr7CpMA6VbjryM80/b/hVO7dmkZPD2bIge8LnL1TGOxZuazu8SIZR2Pdm3npR86xuvvz2HO8Z4Unf13P75XvYX6tEcypOJjtz07z2SWqvKEoCuv6vULMD6uwZ+XitNqJX7GD5e2fwZaRXWLjXvxzv099+9yE5DJvw1fz7m6uavAr95FEAV0Ff0LbN2TvhJ9Z3etFto+dij3bzNBDPxLaur7PVeq/SAYdkXdEYarkW/r7ZsdhsZFxIh57Vv6KLW9WbqpsH2t6Nuv7v0pa9BlXoxObg2oDO9J99hvFUolnjAihzbuPFoOlBePMvL+8nbeiINscnFu4mboj+7gPJ6zdzbbRn3tkKZz4aQ2K7Lyuln9pk7g1mn0Tfib98FkC60dS+4HepO4/5ZFuqjidOHLMnJyxjsbj7ioRO3QV/LGmZnm/IAj5FuErKTQmA20+fIJtT012i65Jei2t33+Cpa1GueW8E7dEc/KXdfRaMpHUA6d8N2sRXBpCtR/oTYcvni3ld1L2KIrCoU/mcuC9WYCA4pCpM/J2On4xrki9GG5Ubqp3vHXUZ1z654RHCXvcih0c+vh3Wrw+ogwtKxq5CSk+OyzJZiu5CSkex/a/O8urqYpstnLyl7W0+/gptD5CCGXB+T/+YcOgN9y2WpLTSdl9zGdDDEeulZS9MSVmS+Pnh7Hn1e89PjdRr6XmsG6FivXas81c2huDLtif4Ga1i5T9lXX2Ijueneahtilb7Gx94lMUh+yuM1EcMg6HzPanpyDkMes3hAdz79k5SHrvQr5bgVOz1nt04QI49esGNEY9UZ+Pue716UfOcmr2RmS7g5pDuxDesUlJmlvi3DTO32GxEbdsm5fetmy2cuzrZTe08w9t3xCNv9Er20gy6giNauRxLOus72wPQRJdWQul7PxzL6Zy8MM5JKzdjTEimKbj76X6oE7s/r9vvB5STpvDZ98CyagnuHnJZd40emYwmTHxxPywylUcZbVTqXsLOn3zQoHvdeybZez6v28QNRoUWcavejh9Vk3Cv0b+e+xeyYmf13jLLCuKp+THFWTHJiLmEfMPaVHnlnX8cFmy4SqNLjnXyvHvV9L2o1HuTnUpe45z7NvlWC9lUmNoV2oN78Gxb5ax97UfcNplFFnm+FfLqDPydqKmjSV52xHsmTmEd26KPjigLN5aobhpnL/TZkfxtdTlxu9LWrVPW4Kb1iT1wCl38ZVk1BHSsi6Ve7b0ODesXQNil233kuUVJLHUKxPNSWksbfkktrRsnHYHmTHxXNp3ghZvPkh6XpvVCghaDYr9P+VJyaCl/qP9SsxOQRTpMO1ZWk54iPQj5/CrHl6opj+JW6PZdfmhJuN6sGUej2ddv1cYeuTnQq0Acs9f8t1ARMCjx4P7sCDS9MV7ODx5gcf3XjLpaf2/Rwo8/s2EOTHN53HFIePINiOFaDn29TJ2vfSNq0jOqXB+/V6OTF1I2uGzHuFIR66FkzPWcnbBJhw5FmSr63xj5Yp0/u5Fqt3RobTeVqG5aTZ8dYF+BDWo5v2CKFK1X7vSN6gYEUSRfhs/o8UbDxJQtyqB9SJp+eZD9F33iZdDaTXxUTRXdZuSTHpavfvoNXvwlgSHP1+ALT3HY7/CkWNh/8RZGMKCfF6jq+BP7ft6umavokClHi24c/v0UqlCNYRVoFL3FoXu9nZk2iIvuWzF6SQnPpnU/ScLdc+qfdr6zPYRRNFn68iQ1nVp9c4jtP14FKbIUESdhopt69Nn1STCrlol3mqEtmvg87ghNAhdcAC2jGx2jf/atSK9PJF05Fhc3e58ZH3JZhvWlAyP7mvmC5f44+53OLtwU8m9kWLipnH+AF1++D80/kb3slcy6NCHBNB20pNlbFnR0Rj1tHh9BHfHzGTY8Rk0f+0BND5E2EKa1WbA5qlU7dcOfcVAgpvWoutPL9Pk2ZLZLL0W59fv9RmecNrsVB/axWszVWMy0OyV++g241Xuu7iAPqsm0e6TpwgsQFOZssSSlO7TSQiShPVS4bKGagzpTIVG1T3aR2r8DNS8t4fPsdL2nyInLolGTw9meOxcHrasZdCurz2ajdyqtPtolKtv8RUTJsmkp/2UMQiCQOKWaJ8S6k6bw6fIW144rfZib71ZEtw0YR9w6ZEPPfQjR79cQvqRc4R3bkKDUXdiqOh7lnmzUrFlXfqsmlTWZuBXLcynGqgiO0k9cIrmb47g0Ie/4ZRlBEGg8QvDaPbScKInz2ffmz8h6rUoDhlTZCh913xc6Lh5aVFtYEeSdx3zaIYCroddXrPO6yFqNfT/ewox363g1OwNaEwGGoweiDU1i9ilW732TRSnwpl5fxe5+cvNSMVW9bhj2xfsf2cGKXtjCKhdhZYTHqRyz1YAaANNPh+oCIKvCNs1yT5zsdxXyKvyDiolRuKWQ6zq8YLPtEPJoOPuU7+irxiIJSkdQ1gQkl7HhT//YcPAN1yNxC8jiCKBDaoxNPrHAsXN06LPcGLGWhzZZmoM6UKVPm1LVHfJnm1mWZunyIlP/m9vxqSn9buP0vSF4hXGi548n72v/+i9shJFWk54kFZvP1ys490KOGWZedXv89Lwkkx6mr8+goPvz0aQBHC6zlVkp8+exwCG8Arcf3FhaZjtRX7lHW6qmb9K6ZN9LpFdL35F/NrdSHot9R7pR+v3HkNj1BPRpRnG8GDMF70F8UStBktSOqbKFfGLDHMfPzJtsYfjh8tx89hE0g6dzrMx/dUc/Wopu1/61pUIIDs59esGqvZrT8+5E0psNqb1NzJozzcc+3Y5sUu2YgirQONxQ90zy+IkckAU+yb87HVcMmipdmfHYh/vVkCUJPqs+cjVje/y6s1pc9DqnYdp9n/DaTR6ILGXMwoj74ji3KIt7H7pG68Necmop8WbD5bFWygQ6sxfpdBY07NZ1OBhLJcy4XK+uWjQEd6xMf03fgbA9mencfy7FSh2zxmSxt/I/UmLvPYtVnYZR9K2w15jaYP86L14IpV7tPR67WosKRnMq36fRy9ccMXKe8x9i2oDovK48sZi9yvfcfTLJe5Vhsakp85Dt3sV81lTMzn2zXLOb9xHYJ0qNB53F8FNa5F+9BzHv1+J+WIq1QZEUfPeHqWeFFAeccoyF/8+iD0jh4huza4ZNk7acYSdz39J6j8nUZxONAEmWr71EE2eG1Zm6r7qzF+lxDnx8xqXvMQVDW2cFhvJO4+6GsW0qkeL1x7gzO9/YsvMcT8ANCY97T4e5XPDuvqQzlz656R33NzuyHfc/PyGvYhaCfmqDF9HjoWz8/++aZx/u49GUX1QJ079uh5FdlL7/l5UuurhmHsxlWWtn8KWno1ssZG46SCn5oneRh0AACAASURBVGyk0bNDOTptMU67A8UhE7d8O4enLmLApik3pYhZQRAliSq98rdaC+/QmIE7vkRxOrFn5aINMJXrOP+V3BhWqpRLUnYf89pwBFeMPu3QGQBMVUIZcuB7Go4ehH/tyugrBuJ0yOx782f2vPY98lUx64ZPDcSvWhiS8fKD4XL7y/afjs63eqpk0OGrWszVuermcmwRnZvS6esX6PzdeCr3bOU12zzw7kwslzLcq6B/ReuiP/4d2Wx1x6wdORbSj54j5qfVpf4ebgYEUUQX5H/DOH5Qnb9KEQhpVvuyo70KRSGw/n/pmaYqoTR/7QFsqVlYU7Nw2hxYUzM5Mm0xfw1/1+NSbYCJQXu+ofW7j1Gpewtq3dudvms/puHoQfm2q2of3yteUa+l7iN9vY47LDb2vzuL+XUfZH6tB9j7xo/YffRuuBGJW7nTK+QG+CwQk3OtnPn9z5I3qghY07M5+NFvrOr+PH8/+AHJu4+VtUk3LGrYR6XQ1H9iAIc+mYtstbtT5ESdhqCG1bwKio5+udS1iXbFHpNstpKwdjeZJxM85Im1/kaavngPTV8sXIaMxmSg95KJbBg8AUEQUBQFxe6g5dsjvTqSKYrCur4vk7LnuDt2fvjzBcSv3snA3V8jSkUXBCxLdEF+5BTgfG2gqcRsuRqnLHN69kZiflyF0yFTd2Qf6j/WP0+RNWtqJktbP4UlOd31txIEzi3ZQudvX6TOiNtKze6bBdX5XwNbZg7n1+8FRaFKn7boAv3K2qRyhSGsAndsmcrWUZNJ2nEEUZKoMawbHb98ziv8kLL7mM/m8KJOS/qRc17a9EWlcs9W3HdhPvGrduHIMVPl9jboAv1wyrKHQ0/cdJBL+054VObKFhuZJ88Tv3In1Qd1Kla7SpvGz9/Nzme/8NS00YhIGo3HQxtcG+INRw8sNdv+fuB94lftdMtQpB04zdmFm+g57y0u/nUAUSNRuXdr9x5E9OQFmBPT/vseKQpyrpXtY6ZS857u5Xaz2pyYSuzSbSiyk8g7O+BfTvoo3BLOX7ba2Pv6j8T8sBJ7joXwDo3pMH3cNZuin120mU0jP3Q7CqdDpuuMV6h1d/fSMvuGoELjmtyx5XK/AFHIc6Yc0rw2F//a75UW57Q7PEJExYnWz0ite7pzdtFmVnQci/liGpJeS6MxQ2j93mOIGslVlOWjCtmRbSZ519Eb3vnXe6QvaQdOcezb5Uh6HYpDpkKTGrT/fAx/3v0OjhwLCgqKXabhM4NLLU00ZW8McSt3eOwZOXItJG4+xO+V7kEyXHbkCvRa+A5VbmvjEm70MYEAV01HaOv6pWF6gTg1ewNbR312uYcy7Br/NW0mPUGTccPK2rRbw/n//cD7xK/Z5Z7dJW07zKpuzzPk4A8E1Kzkdb45MZVND32AbLZxZbR088hJRHRqgqlK6Qqk3QhcTw+90dghHPtmuYfzlwxawjs3oULD6u5jToeMIArX3DhTFIWLf+0nedcx/KqGUuOurnnq7l/48x82PfShO3vI4ZA5Mn0xDouNDlPG4Fc9HMmgw2G/SjHVZMC/evmuKM4PgiAQNWUMzV69n9R/TmCKDHP3Jr439ncu/PkP1pRMIro286i3KGku/n3AZ4HUv879yuK1jUPfYnj8XPShvvWdnHZHqWg/FZTci6lsffIzr5Tjva/9QGTf9r61yEqRm37DN+vsReJX7/IS3HJa7RyZ4rsC78z8TfjUFgbOzPu7uE28JfCvHsGAvz8ntH1DEAREvZY6D95O78UTAbi0/yQrOo5lhr4vM/0GsOWJT31uujosNlb3fJENgyew782f2PbMVObVuJ/0I2d9jvvP/2Z6pY3KuVZivl+JPcdM9cGdXWGFq8JUkk5Drft6Fs+bLweYKoUQ2T/Koym9qJGo+v/tnXd4VNXWh989PZNCSAgEQu+9d1A6goCIoGBFr4LlYr329lnutaNeFa/9ylVQURGRIh0VpPdeQk8oCQnp0/f3xwwxycykJzMD+32ePJk558zZa04ma/ZZe63fGtadpjcOrlbHD+6QoS8dHZ8IwfGf1tDuoQlubZ6Cu3RaanZs5nMSF2hOzFvrs6Oay+7k6JzV1W9QES5555954GR+392CuOwOzm/z1p0BcOTk+Wx76LI7Ql4eOpDEdmnBmPUzmGxdwm25i+n3yT/Qh4eRcyqFxQMeJmXDPrdWvdVO4qzlLB/7rNc59r7zA6mbDuDIzkM6XTiy87CmZbF60j99jpl5OMnndqERWM6mozMZuPqPfxPbpTkaox6NUU90u8aM/O0dtcZThTQa1x+hLZ37kQ4n9qw8Gl7Tlw6PT0JrMqCvEY4u3ER0u8YMmftiFVtbPlwOp++OalLicgS+reolH/aJatXA90KjXkesnxhhg1G92f7SVziL3JZqjHrqj7o0CoQCSdGWmvs+/Nmth14Al9VOyoZ9pO85Rs12jfO3H/pyiddMHinJPJxEzqkUrxlsbOfmnDqd5i3YJUR+f4MaLepzzeaPyDubhnRJzHVjK/YGFSWijwhjxLI3WTHueWwZOQjh7jnhsNhwWbz/Xy/Ksnd+7lbaTLuW1M0HCIuPKXQnE2w0HNOHzT7UPTVGPY3GXREAi4rYEWgDqprIxvHUv7qXVz661qSn3UO+F11qtm9Cqymj/pJ/FQJduIkWt48odpE4kDhtdjIPJ4VkU+q0HYk+G5ZodDoyD54qtK04ORJf+7q+fMdfBWMedGYTnZ69xaurVVidGOX4q5Fa3Vtxw/FvuPq3dxixYjqTzs2l0bX9C4V2dOEm2ky7lhoFZL2NNSNJGNY9qB0/QESjOvmfP6HTgkaDNsxI22nXBoUfuSy0fZxWG1uf+y8HPlmAI8dC7T7t6P3+/cR08i8SJqXkzG87SJy1AqSLZjcPJX5g52L1Opw2Ozv++TUHPl2IM89KwlU96PHm3VW+cLjn3z+y7fkvkS6Xu8z/5iH0mfFg0Ka+FWXbC1+y843vcBVZGNOGGRi77RNqtPxrYWz7y1+x89XZXotoNdo05Lo93kJnACkb9rHp8Y85v+0QYXVi6Pj0zbS4/aqAaa8o/COl5NTC9STOWoHGqKPF5KuqRBivolz0m6X5DF3Yd5wj361COlw0uq6/36wkKSXpO4+QdzadWt1blnsRu7TaPpeF868ull/zDMkrtuWHJYRWg6FmJOMPzKyy3p5H56xmzZ1vFm7ZF2ak+eThXgJfwUre2TTmtrkDW0ZOfnhGG2ag3pCuDJ3/r0LHOvKsLB70CBf2HseRnYcu3OTWvF/1drFf5pci0uUiZcM+bBk51O7TFkONiMofQ0ryzqajjwir9v7PwYg9O4+Nj35E4lfLcFptxA/oRJ8ZDxbKWCsPucmpLB35FFlHkhE6LS6rnY5P3UTn524t87mU869mLuw7zvzu93rFo7VhRrck7GMTq2TceZ2nkL7ziNd2rcnATefnhYxIV8ahU2x8eAbJK7ahCzfRasoourww2WfDcelykbRkEykb9hNevxaNbxhYpsXZI9+tYudr32A5k0adAZ3o+vIdhcIKoUDGgZMsGfEE1rRMhBC47E66vz6FttPGVdoYJxdt4M+738Z6PgPpgobX9qX/p4+ij6y+KuBgY9FAd2JC/jqiEBhqhHPd/i8Jq10TgLSdiZxZvQNT7WgaXtPXbxpyQX7peS/ntx0u1DFMF25iwOxnaDimbLUm1arqKYQYAfwb0AKfSSlfK7LfCPwP6AacByZKKY9VxtjBQtrOI2h0WopmLjvzrO4slioiN/m83322jJyQcf41WtRn2IJXS3Ws0GioP7IX9UeWffF946Mfsf/Dn/PDRsd/+J2kXzcyduvHRDatV+bzBQLpcrHkqsfJOZlSaCF785OfEtu1JXX6tqvwGOe3HWLVDS8WKsI68fOfrLzwIlf9+nqFzx+KnN9+mPObDxROIJESp8XGgU8W0Onpm/n9ttc4Pm8N0iXR6LWsu+/fjFjxFrFdWvg9b9aRZNL3HPNqFenIsbDn3R/L7PxLS4UXfIUQWmAGMBJoC9wohGhb5LA7gXQpZXPgHeCS+/RENauHdHn3+dQY9US3bVRl48b1buOVow6gjwwjrHZ0lY0batgysll45YPsefv7QusF0uXCkWtlx6uzA2hd2UjZsA9repZXBpMzz8b+D3+ulDF2vTXHa13FZbVz9vedZB07UyljhBoZ+08gfFSwOy020rYncmT2ivzWmi6LDUdWHrYL2ay49rliExWs6dn+9YxSy9f7uTRURrZPT+CwlPKIlNIGfAuMLXLMWGCm5/EPwBBxia22xXZrSXSbRvnN4y+iNehodffoKhu327/udMsUa4o0pX77vpCRl7Xn5HFq8QaSl2/xKbVQWi4u0h/8YjGpWw8W2vfHHW+Qst63AqR0OEleupkFfafxdfQY5nW6i+M/ry23HVWBy+Fkz7s/MLftHawc/4Jbl6coUmJJzaiU8bIOJfnMUdcY9eScOFcpYwQD1rRM0vccy+/cVRzRbRvhcnpXJWtNBmK7tuDApwt91gFZ07NI25Ho97w12zf2uV1j1NPw2qqTF6mMsE8CcLLA81NA0fvx/GOklA4hRAYQC6RWwvhBgRCC4Uvf4M973ubEvLVIlySmY1P6fvII4QlVVz0Z06EpYzbMYOsLM0lZv4/IJvF0evYWEoaVGPILCo5+/xtr7ngDoXN/UQmtliHzXiL+io5lOo8l5QKLB/+D7ONn3TNiKYnr3ZahC15B2h2cWrQRWUxhTU5SqjuMAqTvOspvN/+rXGqRjlwLmx7/hMMzl+C02okf2Ik+HzxQKGOpPKy6/gWSlm3x2T/hIjqzicbXVU7+eJ0rOpC20zsF12W1E92u6u5kqwuHxcbau97i2I+/uydsLkmn526l4+OT/L4mpmMz4nq1IWXd3r/uioRAG2ag1ZRRnFywzufr3Gsy/j97WqOBPjMeZO3db7vP65JowwyE1a5Ju4cmVOh9FkeFF3yFEBOAEVLKuzzPbwV6SSmnFThmt+eYU57niZ5jUoucayowFaBhw4bdjh8/XiHbAoXTZsdld5S6+cjlStbR0/zU/k6vRXJ9ZBgTk74vU3bJinHPcXJRYe16rclA2wevo+394/ih+a1eYYx8hPAuAgPC6sYy8dR3ZUoJXTzkH6T8ueevmblnQXD8gZmY4soXhju/7RALr3iwWMevNRup0bI+o/78wGeHtLKSk5TCvI53YcvIze/UpjUbaX3vNfR8854Knz/QrLnrLY58s7LQZ09nNtLvs0dpOmmw39c5ci1sfvJTd7GhxUbdwV3o/f791GhRn33/mc+mxz7y+jsZY6OYdOaHEuXBUzbtZ+97c8k9lUrCyJ60vnt0uTK4SrvgWxlxgSSg4LSmvmebz2OEEDqgBu6F30JIKT+RUnaXUnaPi6terZHKRGvQK8dfChK/Xo70cRstJZwoQ9jFabW5Z/ZFmpY4LTYO/fdXwurGYqzluw+rxqjPv+soils3vuRwwEXSdiaSsmFf4ZDMxQXBTxeW+jxFSdm432fzFYDI5gnUG9aNntPvZdTa9yvF8QOEJ8RxzeaPaDJxAKba0US1akCvd/5OjzfurpTzBxJHroXEWcu9/raOXCs7S1j70ZlN9H7vfm7NXMDttqVc9evr+ZliLe8cSVyP1ug8kxatyYDObGLgt8+Vqi9EXI/WDPjqaUauepuOj0+qktTdQu+lEs6xCWghhGiC28lPAm4qcsx8YDKwDpgArJTBmmOqqDas6Vk+K3ul04k9869KZSkl59btJX3nESKb1aXekK6F1jOk0+V3Qc1ptSOEoN8nj7Bywgu4rHak04Uw6NCbTVyz5SOWjniSzEOnvF6rCzf57lTmhwt7j6PR+sj4sthI3XLQ52tKQ3hCLZ+ZZFqTgZZ3jaTj4zeW+9zFEdmkLgNneesrhTpuOQnfd3N5Z9LKfV6tQc+IFW+RtGQTySu2ElYnhma3DsMcH1Puc1YlFXb+nhj+NGAJ7lTPL6SUe4QQLwGbpZTzgc+Br4QQh4E03F8QisucBlf34uBnC3FkF1kkk1BvWDfAvRi8dMQTpG1PRLokQqfBXDeWq39/Nz+vWmc2Edu5OambDxQ6jdBpaTjGrU9ff0RPRq/7gD3v/EDmwVPED+hE2wfGEVYnhs4vTObPKW/hyC0YAjDR4fFJZVo0j25TzIJgl/KX8ydc1QN9ZBj2nLxCi7BCp6XFZO+2lIriCatTE32U2TsMKAS1+3eo0LkrkoZc3agiL0XAkFKyYtzznF6xNT9LQhduouXUUfSafh8AGx/9D/s/nF/oH1XotNS/uhdD5/3V/zdt1xEWXfkQLpsdZ54NXbgJQ41wxmz6T6n0evZ/soCtz36OPTMXrdFA+8cm0umZm8ssAbF40COcW7+32CIgX9gyczj2w+9YzqZTu1976lzRodDYWUeSWTXxZS7sOQZCEFY3hgFfP03t3kWzqitG1rEzHPx0IdnHz1B3cFea3jg4ZGpFysKRb1ey9q6/vvCFVoPObGT0+hlEtwntBW1V4asICVxOJ8fnruHI7OVoDHpa3nk19YZ1y3d8s+PGYT3vness9FpuzVxQqALYkprBwS8Wk7H3OLV6taH5rcPKtGgsXS5sGTnoo8zl7t1rz8lj06Mfc/irpbisduIHdKL3Bw8UW/6fuuUgvw59FOlw4rTY0JoM1O7XnmG//Msr/zs3ORWnzUFEozqVrk2UvGIrK8Y+h8vhwGVzoAs3EV4/jtHrP6jy+HNVY8/KZfc7P3Ds+9/QmU20+ftYzA3i2PnKbLKPniaubzs6P3drqSq9bRnZZB8/S0Tj+KCU/VbOX3FJ8HX0NdgzvVuQC62GWzIXBPWsVEpZooPOS73Ajy1vw36h8HvUmo30eONu2txXtGSmapAuF981mEje6cIxb41RT4fHJtL1pTt8vi7zcBJ735tLxoGTxF/ZkVb3jMEU63txvTw2VUatisNiY363u8k+eib/DlIXbqLJpEH0//TRUp/H5XSy8eEPOfjZIjQGHS6bg1Z3j6bn9HuDqqamOrN9FIoqo+HYvm453IIIQa2erYPa8UPJio/ZJ84yt9XtXo4f3N3GDn2xuKpM8yLzUFKhRfaLuKx2v12nzvy2g587T2X/R7+QvGwLO/41i5/a/o2cUykVsuXMHzuZ13kKX+qG8XX0GLY887m7MUo5OfrtSnJOnCsUOnTkWDgyawWZicklvt5ld7Bvxjy+azCRfTPc0iD2zNz8LK6dr39bbtsCiXL+iqCm++tTMdeNydd415qNGKLD6f/5YwG2rOJsfupTbBnZfvdX51251mz00pa5SNHWieC2bc2db+LIteT34nVabFjTMtn6nG9p7dKQtjORpSOfzBcrtGfmsuffP7LuvnfLfc7k5Vt8Vt4KnZaUdXuKfa2UkmVjnmHTE59gOZPuLamRa2XP29+X27ZAcsl38lKENub4GK7b9yVHvl1F6qb9RLdpRLNbh1WZRHZ1kvTrJt9t/nBLWre4Y0S12RLRoDbR7RqRti2xkEaVzmyi9b3eoSdLygVykrwL9KXTxalFG0o1pj07j/NbD2GqFUV028YAPns1OHOtJH69nG6v3lWukFJ4gzpo9DqvKlshBGElpGGeXbOLc2t3F1tgZ7vg/ws8mFEzf0XQozObaPm3kfR48x6EVsMfk19j3bR/+23aHiroiikEjOvRmlZTq04TyheDvn+B8AZx6CPD0EWEoTUZaHz9lbT8m/eXkM5s8lkVDe4K7ZLY+/5PfFNnPMvHPsv8nvcxr/MUcpJSSNt5xLemkEFP9rGzZX9TQKspV6PRFwkdagSG6AjiB3Uu9rXn1uz2XxnuIaZzaPaRUDN/RUhgvZDNLz3uJe/0eRy5VoRWw6EvlzBg1jM0Gtsv0OaVizb3XsP2f31daFYptBpq92vPiFVvV0mnsfTdR0nbfpiIpvWo3adtoTEiG8czIfFrTq/eQW5SKrX7tCWqeYLP8+gjwqg/sienFm8sVKinNRtpM+1aXHYHp1duw5qeRfzAzoUKnU6v2sbmpz7FmWfNr7K9sOcYy0Y/Q2yXFmQeOOWlkOuy2YlsWrdc7zmyaT0G//giv9/2Go48K9LpJKpFfYbMfbHErK6w+Bi0JoPPsBHC3a+j17vTvPeFAMr5K0KCPe98T86plPz8eel04cy1subON2kwqrdXU/hQoP1jEzm/I5GT8/9EY9AhHS5qdmjCkHkvV7rjd9rsrBz/AqdXbkNo3Tf8kU3rMmL5W5gKSF8IjYZ6g0vXNrH/F4+z7OqnSN911N19ymanyfUDqHNlR76tf4P7byUlLpuDDk/dRJfnbwNgz7/neoVRpNNF5qFTdH1xMifmrcWRW6AzndlIiztGVCjUl3BVDyYmzyFj3wl0ZmOpezc0nnAlGx750HuHEDQY3ZsuL94eFP14y4Ny/oqQ4PjcNYWbaHhw2R1c2HuMmI6hd+ut0WkZ9O1zZCYmk77zCBFN4qvMkex8dTanV24rpGdzYd9x1tz1VqFiubJgrBnJ6HUfkLYzkezjZ4np1AxzQi3mNJyENaWwtPTuN74j/ooO1B3UBcvZdJ/n0+i0GGpGMmLldNY/+AHntxzEEB1Bu4fG0+GJiosCaLRaarZvUqbX6CPNjFj+FquufwGL5z0ZY6MYNOf/iOvZusI2BRLl/BUhgT7Kd+tA6XCiD1ChTermA6RtP0xks3rED+hU7lzvqGb1iGpWtV3EDnyy0EvITNqdJC3eiCPPWqG02ZiOzfK/fM+u2YU9O8/rGEeuhf0f/ULdQV2oP6o3qVsPegnxuexOYru0QB8Rxph1H5TbnsqmVreWTEicRcb+EyAlNdo0qpKQXHWjnL8iJGh7/zjW7jxSKPYqtBqi2zYmsnF8tdriyLOybPTTpG7YDwIQgvD6cYxc/XaxEg6BxN+ipZTSnQVTSTUTjhyLX8doy3DXM6TvOpKfHnoRodHQ7bW7grZJvBAi5GUfiqKyfRQhQZOJg2g5ZRRakwF9lBldRJh7IW/ui9Vuy/aXvyJl3V4cuRYcORYc2XlkHk5i7V1vVbstpaXB6N7exXK4u1NVpkRB7X7tcdm9C7J04SaaThpE6taDnFy43kuiWmPQERuCobtQRjl/RUgghKDX2/cx4fBXXPHfJ7hqyetct/9LIhrUrnZbDv33V6+ZtHQ4SVqyGUcJaYGBovtrUzDF1UBrds/wNSYD+kgz/b+o3GI5fUQYfWY8gDbMmL+wrAs3EdO5OU1vGsLpldu9wj3gvjNJXrG1Um1RFI8K+yhCCnO9WjQa17/QNmt6Fsd//B1bZi4JV/WgZrvGpTrXhf0nOLNqO8bYKBqM6VPquLevhWdwh1CKhjMqgsvu4NjcPzgx/09MsVG0nDKKmA5Ny3Uuc91Yrtv3JYdnLuHcur3UaN2QVlNGlUrxtKy0uH1Efk9ba2oGDa/tT+PrrkCj12GMiXTr4hQpuNKaDBhjoyrdFnD/XQ58upAd//way9k0arRuRM/p91BvaLcqGS9UUMJuipAmadlmVo57HoTAZXcitBpa3DGC3u/f7zf2LKVk3X3vcvh/SwGBRqdBaLVctexNanVrWeKYf9z+OomzVxR29EIQ06kZPd66h/D6tSrcs9dps/Pr0EdJ23bYHUfXatAY9PSZ8QAtbq++yt/KxpaRzZyGk7BnFV4U1plNTDjydZWsmeyePodtL8wstF6kDTMyfNGrxA/oVOnjBRol7Ka45HFYbKy6/kUcuVYcORaPlr+VwzOXkLzU/8Th+Nw/SPx6Oc48G848K/asPGwXsll+zTNexUW+6PbaFMLia+Zr3mhMBoRey4W9x1k5/v/4ucvdLOz/ANY0bynq0nJk9op8xw+euoY8K+umveczmyZUMNSIYNii1zDWqoE+0ow+yoyhZgRD5r1UJY7f5XCy/eWvvIq0nHlWtjz7RaWPF0qosI8iZDmzervP7Y4cC4dmLiHhqh4+9x/8bKHPik17dh6pmw4Q16tNsePm6w3NWkHKxv04cvI48cs6nLlWXDZ3SCh10wF+u+UVhi96rYzvys3ROat92qjR6Ti7Zhf1R/T0tj8nj+TlW0FK6g3tFrSZM3X6tWfS6e9J2bAfXC7ierXx6ltQHNLlInnZFs6t20tY3RiaTByEMdp3vwHr+QyfrUIBMvYdL5f9lwrK+StCFn8qlAC5p1Kwpmf5rAp1+onZCyFw2nzvK4o+PIxWU0fTaupofu461ati1WV3cHrVdiznM8olRuavrgEpsWfnseXZL8g6kkz8gE40u2UoZ1bvYPWkl/MXWaXDxRUzn6Dx+CvLPHZ1oNFqqdO3XZlf57DYWDLsMdJ2JOLIzkNnNrH5iU8ZseItnyE7Y0yUzywngEg/0hWXCyrsowg5nDY7h2YuYd+Mnwv13S1I6tZDfJdwAztemeW1r9nNQ33KFCNEibN+X1jTsnxu12g12DO8tfqTV25jfo97+SpqFD+1/xvHf1rjdUyrqWPc4mlFTdRrWXPHG+x+6zuOfruKTY9+xE/t/saqG17EkWPBnpmLPTMXR66F3297lZykimnrBxv73v+J81sP4fCEvhy5FuyZOaye+JJPCWyNXkeHx27wupYak4GOT1ZN4/tQQTl/RUjhtNlZPPBh1k97j6RfN+Yvuhad3TlzrTgtNna+MptTiwtLDDe/bThxvdqgi/DE7A16tGYjA75+Gq1BX2abEkb08Dm71EWEEd6oTqFtycu3sHzMM5zfchBHtoULe4/z262vcPirpYWOqze4C+0fn4jGqEcXGeaOjcdGoTXoPesb7lCGI8dCblKqz9x66ZIcm/Nbmd9PMHP4f0u9KpUBcs+kkeWnMUunZ2+l84uT/8om0giQktU3/pPfbnmlkI7Q5YQK+yhCiiPfrCR911GveLiUEqHTeqVaOnIt7Pn3XOqP7JW/TaPXMXzJ6yT9uomkJZsw1a5JHsuF+gAAGiJJREFU89uGEdGwsKMuLV2ev40TP63FlpmDy2pHaDRoTHr6fvyIl2rkpic+9XJezlwrm5/8lGa3DCuUodTl+dtoNWUUZ1bvwBAdTlTzBOZ1nuo1vr/wl8vuDOnFYZ/4U1WQgJ/sLiEE7R+5Ho1Bz8Z/fAgOV3667vG5f+ByOBj07fNVY28Qo5y/IqQ4/uMfPhdCtUb3jN3pI8/emprhtU2j1dJgVG8ajOpdYZvM9Woxbvfn7H3/J5JXbCWyaV3aP3I9sV1aeB2bsf+Ez3NYzl3AabF51RqY68bS9MbBAOSdTfOfjSSEl76+1qSn/kjvheFgxZaRjTU9m/AGcX6llpveOIRtL3zpVSgW3iDOr+SzlJLfJ7/G0dkrocj1c1psnJz/Z7nXZkIZ5fwVIYUxJtKnoxMaDdLp7fi1JoNXUVhVYIqLputLd/htdA5uJ2SoGUGej7CFPtKM1mQodoywOjHU6t6KlPV7vWf7UrrDGZ5GKLpwE00mDqJW91ZlfzPVjD0njzV3vsmJn/9Eo9WgNRvp/tpU7Fm5JC/bQkSTeNr8/VpMtWpw4KP5Xu9dFxHGoDnP+63rOLVoAyd+WuP3i1Oj15N3Jl05f4UimGl1zxiO/vCbV3aNPjKMLi/fwYYHPsCZZwMp0YYZMdeNoc20awNkbWE2Pf4xFh93ITqziY5P3lgqpciB3z7L4kH/IO9sGs5ca2FH6HKHvhqM6UPru8dQb1hoVLD+dvMrJC3ZhMtqxwU4cq2snfIWGoPeHUbTaTn0319JGN6dvLPpXp2+9OGmYqWaE2ev8N2MxYOULiKrWFU1GFHOXxFS1O7dlm7/upMtT32GxqAD6Z7lDv/1dWI6NCWmfVP2vjeX3ORU6o/qTaspoypVuKy8ZJ84y/4ZPyN95Jw3GNuX9o9NLNV5whPiGL//SxJnr2DNnW9BkVmw0Agim8STMLzEAk8cVhs7X5lF6sb9xHRqTsdnbsYQ6SfFtIrIPX2eZI/jL4T8S0ZDOpw4HU5OzP/TZ4tHW2YuWUdO++06VlyjH41RR5cXbkdXwl3XpYhy/qXEmp7Fvg/mcWrxBswJcbR7eEK58pQVFafdg+Npfttwzv6xC0ONcGr3b58fI47r2ZoBXz8dYAu9OfPbTr/55hqdtkz68EKjwVgzEp3ZiD2j8JeJy+YgbUdiiefIOHSKeR3uzM8aSlqymd3T5zB6/YxSSVxUFrnJ59EY9X5rLwrhp9m9y2pHV0xBW/PbhnN8ro+1Io2g/xdP0MyzpnK5oZx/KbCcz2B+17uxpGS41RzFfpIWb6DXe/fT8m8jA23eZYmxZiQNr+kbaDNKjTEmEqHx4eCFwFQ7uszni27T0KfAnMagp1a3kuP8S0c84VX5Kp0ufh36KLekzy+zPeWlRqsGuCoqhico1CO4KHUHd6Hl1FEc+OgXpEu67wSkZPDcl0p1h3SpovL8S8Get38gz5ONAYCUOHKtbHhoRtBK+CqCi4Th3X2HH6TML1gqC5FN65EwsifasALhCiHQmvS0ub/4NQ6HxUb20TM+99kzcsg4eKrM9pQXfUQYnZ65BZ25QJaTr7sgX1+cHi7Wa/hDCEGv6fdxzZaP6f7qFHq9+3duOPndZe34QTn/UnFy4XqfsyyhEVzYfTQAFikCTc6pFDY++h8W9LufNVPe4oKfFM6LaPQ6vwuwh2cuxZaRXWYbrvzqKRpe0xdduAmNXkfdIV0Y/ef7hCfEFf/CEsTrTvyyrsy2VIROT91E/y8eJ6ZLc8z13KmtTW8egtaoz2/cU6N1Q+IHds6Xr7iI0GtpdvOwUo0T3boh7R4aT8s7r65QM/hLBRX2KQWmON+35S670516qLisyDh4kl96/R1nnhWXzUHqxv0c/WYlwxYWLxF8Ya/vLwiNUU/G/pNlkpZI3XKQpSOfxGWzI7QahE5L00mDiW7buMTX6swm9JFm7Fm5vg8ohbJpZdPkhoE0uWFg/nN7Th7tHhxP9omzhNevTa0erchNTmVhvwewpWfhsNjRmvRENqlLt1furHZ7LwWU8y8F7R6eQMq6PYV0ZIROS82OTYlsevmliF3ubHrsY+yZufm1BtLpwpFr5c973uG6fV/6fV1UiwTSdx/1qlFwWe2ENyhhtl4Ap9XGkqsex1ZEU2j9/e9Tq0erUjV86f3hA/xxq7fiqDAEtjDMkWdl3b3vcuS7VQgh0NcIp/f79xPXszXhCXFMOPQVJxesJ/NwEjEdm1JvWDeEJvABjOyT58g+eoboNg39ThaDjcBftRCgwdW96Px/k9GGGdHXCEdrNhLTqRlDfnop0KYpAsCZ33Z4OXCAzMRk/7NpoMPjkwrH6HEXodUb3h1zvVqlHj952RafHcNcNjsHP19cqnM0v3kYTW8agtD95QI0YQZaTRlVbM58VfPH5Nc4Omc1Lqsdp8WG5Ww6f9z+OmfX7HLbqNfRaFx/Ojw2kYSregTc8TtyLSwf+yxzW01m+dhnmdPoRtbd/16p+kIEGjXzLyUdHptIq7tHc37rIcLq1CS6TaNAm6QIEPqocPfMvwhCqym2SjeuZ2sGfvMs6+59F2taFlJKGo2/gr4fPVym8W2ZuT4VLKXT5VfczBdXfvUUzW4ZSuLXy0EjaH7rsEppbWjLzOHINyvJOHiKWt1a0nj8FWiNJefRW1IucOKXdV7ra85cKztenc3wha9W2LbKZv3975O8bAtOiy0/IeTwf5cQ1TyBdg+OD7B1xaOcfxkwRIVTd2DnQJuhCDBt7x/HthdnFqoy1pr0NJk0uMSmJA3H9KXB6D7knU3HEGX2KdtcEnUHdvLboCR5xVYyDyf5LXgqiBCC+iN6+mwMU14yDpxkYf8HcFpsOHIs6CLC2Pb8fxm9YUaJ8gk5SalojXqfyRVl+VKrLpw2O4mzV3jZ68i1sOfdH4Pe+VfonkkIESOEWCaEOOT57bMPmxDCKYTY7vmpviRihaIKaPfIBJrdNAStyeAOA5oMxA/qQu/37y/V64UQmONjyuX4wS0k1+6hCT73uewOdr3xbbnOWxqklCTOWs7C/g/wc9ep7Hzj20KSyH/c8QbWtKz8gipHdh45J1PY8vTnJZ47qkWCT2lqodVQp1/7ynsTlYTTYvOrqGpLL3v2VnVT0YDZk8AKKWULYIXnuS/ypJSdPT/XVHBMhSKgaLRa+n3yDyYcmcXgH19k3J4vGL7wVfTh1dc2seHYvmh9NaRxukjZuL/Kxl07dTp/3vMO5/7cQ9r2RLY8/RlzmtxExqFT2HPySN18wHtB2+7g2I+/l3hufXgYHZ+6qfCXokagCzfR6ZmbK/utVBh9pJmIRj5kwIUgfkDH6jeojFTU+Y8FZnoezwSCQ0FLoagGzPEx1BvchcgmvqWEC+LItZD49TJ2vfkdZ//c4zNmXxYiGsd76foAoBFEt62a9aiMQ6c4MquISJpLYk3J4OdOU0jfddTv+/In0VyUTs/cTN+PHya6fWNMcTVoNK4/YzZ8GJRZdUII+n78CDqzMX/hWeh16CPD6PHG3QG2rmQqGvOvI6U87Xl8BvDXDcMkhNgMOIDXpJTzKjiuQhEypO06wuJBj+CyOXBabWgNeur078DQ+f8sU+PygpjjY2g4ti8n5v/pVjH1oK3C9oTn1u72KrK6iNNiY+nIJ31mQWmNeprdOrRUYwghaHbzUJrdXLrjA029wV0Yte4Ddr81hwv7TlC7T1va/+P6cjcGqk5K/OQJIZYD8T52PVPwiZRSCiH8TWcaSSmThBBNgZVCiF1SSi/1KSHEVGAqQMOGDUs0XqEIdqSUrJrwQqGcfIfdyZnfd7L/P/Np+8B15T73FV8+wabHPubg54tx2exENU+gz4cPEtOxWWWY7kVYnZrFplb66lcsdFpqdm5GlxdvrxKbgoGYDk25cqa/iHfwIipy+ymEOAAMlFKeFkLUBVZLKYtVlRJCfAkskFL+UNxx3bt3l5s3by63bQpFMJB5OIl5nad49R8AMNWOZtLpH8qk6OkLl9OJy+bw6gJ2ESkl0uEs911G/jgOJ3MaTiLvTFqpX6M1Gbg1Z1GF36Oi9AghtkgpSxQuqmjMfz4w2fN4MvCzD0NqCiGMnse1gH7A3gqOq1CEBMUV+1hSMtj95ncVHkOj1fp0/C6Hky3Pfs6s6DHMNI1gbrs7SF6xtfzj6LSMXPU2hpoRpX6Ny+5Qjj9Iqajzfw0YJoQ4BAz1PEcI0V0I8ZnnmDbAZiHEDmAV7pi/cv6Ky4KoFvUJ81fuLyW7KsH5+2P9/e+x590fsWflgZRk7DvB8rHPujNyykmNVg2YmDSHukO7ojHo0Ue5U12NsVHeapxCED/Qv9aRIrBUKOxTlaiwjyLr2BmOfLsSR46FBqN6E9erTUjOIlM27WdBr7/73X+7Y1mlyxRYL2TzXd0J3k1ShKDBmD4MnfdyhcfIOnqajP0nqNGqAU6bgwV9puXLMmhNBjRGPaPXfUB0a7V+V52UNuyjKnwVQUni7OWsvWs60uXCZXey950faTJxIP0+ezTkvgDierSmRttGZOw97rUvqmX9KtGnyTl5Do3BR4csKbngw47yENmkbqE01/H7v2T/xwtI23qImK4taH33aMLq+G+yoggsyvkrgg7rhWzWTpn+V/Mc3HnyR+espsmkQSQMC70mHL3fu5/lY57BmVdAEsJspOfb91XJeJGN43HZfUhAaASxXZpXyZhhdWLo8vxtVXJuReWjVD0VQUfy0s0+u145ciwc+XZlACyqOPUGd+GqpW8QP6gzptrR1LmyI8MXvkqDq3tVyXj6SDOtp12L1lx4IVhnMtLp2VuqZMxAkXX0NDtencWWZz7n3LqKF9BdLqiZvyLocDc6993vtqLpioGkTr/2jFwxvdrG6/HaFMzxMeyePgfr+Uxiu7Wk19v3lUrvvySyjp3BZXcQ1TwhoGG4xFnLWTt1OtLhwuVwsvffP9L4hoH0//yxkAsPVjeh+5+kuGRJGN7dp2CWzmyk+S2la9mnAKHR0P6R62n/yPWVds6MgydZOeFFsg4nITQajLFRDJj9TECE16wXslk7dXqhCmdHrpVj3/9G0xsHh2R4sDpRYR9F0KGPCGPgd8+hNRvRmU1ojHq0JgNtpo2jTv8OgTbvssVps7N4wMNc2HPMLdmcayHn5DmWjnySvLOlL/yqLJKXbUGj856/hnJ4sDpRM39FUNJgVG9uOP4NJ35agz3HQv2RPanRskGgzbqsObV4o7uVaZGYunQ4OfS/pXR8bFK12iO0Gp/RQYQotZDc5Yxy/oqgxRRbg5Z3jQq0GZVG3rl08k6nEdUiodxa/oEkL/k8Lh/tI50WGzknzlW7Pf7CgwBpu45y5o+dxF8R/NLKgUKFfRSKKsDlcOZnnThyLayc8AJzGt3IoisfYnbt69j5+jfVYoc9O4+za3eTeTipwueK69PW50xbFxFG/JXVX8nrDg8+jybMgCiYCCAlqRv2sXTkkxyds7ra7QoV1MxfoahEzq7Zxbpp75G+6yg6s5GWU0eRl5zGqUUbcFnt+S3/dvzzayKb1KXJDQOrzJbd73zP1mf/i0avw2V3ENOxKUN+fpmw2j4b7pVIbOfmJFzVg6Qlm/KF6rQmA1HN69Ho2n6VaXqpiWxaF0OEGcv5DK99zlwr6x94n8YTrgx4o/dgRMk7KBSVRPqeYyzodZ87Lu5BG2ZwV9m6vP/PYro0Z+yWj6vElqQlm1g5/oVCLRaFXktcj9aMWvNeuc/rcjg58MkCDnyyAJfNQdObBtPu4QnV2sXsIlJK5ra5ncxDST77CABow4yMPzCT8Ppx1Wxd4FDyDgpFNbPrjW9xWgrLKRRMQyxKWaSRy8ru6d8XcvwA0u7k/LZDZB07Q2RjXy06Skaj09LmvrG0uW9sZZhZITIOnCT3VIpfxw9uVVVDdOlVSC8n1L2QQlFJpO884lvC2Ve9mkZTpXFyf6mXGr0Oa6p3iCQUcVps4KezGLhDUk2uH4A+ovrvSkIB5fwVikoitntLn20OhU6LJsxQ6LkuwkTXl++oMlvqX90LjVHvtV26JNHtm1TZuNVJzQ5N0BoNPvcJnZb6o3vT96OHq9mq0EE5f4Wikujw+CS0RZqqaM1GWtwxgqsWvUbCiB5EtaxP88nDGbvtE6KaJ1SZLe3/cQOm2KhCXwBas5Ge0+9BZ/LtMEMNjVbLgK+fRms2ojG4I9jacBNRrRow/uD/GDzn/0Iypba6UAu+CkUlcn7bITY88iEp6/dhqBFO2wfH0+HxiQEpOrKcz2DPu3NJ+nUj5oRatH/keuKvvPTy3rOPn+XgF4vJPZVCvWHdaDz+ypDWgKoopV3wVc5foVAoLiGqq4evQqEIAew5eZz5bQfntx9WkscKQKV6KhSXPAc+X8TGBz9A6HRIpxNzvViGLXqNqGb1Am2aIoComb9CcQmTsmk/Gx78AEeuFXtmDo4cC5mHk1ky/DF1B3CZo5y/QnEJs//Dnwu1wwRASiwpGaRs2BcYoxRBgXL+CsUlTN6ZdJ/SEkIjsJ7PDIBFimBBOX+F4hKmwTV90RXp4wvgsjmo3adtACxSBAvK+SsUlzAtJg8nokndQsVnOrOJTs/fijEmKoCWKQKNyvZRKC5hdGYTo9d/wMHPFnH8xz8wxkbS5u/XUm9ot0CbpggwqshLoVAoLiFUkZdCoVAo/KKcv0KhUFyGqJi/QqGoFhy5FvZ9+DNHv1uNLtxEm/vG0vj6AQjho+GBospRzl+hUFQ5TquNBf0eIPPgyfzuZue3HOTMH7vo8/79Abbu8kSFfRQKRZVzdM5vZB1OKtTW0pFj4dDni8g6ejqAll2+KOevUCiqnKQlG3HkWLy2C52Wc2t3B8AihXL+CoWiyjEnxCH03g1thBCYatcMgEUK5fwVCkWV02rKKO/uWkKgjwyj7pAugTHqMqdCzl8Icb0QYo8QwiWE8FtUIIQYIYQ4IIQ4LIR4siJjKhSK0COqeQIDv3kWQ80I9JFmdOEmolokMGLl9IC0uFRUPNtnN3Ad8LG/A4QQWmAGMAw4BWwSQsyXUu6t4NgKhSKEaDimLzee+ZG0HYnowk3UaN1QpXkGkAo5fynlPqCkP2BP4LCU8ojn2G+BsYBy/grFZYZGr6NW91aBNkNB9cT8E4CTBZ6f8mxTKBQKRYAoceYvhFgOxPvY9YyU8ufKNEYIMRWYCtCwYcPKPLVCoVAoClCi85dSDq3gGElAgwLP63u2+RrrE+ATcKt6VnBchUKhUPihOsI+m4AWQogmQggDMAmYXw3jKhQKhcIPFU31HCeEOAX0ARYKIZZ4ttcTQiwCkFI6gGnAEmAfMEdKuadiZisUCoWiIlQ02+cn4Ccf25OBqws8XwQsqshYCoVCoag8graTlxAiBTheYFMtIDVA5pQFZWflouysXJSdlUsw2tlIShlX0kFB6/yLIoTYXJrWZIFG2Vm5KDsrF2Vn5RIqdvpCafsoFArFZYhy/gqFQnEZEkrO/5NAG1BKlJ2Vi7KzclF2Vi6hYqcXIRPzVygUCkXlEUozf4VCoVBUEkHr/MvQK+CYEGKXEGK7EGJzddroGT8kehoIIWKEEMuEEIc8v322TxJCOD3XcrsQotoqsUu6PkIIoxDiO8/+DUKIxtVlWxE7SrLzdiFESoFreFcAbPxCCHFOCOGzP6Jw857nPewUQnStbhs9dpRk50AhREaBa/l8ddvosaOBEGKVEGKv53/9QR/HBMU1LRNSyqD8AdoArYDVQPdijjsG1ApmOwEtkAg0BQzADqBtNdv5BvCk5/GTwOt+jssOwDUs8foA9wEfeR5PAr4LUjtvBz6obtuK2HAl0BXY7Wf/1cBiQAC9gQ1BaudAYEEgr6XHjrpAV8/jSOCgj797UFzTsvwE7cxfSrlPSnkg0HaURCntzO9pIKW0ARd7GlQnY4GZnsczgWurefziKM31KWj/D8AQUf2dQILh71giUsrfgbRiDhkL/E+6WQ9ECyHqVo91f1EKO4MCKeVpKeVWz+Ms3DI1RWXpg+KaloWgdf5lQAJLhRBbPJLQwUgw9DSoI6U87Xl8Bqjj5ziTEGKzEGK9EKK6viBKc33yj5FuvagMILZarPNhgwd/f8fxnlv/H4QQDXzsDzTB8HksLX2EEDuEEIuFEO0CbYwn3NgF2FBkVyhdU6DibRwrRCX1CugvpUwSQtQGlgkh9ntmFJVGdfY0qAjF2VnwiZRSCiH8pXk18lzPpsBKIcQuKWViZdt6CfML8I2U0iqEuBv33crgANsUqmzF/XnMFkJcDcwDWgTKGCFEBPAj8JCUMjNQdlQWAXX+suK9ApBSJnl+nxNC/IT71rxSnX8l2FnqngYVoTg7hRBnhRB1pZSnPbej5/yc4+L1PCKEWI17llPVzr801+fiMaeEEDqgBnC+iu0qSol2SikL2vQZ7rWWYKNaPo8VpaCDlVIuEkJ8KISoJaWsdi0dIYQet+OfJaWc6+OQkLimBQnpsI8QIlwIEXnxMTAcd1P5YCMYehrMByZ7Hk8GvO5YhBA1hRBGz+NaQD+qp9dyaa5PQfsnACulZ6WtGinRziJx3mtwx4eDjfnAbZ4Mld5ARoGQYNAghIi/uK4jhOiJ219V9xc+Hhs+B/ZJKd/2c1hIXNNCBHrF2d8PMA533MwKnAWWeLbXAxZ5HjfFnXGxA9iDOwwTdHbKv7IBDuKeRQfCzlhgBXAIWA7EeLZ3Bz7zPO4L7PJcz13AndVon9f1AV4CrvE8NgHfA4eBjUDTAH0uS7LzVc9ncQewCmgdABu/AU4Dds9n807gHuAez34BzPC8h10Uk00XYDunFbiW64G+AbKzP+61xZ3Ads/P1cF4Tcvyoyp8FQqF4jIkpMM+CoVCoSgfyvkrFArFZYhy/gqFQnEZopy/QqFQXIYo569QKBSXIcr5KxQKxWWIcv4KhUJxGaKcv0KhUFyG/D+Ue1SP4yiX7QAAAABJRU5ErkJggg==\n",
- "text/plain": [
- "<Figure size 432x288 with 1 Axes>"
- ]
- },
- "metadata": {
- "needs_background": "light"
- },
- "output_type": "display_data"
- }
- ],
- "source": [
- "# generate the NN model\n",
- "class NN_Model:\n",
- " epsilon = 0.01 # learning rate\n",
- " n_epoch = 1000 # iterative number\n",
- " \n",
- "nn = NN_Model()\n",
- "nn.n_input_dim = X.shape[1] # input size\n",
- "nn.n_output_dim = 2 # output node size\n",
- "nn.n_hide_dim = 4 # hidden node size\n",
- "\n",
- "nn.X = X\n",
- "nn.y = y \n",
- "\n",
- "# initial weight array\n",
- "nn.W1 = np.random.randn(nn.n_input_dim, nn.n_hide_dim) / np.sqrt(nn.n_input_dim)\n",
- "nn.b1 = np.zeros((1, nn.n_hide_dim))\n",
- "nn.W2 = np.random.randn(nn.n_hide_dim, nn.n_output_dim) / np.sqrt(nn.n_hide_dim)\n",
- "nn.b2 = np.zeros((1, nn.n_output_dim))\n",
- "\n",
- "# defin sigmod & its derivate function\n",
- "def sigmod(X):\n",
- " return 1.0/(1+np.exp(-X))\n",
- "\n",
- "def sigmod_derivative(X):\n",
- " f = sigmod(X)\n",
- " return f*(1-f)\n",
- "\n",
- "# network forward calculation\n",
- "def forward(n, X):\n",
- " n.z1 = sigmod(X.dot(n.W1) + n.b1)\n",
- " n.z2 = sigmod(n.z1.dot(n.W2) + n.b2)\n",
- " return n\n",
- "\n",
- "\n",
- "# use random weight to perdict\n",
- "forward(nn, X)\n",
- "y_pred = np.argmax(nn.z2, axis=1)\n",
- "\n",
- "# plot data\n",
- "plt.scatter(X[:, 0], X[:, 1], c=y_pred, cmap=plt.cm.Spectral)\n",
- "plt.show()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "epoch [ 0] L = 103.723994, acc = 0.500000\n",
- "epoch [ 1] L = 99.572368, acc = 0.500000\n",
- "epoch [ 2] L = 96.298444, acc = 0.695000\n",
- "epoch [ 3] L = 93.755262, acc = 0.745000\n",
- "epoch [ 4] L = 91.723534, acc = 0.725000\n",
- "epoch [ 5] L = 90.013431, acc = 0.710000\n",
- "epoch [ 6] L = 88.493838, acc = 0.720000\n",
- "epoch [ 7] L = 87.084077, acc = 0.740000\n",
- "epoch [ 8] L = 85.737551, acc = 0.755000\n",
- "epoch [ 9] L = 84.428420, acc = 0.760000\n",
- "epoch [ 10] L = 83.142909, acc = 0.770000\n",
- "epoch [ 11] L = 81.874127, acc = 0.775000\n",
- "epoch [ 12] L = 80.619101, acc = 0.775000\n",
- "epoch [ 13] L = 79.377104, acc = 0.775000\n",
- "epoch [ 14] L = 78.148705, acc = 0.775000\n",
- "epoch [ 15] L = 76.935216, acc = 0.785000\n",
- "epoch [ 16] L = 75.738363, acc = 0.790000\n",
- "epoch [ 17] L = 74.560076, acc = 0.795000\n",
- "epoch [ 18] L = 73.402344, acc = 0.795000\n",
- "epoch [ 19] L = 72.267120, acc = 0.800000\n",
- "epoch [ 20] L = 71.156245, acc = 0.805000\n",
- "epoch [ 21] L = 70.071400, acc = 0.805000\n",
- "epoch [ 22] L = 69.014062, acc = 0.810000\n",
- "epoch [ 23] L = 67.985488, acc = 0.810000\n",
- "epoch [ 24] L = 66.986694, acc = 0.810000\n",
- "epoch [ 25] L = 66.018452, acc = 0.810000\n",
- "epoch [ 26] L = 65.081296, acc = 0.810000\n",
- "epoch [ 27] L = 64.175529, acc = 0.810000\n",
- "epoch [ 28] L = 63.301240, acc = 0.810000\n",
- "epoch [ 29] L = 62.458318, acc = 0.810000\n",
- "epoch [ 30] L = 61.646476, acc = 0.810000\n",
- "epoch [ 31] L = 60.865270, acc = 0.810000\n",
- "epoch [ 32] L = 60.114123, acc = 0.810000\n",
- "epoch [ 33] L = 59.392345, acc = 0.815000\n",
- "epoch [ 34] L = 58.699157, acc = 0.815000\n",
- "epoch [ 35] L = 58.033705, acc = 0.815000\n",
- "epoch [ 36] L = 57.395081, acc = 0.815000\n",
- "epoch [ 37] L = 56.782341, acc = 0.815000\n",
- "epoch [ 38] L = 56.194515, acc = 0.815000\n",
- "epoch [ 39] L = 55.630622, acc = 0.815000\n",
- "epoch [ 40] L = 55.089680, acc = 0.815000\n",
- "epoch [ 41] L = 54.570712, acc = 0.825000\n",
- "epoch [ 42] L = 54.072759, acc = 0.820000\n",
- "epoch [ 43] L = 53.594882, acc = 0.820000\n",
- "epoch [ 44] L = 53.136167, acc = 0.825000\n",
- "epoch [ 45] L = 52.695728, acc = 0.825000\n",
- "epoch [ 46] L = 52.272712, acc = 0.825000\n",
- "epoch [ 47] L = 51.866299, acc = 0.825000\n",
- "epoch [ 48] L = 51.475703, acc = 0.825000\n",
- "epoch [ 49] L = 51.100173, acc = 0.825000\n",
- "epoch [ 50] L = 50.738994, acc = 0.830000\n",
- "epoch [ 51] L = 50.391484, acc = 0.830000\n",
- "epoch [ 52] L = 50.056996, acc = 0.830000\n",
- "epoch [ 53] L = 49.734917, acc = 0.830000\n",
- "epoch [ 54] L = 49.424664, acc = 0.830000\n",
- "epoch [ 55] L = 49.125686, acc = 0.830000\n",
- "epoch [ 56] L = 48.837462, acc = 0.830000\n",
- "epoch [ 57] L = 48.559498, acc = 0.830000\n",
- "epoch [ 58] L = 48.291329, acc = 0.830000\n",
- "epoch [ 59] L = 48.032513, acc = 0.830000\n",
- "epoch [ 60] L = 47.782634, acc = 0.830000\n",
- "epoch [ 61] L = 47.541299, acc = 0.830000\n",
- "epoch [ 62] L = 47.308135, acc = 0.830000\n",
- "epoch [ 63] L = 47.082790, acc = 0.830000\n",
- "epoch [ 64] L = 46.864932, acc = 0.830000\n",
- "epoch [ 65] L = 46.654245, acc = 0.830000\n",
- "epoch [ 66] L = 46.450431, acc = 0.830000\n",
- "epoch [ 67] L = 46.253208, acc = 0.830000\n",
- "epoch [ 68] L = 46.062309, acc = 0.830000\n",
- "epoch [ 69] L = 45.877480, acc = 0.830000\n",
- "epoch [ 70] L = 45.698480, acc = 0.830000\n",
- "epoch [ 71] L = 45.525081, acc = 0.835000\n",
- "epoch [ 72] L = 45.357065, acc = 0.835000\n",
- "epoch [ 73] L = 45.194228, acc = 0.835000\n",
- "epoch [ 74] L = 45.036371, acc = 0.835000\n",
- "epoch [ 75] L = 44.883309, acc = 0.835000\n",
- "epoch [ 76] L = 44.734863, acc = 0.840000\n",
- "epoch [ 77] L = 44.590864, acc = 0.840000\n",
- "epoch [ 78] L = 44.451150, acc = 0.835000\n",
- "epoch [ 79] L = 44.315567, acc = 0.835000\n",
- "epoch [ 80] L = 44.183966, acc = 0.835000\n",
- "epoch [ 81] L = 44.056207, acc = 0.835000\n",
- "epoch [ 82] L = 43.932155, acc = 0.835000\n",
- "epoch [ 83] L = 43.811681, acc = 0.835000\n",
- "epoch [ 84] L = 43.694661, acc = 0.835000\n",
- "epoch [ 85] L = 43.580977, acc = 0.835000\n",
- "epoch [ 86] L = 43.470515, acc = 0.835000\n",
- "epoch [ 87] L = 43.363166, acc = 0.835000\n",
- "epoch [ 88] L = 43.258826, acc = 0.835000\n",
- "epoch [ 89] L = 43.157394, acc = 0.835000\n",
- "epoch [ 90] L = 43.058774, acc = 0.835000\n",
- "epoch [ 91] L = 42.962874, acc = 0.835000\n",
- "epoch [ 92] L = 42.869604, acc = 0.835000\n",
- "epoch [ 93] L = 42.778879, acc = 0.835000\n",
- "epoch [ 94] L = 42.690616, acc = 0.835000\n",
- "epoch [ 95] L = 42.604736, acc = 0.835000\n",
- "epoch [ 96] L = 42.521163, acc = 0.835000\n",
- "epoch [ 97] L = 42.439823, acc = 0.830000\n",
- "epoch [ 98] L = 42.360646, acc = 0.830000\n",
- "epoch [ 99] L = 42.283563, acc = 0.830000\n",
- "epoch [ 100] L = 42.208509, acc = 0.830000\n",
- "epoch [ 101] L = 42.135420, acc = 0.830000\n",
- "epoch [ 102] L = 42.064236, acc = 0.830000\n",
- "epoch [ 103] L = 41.994896, acc = 0.830000\n",
- "epoch [ 104] L = 41.927345, acc = 0.830000\n",
- "epoch [ 105] L = 41.861528, acc = 0.830000\n",
- "epoch [ 106] L = 41.797391, acc = 0.835000\n",
- "epoch [ 107] L = 41.734884, acc = 0.835000\n",
- "epoch [ 108] L = 41.673958, acc = 0.835000\n",
- "epoch [ 109] L = 41.614563, acc = 0.835000\n",
- "epoch [ 110] L = 41.556656, acc = 0.835000\n",
- "epoch [ 111] L = 41.500191, acc = 0.835000\n",
- "epoch [ 112] L = 41.445126, acc = 0.835000\n",
- "epoch [ 113] L = 41.391418, acc = 0.835000\n",
- "epoch [ 114] L = 41.339029, acc = 0.835000\n",
- "epoch [ 115] L = 41.287919, acc = 0.835000\n",
- "epoch [ 116] L = 41.238051, acc = 0.835000\n",
- "epoch [ 117] L = 41.189388, acc = 0.835000\n",
- "epoch [ 118] L = 41.141897, acc = 0.835000\n",
- "epoch [ 119] L = 41.095542, acc = 0.835000\n",
- "epoch [ 120] L = 41.050292, acc = 0.840000\n",
- "epoch [ 121] L = 41.006114, acc = 0.840000\n",
- "epoch [ 122] L = 40.962979, acc = 0.840000\n",
- "epoch [ 123] L = 40.920857, acc = 0.840000\n",
- "epoch [ 124] L = 40.879718, acc = 0.840000\n",
- "epoch [ 125] L = 40.839536, acc = 0.840000\n",
- "epoch [ 126] L = 40.800284, acc = 0.840000\n",
- "epoch [ 127] L = 40.761935, acc = 0.845000\n",
- "epoch [ 128] L = 40.724464, acc = 0.845000\n",
- "epoch [ 129] L = 40.687848, acc = 0.845000\n",
- "epoch [ 130] L = 40.652063, acc = 0.845000\n",
- "epoch [ 131] L = 40.617086, acc = 0.845000\n",
- "epoch [ 132] L = 40.582895, acc = 0.850000\n",
- "epoch [ 133] L = 40.549468, acc = 0.850000\n",
- "epoch [ 134] L = 40.516785, acc = 0.850000\n",
- "epoch [ 135] L = 40.484827, acc = 0.850000\n",
- "epoch [ 136] L = 40.453572, acc = 0.850000\n",
- "epoch [ 137] L = 40.423004, acc = 0.850000\n",
- "epoch [ 138] L = 40.393102, acc = 0.850000\n",
- "epoch [ 139] L = 40.363851, acc = 0.850000\n",
- "epoch [ 140] L = 40.335232, acc = 0.850000\n",
- "epoch [ 141] L = 40.307229, acc = 0.850000\n",
- "epoch [ 142] L = 40.279826, acc = 0.850000\n",
- "epoch [ 143] L = 40.253008, acc = 0.850000\n",
- "epoch [ 144] L = 40.226759, acc = 0.850000\n",
- "epoch [ 145] L = 40.201064, acc = 0.850000\n",
- "epoch [ 146] L = 40.175909, acc = 0.850000\n",
- "epoch [ 147] L = 40.151281, acc = 0.850000\n",
- "epoch [ 148] L = 40.127167, acc = 0.850000\n",
- "epoch [ 149] L = 40.103552, acc = 0.850000\n",
- "epoch [ 150] L = 40.080424, acc = 0.850000\n",
- "epoch [ 151] L = 40.057772, acc = 0.850000\n",
- "epoch [ 152] L = 40.035583, acc = 0.850000\n",
- "epoch [ 153] L = 40.013846, acc = 0.850000\n",
- "epoch [ 154] L = 39.992550, acc = 0.850000\n",
- "epoch [ 155] L = 39.971683, acc = 0.850000\n",
- "epoch [ 156] L = 39.951235, acc = 0.855000\n",
- "epoch [ 157] L = 39.931196, acc = 0.855000\n",
- "epoch [ 158] L = 39.911556, acc = 0.855000\n",
- "epoch [ 159] L = 39.892306, acc = 0.855000\n",
- "epoch [ 160] L = 39.873435, acc = 0.855000\n",
- "epoch [ 161] L = 39.854934, acc = 0.855000\n",
- "epoch [ 162] L = 39.836796, acc = 0.855000\n",
- "epoch [ 163] L = 39.819011, acc = 0.855000\n",
- "epoch [ 164] L = 39.801570, acc = 0.855000\n",
- "epoch [ 165] L = 39.784466, acc = 0.855000\n",
- "epoch [ 166] L = 39.767691, acc = 0.855000\n",
- "epoch [ 167] L = 39.751236, acc = 0.855000\n",
- "epoch [ 168] L = 39.735095, acc = 0.855000\n",
- "epoch [ 169] L = 39.719261, acc = 0.855000\n",
- "epoch [ 170] L = 39.703725, acc = 0.855000\n",
- "epoch [ 171] L = 39.688481, acc = 0.855000\n",
- "epoch [ 172] L = 39.673523, acc = 0.855000\n",
- "epoch [ 173] L = 39.658844, acc = 0.855000\n",
- "epoch [ 174] L = 39.644437, acc = 0.855000\n",
- "epoch [ 175] L = 39.630297, acc = 0.855000\n",
- "epoch [ 176] L = 39.616417, acc = 0.855000\n",
- "epoch [ 177] L = 39.602791, acc = 0.855000\n",
- "epoch [ 178] L = 39.589414, acc = 0.855000\n",
- "epoch [ 179] L = 39.576281, acc = 0.855000\n",
- "epoch [ 180] L = 39.563385, acc = 0.855000\n",
- "epoch [ 181] L = 39.550721, acc = 0.855000\n",
- "epoch [ 182] L = 39.538285, acc = 0.855000\n",
- "epoch [ 183] L = 39.526072, acc = 0.855000\n",
- "epoch [ 184] L = 39.514076, acc = 0.855000\n",
- "epoch [ 185] L = 39.502292, acc = 0.855000\n",
- "epoch [ 186] L = 39.490717, acc = 0.855000\n",
- "epoch [ 187] L = 39.479346, acc = 0.855000\n",
- "epoch [ 188] L = 39.468173, acc = 0.855000\n",
- "epoch [ 189] L = 39.457196, acc = 0.855000\n",
- "epoch [ 190] L = 39.446409, acc = 0.855000\n",
- "epoch [ 191] L = 39.435809, acc = 0.855000\n",
- "epoch [ 192] L = 39.425392, acc = 0.855000\n",
- "epoch [ 193] L = 39.415154, acc = 0.855000\n",
- "epoch [ 194] L = 39.405091, acc = 0.855000\n",
- "epoch [ 195] L = 39.395199, acc = 0.855000\n",
- "epoch [ 196] L = 39.385476, acc = 0.855000\n",
- "epoch [ 197] L = 39.375916, acc = 0.855000\n",
- "epoch [ 198] L = 39.366518, acc = 0.855000\n",
- "epoch [ 199] L = 39.357277, acc = 0.855000\n",
- "epoch [ 200] L = 39.348190, acc = 0.855000\n",
- "epoch [ 201] L = 39.339255, acc = 0.855000\n",
- "epoch [ 202] L = 39.330468, acc = 0.855000\n",
- "epoch [ 203] L = 39.321826, acc = 0.855000\n",
- "epoch [ 204] L = 39.313326, acc = 0.855000\n",
- "epoch [ 205] L = 39.304965, acc = 0.855000\n",
- "epoch [ 206] L = 39.296741, acc = 0.855000\n",
- "epoch [ 207] L = 39.288650, acc = 0.855000\n",
- "epoch [ 208] L = 39.280691, acc = 0.855000\n",
- "epoch [ 209] L = 39.272860, acc = 0.855000\n",
- "epoch [ 210] L = 39.265155, acc = 0.855000\n",
- "epoch [ 211] L = 39.257573, acc = 0.855000\n",
- "epoch [ 212] L = 39.250112, acc = 0.855000\n",
- "epoch [ 213] L = 39.242770, acc = 0.855000\n",
- "epoch [ 214] L = 39.235544, acc = 0.855000\n",
- "epoch [ 215] L = 39.228431, acc = 0.855000\n",
- "epoch [ 216] L = 39.221431, acc = 0.855000\n",
- "epoch [ 217] L = 39.214540, acc = 0.855000\n",
- "epoch [ 218] L = 39.207757, acc = 0.855000\n",
- "epoch [ 219] L = 39.201079, acc = 0.855000\n",
- "epoch [ 220] L = 39.194505, acc = 0.855000\n",
- "epoch [ 221] L = 39.188032, acc = 0.855000\n",
- "epoch [ 222] L = 39.181658, acc = 0.855000\n",
- "epoch [ 223] L = 39.175382, acc = 0.855000\n",
- "epoch [ 224] L = 39.169201, acc = 0.855000\n",
- "epoch [ 225] L = 39.163115, acc = 0.855000\n",
- "epoch [ 226] L = 39.157121, acc = 0.855000\n",
- "epoch [ 227] L = 39.151217, acc = 0.855000\n",
- "epoch [ 228] L = 39.145402, acc = 0.855000\n",
- "epoch [ 229] L = 39.139673, acc = 0.855000\n",
- "epoch [ 230] L = 39.134031, acc = 0.855000\n",
- "epoch [ 231] L = 39.128472, acc = 0.855000\n",
- "epoch [ 232] L = 39.122995, acc = 0.855000\n",
- "epoch [ 233] L = 39.117600, acc = 0.855000\n",
- "epoch [ 234] L = 39.112283, acc = 0.855000\n",
- "epoch [ 235] L = 39.107045, acc = 0.855000\n",
- "epoch [ 236] L = 39.101883, acc = 0.855000\n",
- "epoch [ 237] L = 39.096796, acc = 0.855000\n",
- "epoch [ 238] L = 39.091783, acc = 0.855000\n",
- "epoch [ 239] L = 39.086842, acc = 0.855000\n",
- "epoch [ 240] L = 39.081972, acc = 0.855000\n",
- "epoch [ 241] L = 39.077172, acc = 0.855000\n",
- "epoch [ 242] L = 39.072441, acc = 0.855000\n",
- "epoch [ 243] L = 39.067776, acc = 0.855000\n",
- "epoch [ 244] L = 39.063178, acc = 0.855000\n",
- "epoch [ 245] L = 39.058645, acc = 0.855000\n",
- "epoch [ 246] L = 39.054176, acc = 0.855000\n",
- "epoch [ 247] L = 39.049770, acc = 0.855000\n",
- "epoch [ 248] L = 39.045425, acc = 0.855000\n",
- "epoch [ 249] L = 39.041140, acc = 0.855000\n",
- "epoch [ 250] L = 39.036915, acc = 0.855000\n",
- "epoch [ 251] L = 39.032748, acc = 0.855000\n",
- "epoch [ 252] L = 39.028639, acc = 0.855000\n",
- "epoch [ 253] L = 39.024586, acc = 0.855000\n",
- "epoch [ 254] L = 39.020589, acc = 0.850000\n",
- "epoch [ 255] L = 39.016646, acc = 0.850000\n",
- "epoch [ 256] L = 39.012756, acc = 0.850000\n",
- "epoch [ 257] L = 39.008920, acc = 0.850000\n",
- "epoch [ 258] L = 39.005134, acc = 0.850000\n",
- "epoch [ 259] L = 39.001400, acc = 0.850000\n",
- "epoch [ 260] L = 38.997716, acc = 0.850000\n",
- "epoch [ 261] L = 38.994081, acc = 0.850000\n",
- "epoch [ 262] L = 38.990494, acc = 0.850000\n",
- "epoch [ 263] L = 38.986955, acc = 0.850000\n",
- "epoch [ 264] L = 38.983462, acc = 0.845000\n",
- "epoch [ 265] L = 38.980015, acc = 0.845000\n",
- "epoch [ 266] L = 38.976614, acc = 0.845000\n",
- "epoch [ 267] L = 38.973256, acc = 0.845000\n",
- "epoch [ 268] L = 38.969943, acc = 0.845000\n",
- "epoch [ 269] L = 38.966672, acc = 0.845000\n",
- "epoch [ 270] L = 38.963444, acc = 0.845000\n",
- "epoch [ 271] L = 38.960257, acc = 0.845000\n",
- "epoch [ 272] L = 38.957111, acc = 0.845000\n",
- "epoch [ 273] L = 38.954005, acc = 0.845000\n",
- "epoch [ 274] L = 38.950939, acc = 0.845000\n",
- "epoch [ 275] L = 38.947911, acc = 0.845000\n",
- "epoch [ 276] L = 38.944922, acc = 0.845000\n",
- "epoch [ 277] L = 38.941970, acc = 0.845000\n",
- "epoch [ 278] L = 38.939056, acc = 0.845000\n",
- "epoch [ 279] L = 38.936178, acc = 0.845000\n",
- "epoch [ 280] L = 38.933335, acc = 0.845000\n",
- "epoch [ 281] L = 38.930528, acc = 0.845000\n",
- "epoch [ 282] L = 38.927756, acc = 0.845000\n",
- "epoch [ 283] L = 38.925018, acc = 0.845000\n",
- "epoch [ 284] L = 38.922313, acc = 0.845000\n",
- "epoch [ 285] L = 38.919641, acc = 0.845000\n",
- "epoch [ 286] L = 38.917002, acc = 0.845000\n",
- "epoch [ 287] L = 38.914395, acc = 0.845000\n",
- "epoch [ 288] L = 38.911820, acc = 0.845000\n",
- "epoch [ 289] L = 38.909275, acc = 0.845000\n",
- "epoch [ 290] L = 38.906761, acc = 0.845000\n",
- "epoch [ 291] L = 38.904278, acc = 0.845000\n",
- "epoch [ 292] L = 38.901823, acc = 0.845000\n",
- "epoch [ 293] L = 38.899398, acc = 0.845000\n",
- "epoch [ 294] L = 38.897002, acc = 0.845000\n",
- "epoch [ 295] L = 38.894633, acc = 0.845000\n",
- "epoch [ 296] L = 38.892293, acc = 0.845000\n",
- "epoch [ 297] L = 38.889980, acc = 0.845000\n",
- "epoch [ 298] L = 38.887694, acc = 0.845000\n",
- "epoch [ 299] L = 38.885434, acc = 0.845000\n",
- "epoch [ 300] L = 38.883201, acc = 0.845000\n",
- "epoch [ 301] L = 38.880993, acc = 0.845000\n",
- "epoch [ 302] L = 38.878811, acc = 0.845000\n",
- "epoch [ 303] L = 38.876653, acc = 0.845000\n",
- "epoch [ 304] L = 38.874521, acc = 0.845000\n",
- "epoch [ 305] L = 38.872412, acc = 0.845000\n",
- "epoch [ 306] L = 38.870327, acc = 0.845000\n",
- "epoch [ 307] L = 38.868266, acc = 0.845000\n",
- "epoch [ 308] L = 38.866228, acc = 0.845000\n",
- "epoch [ 309] L = 38.864212, acc = 0.845000\n",
- "epoch [ 310] L = 38.862219, acc = 0.845000\n",
- "epoch [ 311] L = 38.860249, acc = 0.845000\n",
- "epoch [ 312] L = 38.858300, acc = 0.845000\n",
- "epoch [ 313] L = 38.856372, acc = 0.845000\n",
- "epoch [ 314] L = 38.854466, acc = 0.845000\n",
- "epoch [ 315] L = 38.852580, acc = 0.845000\n",
- "epoch [ 316] L = 38.850715, acc = 0.845000\n",
- "epoch [ 317] L = 38.848870, acc = 0.845000\n",
- "epoch [ 318] L = 38.847045, acc = 0.845000\n",
- "epoch [ 319] L = 38.845240, acc = 0.845000\n",
- "epoch [ 320] L = 38.843454, acc = 0.845000\n",
- "epoch [ 321] L = 38.841687, acc = 0.845000\n",
- "epoch [ 322] L = 38.839939, acc = 0.845000\n",
- "epoch [ 323] L = 38.838209, acc = 0.845000\n",
- "epoch [ 324] L = 38.836498, acc = 0.845000\n",
- "epoch [ 325] L = 38.834804, acc = 0.845000\n",
- "epoch [ 326] L = 38.833128, acc = 0.845000\n",
- "epoch [ 327] L = 38.831470, acc = 0.845000\n",
- "epoch [ 328] L = 38.829829, acc = 0.845000\n",
- "epoch [ 329] L = 38.828205, acc = 0.845000\n",
- "epoch [ 330] L = 38.826598, acc = 0.845000\n",
- "epoch [ 331] L = 38.825007, acc = 0.845000\n",
- "epoch [ 332] L = 38.823432, acc = 0.845000\n",
- "epoch [ 333] L = 38.821874, acc = 0.845000\n",
- "epoch [ 334] L = 38.820331, acc = 0.845000\n",
- "epoch [ 335] L = 38.818804, acc = 0.845000\n",
- "epoch [ 336] L = 38.817292, acc = 0.845000\n",
- "epoch [ 337] L = 38.815795, acc = 0.845000\n",
- "epoch [ 338] L = 38.814314, acc = 0.845000\n",
- "epoch [ 339] L = 38.812847, acc = 0.845000\n",
- "epoch [ 340] L = 38.811394, acc = 0.845000\n",
- "epoch [ 341] L = 38.809956, acc = 0.845000\n",
- "epoch [ 342] L = 38.808532, acc = 0.845000\n",
- "epoch [ 343] L = 38.807122, acc = 0.845000\n",
- "epoch [ 344] L = 38.805725, acc = 0.845000\n",
- "epoch [ 345] L = 38.804342, acc = 0.845000\n",
- "epoch [ 346] L = 38.802972, acc = 0.845000\n",
- "epoch [ 347] L = 38.801616, acc = 0.845000\n",
- "epoch [ 348] L = 38.800273, acc = 0.845000\n",
- "epoch [ 349] L = 38.798942, acc = 0.845000\n",
- "epoch [ 350] L = 38.797624, acc = 0.845000\n",
- "epoch [ 351] L = 38.796318, acc = 0.845000\n",
- "epoch [ 352] L = 38.795025, acc = 0.845000\n",
- "epoch [ 353] L = 38.793744, acc = 0.845000\n",
- "epoch [ 354] L = 38.792475, acc = 0.845000\n",
- "epoch [ 355] L = 38.791217, acc = 0.845000\n",
- "epoch [ 356] L = 38.789971, acc = 0.845000\n",
- "epoch [ 357] L = 38.788737, acc = 0.845000\n",
- "epoch [ 358] L = 38.787514, acc = 0.845000\n",
- "epoch [ 359] L = 38.786302, acc = 0.845000\n",
- "epoch [ 360] L = 38.785101, acc = 0.845000\n",
- "epoch [ 361] L = 38.783911, acc = 0.845000\n",
- "epoch [ 362] L = 38.782732, acc = 0.845000\n",
- "epoch [ 363] L = 38.781564, acc = 0.845000\n",
- "epoch [ 364] L = 38.780405, acc = 0.845000\n",
- "epoch [ 365] L = 38.779258, acc = 0.845000\n",
- "epoch [ 366] L = 38.778120, acc = 0.845000\n",
- "epoch [ 367] L = 38.776992, acc = 0.845000\n",
- "epoch [ 368] L = 38.775874, acc = 0.845000\n",
- "epoch [ 369] L = 38.774766, acc = 0.845000\n",
- "epoch [ 370] L = 38.773668, acc = 0.845000\n",
- "epoch [ 371] L = 38.772579, acc = 0.845000\n",
- "epoch [ 372] L = 38.771500, acc = 0.845000\n",
- "epoch [ 373] L = 38.770430, acc = 0.845000\n",
- "epoch [ 374] L = 38.769369, acc = 0.845000\n",
- "epoch [ 375] L = 38.768317, acc = 0.845000\n",
- "epoch [ 376] L = 38.767273, acc = 0.845000\n",
- "epoch [ 377] L = 38.766239, acc = 0.845000\n",
- "epoch [ 378] L = 38.765214, acc = 0.845000\n",
- "epoch [ 379] L = 38.764197, acc = 0.845000\n",
- "epoch [ 380] L = 38.763188, acc = 0.845000\n",
- "epoch [ 381] L = 38.762188, acc = 0.845000\n",
- "epoch [ 382] L = 38.761196, acc = 0.845000\n",
- "epoch [ 383] L = 38.760212, acc = 0.845000\n",
- "epoch [ 384] L = 38.759236, acc = 0.845000\n",
- "epoch [ 385] L = 38.758269, acc = 0.845000\n",
- "epoch [ 386] L = 38.757309, acc = 0.845000\n",
- "epoch [ 387] L = 38.756356, acc = 0.845000\n",
- "epoch [ 388] L = 38.755412, acc = 0.845000\n",
- "epoch [ 389] L = 38.754475, acc = 0.845000\n",
- "epoch [ 390] L = 38.753545, acc = 0.845000\n",
- "epoch [ 391] L = 38.752623, acc = 0.845000\n",
- "epoch [ 392] L = 38.751708, acc = 0.845000\n",
- "epoch [ 393] L = 38.750800, acc = 0.845000\n",
- "epoch [ 394] L = 38.749899, acc = 0.845000\n",
- "epoch [ 395] L = 38.749006, acc = 0.845000\n",
- "epoch [ 396] L = 38.748119, acc = 0.845000\n",
- "epoch [ 397] L = 38.747239, acc = 0.845000\n",
- "epoch [ 398] L = 38.746366, acc = 0.845000\n",
- "epoch [ 399] L = 38.745499, acc = 0.845000\n",
- "epoch [ 400] L = 38.744639, acc = 0.845000\n",
- "epoch [ 401] L = 38.743785, acc = 0.850000\n",
- "epoch [ 402] L = 38.742938, acc = 0.850000\n",
- "epoch [ 403] L = 38.742097, acc = 0.850000\n",
- "epoch [ 404] L = 38.741263, acc = 0.850000\n",
- "epoch [ 405] L = 38.740435, acc = 0.850000\n",
- "epoch [ 406] L = 38.739612, acc = 0.850000\n",
- "epoch [ 407] L = 38.738796, acc = 0.850000\n",
- "epoch [ 408] L = 38.737986, acc = 0.850000\n",
- "epoch [ 409] L = 38.737181, acc = 0.850000\n",
- "epoch [ 410] L = 38.736383, acc = 0.850000\n",
- "epoch [ 411] L = 38.735590, acc = 0.850000\n",
- "epoch [ 412] L = 38.734803, acc = 0.850000\n",
- "epoch [ 413] L = 38.734021, acc = 0.850000\n",
- "epoch [ 414] L = 38.733245, acc = 0.850000\n",
- "epoch [ 415] L = 38.732475, acc = 0.850000\n",
- "epoch [ 416] L = 38.731710, acc = 0.850000\n",
- "epoch [ 417] L = 38.730950, acc = 0.850000\n",
- "epoch [ 418] L = 38.730195, acc = 0.850000\n",
- "epoch [ 419] L = 38.729446, acc = 0.850000\n",
- "epoch [ 420] L = 38.728702, acc = 0.850000\n",
- "epoch [ 421] L = 38.727963, acc = 0.850000\n",
- "epoch [ 422] L = 38.727229, acc = 0.850000\n",
- "epoch [ 423] L = 38.726500, acc = 0.850000\n",
- "epoch [ 424] L = 38.725776, acc = 0.850000\n",
- "epoch [ 425] L = 38.725057, acc = 0.850000\n",
- "epoch [ 426] L = 38.724342, acc = 0.850000\n",
- "epoch [ 427] L = 38.723633, acc = 0.850000\n",
- "epoch [ 428] L = 38.722928, acc = 0.850000\n",
- "epoch [ 429] L = 38.722227, acc = 0.850000\n",
- "epoch [ 430] L = 38.721532, acc = 0.850000\n",
- "epoch [ 431] L = 38.720840, acc = 0.850000\n",
- "epoch [ 432] L = 38.720154, acc = 0.850000\n",
- "epoch [ 433] L = 38.719471, acc = 0.850000\n",
- "epoch [ 434] L = 38.718794, acc = 0.850000\n",
- "epoch [ 435] L = 38.718120, acc = 0.850000\n",
- "epoch [ 436] L = 38.717451, acc = 0.850000\n",
- "epoch [ 437] L = 38.716786, acc = 0.850000\n",
- "epoch [ 438] L = 38.716125, acc = 0.850000\n",
- "epoch [ 439] L = 38.715468, acc = 0.850000\n",
- "epoch [ 440] L = 38.714815, acc = 0.850000\n",
- "epoch [ 441] L = 38.714167, acc = 0.850000\n",
- "epoch [ 442] L = 38.713522, acc = 0.850000\n",
- "epoch [ 443] L = 38.712881, acc = 0.850000\n",
- "epoch [ 444] L = 38.712245, acc = 0.850000\n",
- "epoch [ 445] L = 38.711612, acc = 0.850000\n",
- "epoch [ 446] L = 38.710983, acc = 0.850000\n",
- "epoch [ 447] L = 38.710357, acc = 0.850000\n",
- "epoch [ 448] L = 38.709736, acc = 0.850000\n",
- "epoch [ 449] L = 38.709118, acc = 0.850000\n",
- "epoch [ 450] L = 38.708504, acc = 0.850000\n",
- "epoch [ 451] L = 38.707893, acc = 0.850000\n",
- "epoch [ 452] L = 38.707286, acc = 0.850000\n",
- "epoch [ 453] L = 38.706683, acc = 0.850000\n",
- "epoch [ 454] L = 38.706083, acc = 0.850000\n",
- "epoch [ 455] L = 38.705486, acc = 0.850000\n",
- "epoch [ 456] L = 38.704893, acc = 0.850000\n",
- "epoch [ 457] L = 38.704304, acc = 0.850000\n",
- "epoch [ 458] L = 38.703717, acc = 0.850000\n",
- "epoch [ 459] L = 38.703134, acc = 0.850000\n",
- "epoch [ 460] L = 38.702554, acc = 0.850000\n",
- "epoch [ 461] L = 38.701978, acc = 0.850000\n",
- "epoch [ 462] L = 38.701405, acc = 0.850000\n",
- "epoch [ 463] L = 38.700834, acc = 0.850000\n",
- "epoch [ 464] L = 38.700267, acc = 0.850000\n",
- "epoch [ 465] L = 38.699704, acc = 0.850000\n",
- "epoch [ 466] L = 38.699143, acc = 0.850000\n",
- "epoch [ 467] L = 38.698585, acc = 0.850000\n",
- "epoch [ 468] L = 38.698030, acc = 0.850000\n",
- "epoch [ 469] L = 38.697478, acc = 0.850000\n",
- "epoch [ 470] L = 38.696930, acc = 0.850000\n",
- "epoch [ 471] L = 38.696384, acc = 0.850000\n",
- "epoch [ 472] L = 38.695841, acc = 0.850000\n",
- "epoch [ 473] L = 38.695300, acc = 0.850000\n",
- "epoch [ 474] L = 38.694763, acc = 0.850000\n",
- "epoch [ 475] L = 38.694228, acc = 0.850000\n",
- "epoch [ 476] L = 38.693697, acc = 0.850000\n",
- "epoch [ 477] L = 38.693168, acc = 0.850000\n",
- "epoch [ 478] L = 38.692641, acc = 0.850000\n",
- "epoch [ 479] L = 38.692118, acc = 0.850000\n",
- "epoch [ 480] L = 38.691597, acc = 0.850000\n",
- "epoch [ 481] L = 38.691078, acc = 0.850000\n",
- "epoch [ 482] L = 38.690562, acc = 0.850000\n",
- "epoch [ 483] L = 38.690049, acc = 0.850000\n",
- "epoch [ 484] L = 38.689538, acc = 0.850000\n",
- "epoch [ 485] L = 38.689030, acc = 0.850000\n",
- "epoch [ 486] L = 38.688525, acc = 0.850000\n",
- "epoch [ 487] L = 38.688021, acc = 0.850000\n",
- "epoch [ 488] L = 38.687521, acc = 0.850000\n",
- "epoch [ 489] L = 38.687022, acc = 0.850000\n",
- "epoch [ 490] L = 38.686526, acc = 0.850000\n",
- "epoch [ 491] L = 38.686033, acc = 0.850000\n",
- "epoch [ 492] L = 38.685542, acc = 0.850000\n",
- "epoch [ 493] L = 38.685053, acc = 0.850000\n",
- "epoch [ 494] L = 38.684566, acc = 0.850000\n",
- "epoch [ 495] L = 38.684082, acc = 0.850000\n",
- "epoch [ 496] L = 38.683600, acc = 0.850000\n",
- "epoch [ 497] L = 38.683120, acc = 0.850000\n",
- "epoch [ 498] L = 38.682643, acc = 0.850000\n",
- "epoch [ 499] L = 38.682167, acc = 0.850000\n",
- "epoch [ 500] L = 38.681694, acc = 0.850000\n",
- "epoch [ 501] L = 38.681223, acc = 0.850000\n",
- "epoch [ 502] L = 38.680754, acc = 0.850000\n",
- "epoch [ 503] L = 38.680287, acc = 0.850000\n",
- "epoch [ 504] L = 38.679823, acc = 0.850000\n",
- "epoch [ 505] L = 38.679360, acc = 0.850000\n",
- "epoch [ 506] L = 38.678899, acc = 0.850000\n",
- "epoch [ 507] L = 38.678441, acc = 0.850000\n",
- "epoch [ 508] L = 38.677984, acc = 0.850000\n",
- "epoch [ 509] L = 38.677530, acc = 0.850000\n",
- "epoch [ 510] L = 38.677077, acc = 0.850000\n",
- "epoch [ 511] L = 38.676627, acc = 0.850000\n",
- "epoch [ 512] L = 38.676178, acc = 0.850000\n",
- "epoch [ 513] L = 38.675731, acc = 0.850000\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "epoch [ 514] L = 38.675286, acc = 0.850000\n",
- "epoch [ 515] L = 38.674843, acc = 0.850000\n",
- "epoch [ 516] L = 38.674402, acc = 0.850000\n",
- "epoch [ 517] L = 38.673963, acc = 0.850000\n",
- "epoch [ 518] L = 38.673526, acc = 0.850000\n",
- "epoch [ 519] L = 38.673090, acc = 0.850000\n",
- "epoch [ 520] L = 38.672656, acc = 0.850000\n",
- "epoch [ 521] L = 38.672224, acc = 0.850000\n",
- "epoch [ 522] L = 38.671794, acc = 0.850000\n",
- "epoch [ 523] L = 38.671365, acc = 0.850000\n",
- "epoch [ 524] L = 38.670939, acc = 0.850000\n",
- "epoch [ 525] L = 38.670514, acc = 0.850000\n",
- "epoch [ 526] L = 38.670090, acc = 0.850000\n",
- "epoch [ 527] L = 38.669669, acc = 0.850000\n",
- "epoch [ 528] L = 38.669249, acc = 0.850000\n",
- "epoch [ 529] L = 38.668830, acc = 0.850000\n",
- "epoch [ 530] L = 38.668414, acc = 0.850000\n",
- "epoch [ 531] L = 38.667999, acc = 0.850000\n",
- "epoch [ 532] L = 38.667585, acc = 0.850000\n",
- "epoch [ 533] L = 38.667173, acc = 0.850000\n",
- "epoch [ 534] L = 38.666763, acc = 0.850000\n",
- "epoch [ 535] L = 38.666354, acc = 0.850000\n",
- "epoch [ 536] L = 38.665947, acc = 0.850000\n",
- "epoch [ 537] L = 38.665542, acc = 0.850000\n",
- "epoch [ 538] L = 38.665138, acc = 0.850000\n",
- "epoch [ 539] L = 38.664735, acc = 0.850000\n",
- "epoch [ 540] L = 38.664334, acc = 0.850000\n",
- "epoch [ 541] L = 38.663935, acc = 0.850000\n",
- "epoch [ 542] L = 38.663537, acc = 0.850000\n",
- "epoch [ 543] L = 38.663140, acc = 0.850000\n",
- "epoch [ 544] L = 38.662745, acc = 0.850000\n",
- "epoch [ 545] L = 38.662351, acc = 0.850000\n",
- "epoch [ 546] L = 38.661959, acc = 0.850000\n",
- "epoch [ 547] L = 38.661568, acc = 0.850000\n",
- "epoch [ 548] L = 38.661179, acc = 0.850000\n",
- "epoch [ 549] L = 38.660791, acc = 0.850000\n",
- "epoch [ 550] L = 38.660404, acc = 0.850000\n",
- "epoch [ 551] L = 38.660019, acc = 0.850000\n",
- "epoch [ 552] L = 38.659635, acc = 0.850000\n",
- "epoch [ 553] L = 38.659253, acc = 0.850000\n",
- "epoch [ 554] L = 38.658872, acc = 0.850000\n",
- "epoch [ 555] L = 38.658492, acc = 0.850000\n",
- "epoch [ 556] L = 38.658113, acc = 0.850000\n",
- "epoch [ 557] L = 38.657736, acc = 0.850000\n",
- "epoch [ 558] L = 38.657360, acc = 0.850000\n",
- "epoch [ 559] L = 38.656986, acc = 0.850000\n",
- "epoch [ 560] L = 38.656612, acc = 0.850000\n",
- "epoch [ 561] L = 38.656240, acc = 0.850000\n",
- "epoch [ 562] L = 38.655869, acc = 0.850000\n",
- "epoch [ 563] L = 38.655500, acc = 0.850000\n",
- "epoch [ 564] L = 38.655131, acc = 0.850000\n",
- "epoch [ 565] L = 38.654764, acc = 0.850000\n",
- "epoch [ 566] L = 38.654398, acc = 0.850000\n",
- "epoch [ 567] L = 38.654034, acc = 0.850000\n",
- "epoch [ 568] L = 38.653670, acc = 0.850000\n",
- "epoch [ 569] L = 38.653308, acc = 0.850000\n",
- "epoch [ 570] L = 38.652947, acc = 0.850000\n",
- "epoch [ 571] L = 38.652587, acc = 0.850000\n",
- "epoch [ 572] L = 38.652228, acc = 0.850000\n",
- "epoch [ 573] L = 38.651870, acc = 0.850000\n",
- "epoch [ 574] L = 38.651514, acc = 0.850000\n",
- "epoch [ 575] L = 38.651159, acc = 0.850000\n",
- "epoch [ 576] L = 38.650804, acc = 0.850000\n",
- "epoch [ 577] L = 38.650451, acc = 0.850000\n",
- "epoch [ 578] L = 38.650099, acc = 0.850000\n",
- "epoch [ 579] L = 38.649748, acc = 0.850000\n",
- "epoch [ 580] L = 38.649399, acc = 0.850000\n",
- "epoch [ 581] L = 38.649050, acc = 0.850000\n",
- "epoch [ 582] L = 38.648702, acc = 0.850000\n",
- "epoch [ 583] L = 38.648356, acc = 0.850000\n",
- "epoch [ 584] L = 38.648010, acc = 0.850000\n",
- "epoch [ 585] L = 38.647666, acc = 0.850000\n",
- "epoch [ 586] L = 38.647322, acc = 0.850000\n",
- "epoch [ 587] L = 38.646980, acc = 0.850000\n",
- "epoch [ 588] L = 38.646639, acc = 0.850000\n",
- "epoch [ 589] L = 38.646299, acc = 0.850000\n",
- "epoch [ 590] L = 38.645959, acc = 0.850000\n",
- "epoch [ 591] L = 38.645621, acc = 0.850000\n",
- "epoch [ 592] L = 38.645284, acc = 0.850000\n",
- "epoch [ 593] L = 38.644948, acc = 0.850000\n",
- "epoch [ 594] L = 38.644612, acc = 0.850000\n",
- "epoch [ 595] L = 38.644278, acc = 0.850000\n",
- "epoch [ 596] L = 38.643945, acc = 0.850000\n",
- "epoch [ 597] L = 38.643612, acc = 0.850000\n",
- "epoch [ 598] L = 38.643281, acc = 0.850000\n",
- "epoch [ 599] L = 38.642951, acc = 0.850000\n",
- "epoch [ 600] L = 38.642621, acc = 0.850000\n",
- "epoch [ 601] L = 38.642293, acc = 0.850000\n",
- "epoch [ 602] L = 38.641965, acc = 0.850000\n",
- "epoch [ 603] L = 38.641638, acc = 0.850000\n",
- "epoch [ 604] L = 38.641313, acc = 0.850000\n",
- "epoch [ 605] L = 38.640988, acc = 0.850000\n",
- "epoch [ 606] L = 38.640664, acc = 0.850000\n",
- "epoch [ 607] L = 38.640341, acc = 0.850000\n",
- "epoch [ 608] L = 38.640019, acc = 0.850000\n",
- "epoch [ 609] L = 38.639698, acc = 0.850000\n",
- "epoch [ 610] L = 38.639377, acc = 0.850000\n",
- "epoch [ 611] L = 38.639058, acc = 0.850000\n",
- "epoch [ 612] L = 38.638739, acc = 0.850000\n",
- "epoch [ 613] L = 38.638422, acc = 0.850000\n",
- "epoch [ 614] L = 38.638105, acc = 0.850000\n",
- "epoch [ 615] L = 38.637789, acc = 0.850000\n",
- "epoch [ 616] L = 38.637474, acc = 0.850000\n",
- "epoch [ 617] L = 38.637160, acc = 0.850000\n",
- "epoch [ 618] L = 38.636846, acc = 0.850000\n",
- "epoch [ 619] L = 38.636534, acc = 0.850000\n",
- "epoch [ 620] L = 38.636222, acc = 0.850000\n",
- "epoch [ 621] L = 38.635911, acc = 0.850000\n",
- "epoch [ 622] L = 38.635601, acc = 0.850000\n",
- "epoch [ 623] L = 38.635292, acc = 0.850000\n",
- "epoch [ 624] L = 38.634983, acc = 0.850000\n",
- "epoch [ 625] L = 38.634676, acc = 0.850000\n",
- "epoch [ 626] L = 38.634369, acc = 0.850000\n",
- "epoch [ 627] L = 38.634063, acc = 0.850000\n",
- "epoch [ 628] L = 38.633757, acc = 0.850000\n",
- "epoch [ 629] L = 38.633453, acc = 0.850000\n",
- "epoch [ 630] L = 38.633149, acc = 0.850000\n",
- "epoch [ 631] L = 38.632846, acc = 0.850000\n",
- "epoch [ 632] L = 38.632544, acc = 0.850000\n",
- "epoch [ 633] L = 38.632243, acc = 0.850000\n",
- "epoch [ 634] L = 38.631942, acc = 0.850000\n",
- "epoch [ 635] L = 38.631642, acc = 0.850000\n",
- "epoch [ 636] L = 38.631343, acc = 0.850000\n",
- "epoch [ 637] L = 38.631045, acc = 0.850000\n",
- "epoch [ 638] L = 38.630747, acc = 0.850000\n",
- "epoch [ 639] L = 38.630451, acc = 0.850000\n",
- "epoch [ 640] L = 38.630154, acc = 0.850000\n",
- "epoch [ 641] L = 38.629859, acc = 0.850000\n",
- "epoch [ 642] L = 38.629564, acc = 0.850000\n",
- "epoch [ 643] L = 38.629271, acc = 0.850000\n",
- "epoch [ 644] L = 38.628977, acc = 0.850000\n",
- "epoch [ 645] L = 38.628685, acc = 0.850000\n",
- "epoch [ 646] L = 38.628393, acc = 0.850000\n",
- "epoch [ 647] L = 38.628102, acc = 0.850000\n",
- "epoch [ 648] L = 38.627812, acc = 0.850000\n",
- "epoch [ 649] L = 38.627522, acc = 0.850000\n",
- "epoch [ 650] L = 38.627233, acc = 0.850000\n",
- "epoch [ 651] L = 38.626945, acc = 0.850000\n",
- "epoch [ 652] L = 38.626657, acc = 0.850000\n",
- "epoch [ 653] L = 38.626371, acc = 0.850000\n",
- "epoch [ 654] L = 38.626084, acc = 0.850000\n",
- "epoch [ 655] L = 38.625799, acc = 0.850000\n",
- "epoch [ 656] L = 38.625514, acc = 0.850000\n",
- "epoch [ 657] L = 38.625230, acc = 0.850000\n",
- "epoch [ 658] L = 38.624946, acc = 0.850000\n",
- "epoch [ 659] L = 38.624664, acc = 0.850000\n",
- "epoch [ 660] L = 38.624381, acc = 0.850000\n",
- "epoch [ 661] L = 38.624100, acc = 0.850000\n",
- "epoch [ 662] L = 38.623819, acc = 0.850000\n",
- "epoch [ 663] L = 38.623539, acc = 0.850000\n",
- "epoch [ 664] L = 38.623259, acc = 0.850000\n",
- "epoch [ 665] L = 38.622980, acc = 0.850000\n",
- "epoch [ 666] L = 38.622702, acc = 0.850000\n",
- "epoch [ 667] L = 38.622424, acc = 0.850000\n",
- "epoch [ 668] L = 38.622147, acc = 0.850000\n",
- "epoch [ 669] L = 38.621871, acc = 0.850000\n",
- "epoch [ 670] L = 38.621595, acc = 0.850000\n",
- "epoch [ 671] L = 38.621320, acc = 0.850000\n",
- "epoch [ 672] L = 38.621046, acc = 0.850000\n",
- "epoch [ 673] L = 38.620772, acc = 0.850000\n",
- "epoch [ 674] L = 38.620499, acc = 0.850000\n",
- "epoch [ 675] L = 38.620226, acc = 0.850000\n",
- "epoch [ 676] L = 38.619954, acc = 0.850000\n",
- "epoch [ 677] L = 38.619682, acc = 0.850000\n",
- "epoch [ 678] L = 38.619412, acc = 0.850000\n",
- "epoch [ 679] L = 38.619141, acc = 0.850000\n",
- "epoch [ 680] L = 38.618872, acc = 0.850000\n",
- "epoch [ 681] L = 38.618603, acc = 0.850000\n",
- "epoch [ 682] L = 38.618334, acc = 0.850000\n",
- "epoch [ 683] L = 38.618066, acc = 0.850000\n",
- "epoch [ 684] L = 38.617799, acc = 0.850000\n",
- "epoch [ 685] L = 38.617532, acc = 0.850000\n",
- "epoch [ 686] L = 38.617266, acc = 0.850000\n",
- "epoch [ 687] L = 38.617001, acc = 0.850000\n",
- "epoch [ 688] L = 38.616736, acc = 0.850000\n",
- "epoch [ 689] L = 38.616471, acc = 0.850000\n",
- "epoch [ 690] L = 38.616208, acc = 0.850000\n",
- "epoch [ 691] L = 38.615944, acc = 0.850000\n",
- "epoch [ 692] L = 38.615682, acc = 0.850000\n",
- "epoch [ 693] L = 38.615420, acc = 0.850000\n",
- "epoch [ 694] L = 38.615158, acc = 0.850000\n",
- "epoch [ 695] L = 38.614897, acc = 0.850000\n",
- "epoch [ 696] L = 38.614637, acc = 0.850000\n",
- "epoch [ 697] L = 38.614377, acc = 0.850000\n",
- "epoch [ 698] L = 38.614117, acc = 0.850000\n",
- "epoch [ 699] L = 38.613859, acc = 0.850000\n",
- "epoch [ 700] L = 38.613600, acc = 0.850000\n",
- "epoch [ 701] L = 38.613343, acc = 0.850000\n",
- "epoch [ 702] L = 38.613085, acc = 0.850000\n",
- "epoch [ 703] L = 38.612829, acc = 0.850000\n",
- "epoch [ 704] L = 38.612573, acc = 0.850000\n",
- "epoch [ 705] L = 38.612317, acc = 0.850000\n",
- "epoch [ 706] L = 38.612062, acc = 0.850000\n",
- "epoch [ 707] L = 38.611808, acc = 0.850000\n",
- "epoch [ 708] L = 38.611554, acc = 0.850000\n",
- "epoch [ 709] L = 38.611300, acc = 0.850000\n",
- "epoch [ 710] L = 38.611047, acc = 0.850000\n",
- "epoch [ 711] L = 38.610795, acc = 0.850000\n",
- "epoch [ 712] L = 38.610543, acc = 0.850000\n",
- "epoch [ 713] L = 38.610291, acc = 0.850000\n",
- "epoch [ 714] L = 38.610041, acc = 0.850000\n",
- "epoch [ 715] L = 38.609790, acc = 0.850000\n",
- "epoch [ 716] L = 38.609540, acc = 0.850000\n",
- "epoch [ 717] L = 38.609291, acc = 0.850000\n",
- "epoch [ 718] L = 38.609042, acc = 0.850000\n",
- "epoch [ 719] L = 38.608794, acc = 0.850000\n",
- "epoch [ 720] L = 38.608546, acc = 0.850000\n",
- "epoch [ 721] L = 38.608299, acc = 0.850000\n",
- "epoch [ 722] L = 38.608052, acc = 0.850000\n",
- "epoch [ 723] L = 38.607805, acc = 0.850000\n",
- "epoch [ 724] L = 38.607559, acc = 0.850000\n",
- "epoch [ 725] L = 38.607314, acc = 0.850000\n",
- "epoch [ 726] L = 38.607069, acc = 0.850000\n",
- "epoch [ 727] L = 38.606825, acc = 0.850000\n",
- "epoch [ 728] L = 38.606581, acc = 0.850000\n",
- "epoch [ 729] L = 38.606337, acc = 0.850000\n",
- "epoch [ 730] L = 38.606094, acc = 0.850000\n",
- "epoch [ 731] L = 38.605852, acc = 0.850000\n",
- "epoch [ 732] L = 38.605610, acc = 0.850000\n",
- "epoch [ 733] L = 38.605368, acc = 0.850000\n",
- "epoch [ 734] L = 38.605127, acc = 0.850000\n",
- "epoch [ 735] L = 38.604887, acc = 0.850000\n",
- "epoch [ 736] L = 38.604647, acc = 0.850000\n",
- "epoch [ 737] L = 38.604407, acc = 0.850000\n",
- "epoch [ 738] L = 38.604168, acc = 0.850000\n",
- "epoch [ 739] L = 38.603929, acc = 0.850000\n",
- "epoch [ 740] L = 38.603691, acc = 0.850000\n",
- "epoch [ 741] L = 38.603453, acc = 0.850000\n",
- "epoch [ 742] L = 38.603216, acc = 0.850000\n",
- "epoch [ 743] L = 38.602979, acc = 0.850000\n",
- "epoch [ 744] L = 38.602742, acc = 0.850000\n",
- "epoch [ 745] L = 38.602506, acc = 0.850000\n",
- "epoch [ 746] L = 38.602271, acc = 0.850000\n",
- "epoch [ 747] L = 38.602036, acc = 0.850000\n",
- "epoch [ 748] L = 38.601801, acc = 0.850000\n",
- "epoch [ 749] L = 38.601567, acc = 0.850000\n",
- "epoch [ 750] L = 38.601333, acc = 0.850000\n",
- "epoch [ 751] L = 38.601100, acc = 0.850000\n",
- "epoch [ 752] L = 38.600867, acc = 0.850000\n",
- "epoch [ 753] L = 38.600635, acc = 0.850000\n",
- "epoch [ 754] L = 38.600403, acc = 0.850000\n",
- "epoch [ 755] L = 38.600171, acc = 0.850000\n",
- "epoch [ 756] L = 38.599940, acc = 0.850000\n",
- "epoch [ 757] L = 38.599709, acc = 0.850000\n",
- "epoch [ 758] L = 38.599479, acc = 0.850000\n",
- "epoch [ 759] L = 38.599249, acc = 0.850000\n",
- "epoch [ 760] L = 38.599020, acc = 0.850000\n",
- "epoch [ 761] L = 38.598791, acc = 0.850000\n",
- "epoch [ 762] L = 38.598562, acc = 0.850000\n",
- "epoch [ 763] L = 38.598334, acc = 0.850000\n",
- "epoch [ 764] L = 38.598107, acc = 0.850000\n",
- "epoch [ 765] L = 38.597879, acc = 0.850000\n",
- "epoch [ 766] L = 38.597653, acc = 0.850000\n",
- "epoch [ 767] L = 38.597426, acc = 0.850000\n",
- "epoch [ 768] L = 38.597200, acc = 0.850000\n",
- "epoch [ 769] L = 38.596975, acc = 0.850000\n",
- "epoch [ 770] L = 38.596749, acc = 0.850000\n",
- "epoch [ 771] L = 38.596525, acc = 0.850000\n",
- "epoch [ 772] L = 38.596300, acc = 0.850000\n",
- "epoch [ 773] L = 38.596076, acc = 0.850000\n",
- "epoch [ 774] L = 38.595853, acc = 0.850000\n",
- "epoch [ 775] L = 38.595630, acc = 0.850000\n",
- "epoch [ 776] L = 38.595407, acc = 0.850000\n",
- "epoch [ 777] L = 38.595185, acc = 0.850000\n",
- "epoch [ 778] L = 38.594963, acc = 0.850000\n",
- "epoch [ 779] L = 38.594741, acc = 0.850000\n",
- "epoch [ 780] L = 38.594520, acc = 0.850000\n",
- "epoch [ 781] L = 38.594299, acc = 0.850000\n",
- "epoch [ 782] L = 38.594079, acc = 0.850000\n",
- "epoch [ 783] L = 38.593859, acc = 0.850000\n",
- "epoch [ 784] L = 38.593640, acc = 0.850000\n",
- "epoch [ 785] L = 38.593421, acc = 0.850000\n",
- "epoch [ 786] L = 38.593202, acc = 0.850000\n",
- "epoch [ 787] L = 38.592984, acc = 0.850000\n",
- "epoch [ 788] L = 38.592766, acc = 0.850000\n",
- "epoch [ 789] L = 38.592548, acc = 0.850000\n",
- "epoch [ 790] L = 38.592331, acc = 0.850000\n",
- "epoch [ 791] L = 38.592114, acc = 0.850000\n",
- "epoch [ 792] L = 38.591898, acc = 0.850000\n",
- "epoch [ 793] L = 38.591682, acc = 0.850000\n",
- "epoch [ 794] L = 38.591466, acc = 0.850000\n",
- "epoch [ 795] L = 38.591251, acc = 0.850000\n",
- "epoch [ 796] L = 38.591036, acc = 0.850000\n",
- "epoch [ 797] L = 38.590821, acc = 0.850000\n",
- "epoch [ 798] L = 38.590607, acc = 0.850000\n",
- "epoch [ 799] L = 38.590394, acc = 0.850000\n",
- "epoch [ 800] L = 38.590180, acc = 0.850000\n",
- "epoch [ 801] L = 38.589967, acc = 0.850000\n",
- "epoch [ 802] L = 38.589755, acc = 0.850000\n",
- "epoch [ 803] L = 38.589542, acc = 0.850000\n",
- "epoch [ 804] L = 38.589330, acc = 0.850000\n",
- "epoch [ 805] L = 38.589119, acc = 0.850000\n",
- "epoch [ 806] L = 38.588908, acc = 0.850000\n",
- "epoch [ 807] L = 38.588697, acc = 0.850000\n",
- "epoch [ 808] L = 38.588487, acc = 0.850000\n",
- "epoch [ 809] L = 38.588277, acc = 0.850000\n",
- "epoch [ 810] L = 38.588067, acc = 0.850000\n",
- "epoch [ 811] L = 38.587858, acc = 0.850000\n",
- "epoch [ 812] L = 38.587649, acc = 0.850000\n",
- "epoch [ 813] L = 38.587440, acc = 0.850000\n",
- "epoch [ 814] L = 38.587232, acc = 0.850000\n",
- "epoch [ 815] L = 38.587024, acc = 0.850000\n",
- "epoch [ 816] L = 38.586817, acc = 0.850000\n",
- "epoch [ 817] L = 38.586609, acc = 0.850000\n",
- "epoch [ 818] L = 38.586403, acc = 0.850000\n",
- "epoch [ 819] L = 38.586196, acc = 0.850000\n",
- "epoch [ 820] L = 38.585990, acc = 0.850000\n",
- "epoch [ 821] L = 38.585784, acc = 0.850000\n",
- "epoch [ 822] L = 38.585579, acc = 0.850000\n",
- "epoch [ 823] L = 38.585374, acc = 0.850000\n",
- "epoch [ 824] L = 38.585169, acc = 0.850000\n",
- "epoch [ 825] L = 38.584965, acc = 0.850000\n",
- "epoch [ 826] L = 38.584761, acc = 0.850000\n",
- "epoch [ 827] L = 38.584557, acc = 0.850000\n",
- "epoch [ 828] L = 38.584354, acc = 0.850000\n",
- "epoch [ 829] L = 38.584151, acc = 0.850000\n",
- "epoch [ 830] L = 38.583948, acc = 0.850000\n",
- "epoch [ 831] L = 38.583746, acc = 0.850000\n",
- "epoch [ 832] L = 38.583544, acc = 0.850000\n",
- "epoch [ 833] L = 38.583342, acc = 0.850000\n",
- "epoch [ 834] L = 38.583141, acc = 0.850000\n",
- "epoch [ 835] L = 38.582940, acc = 0.850000\n",
- "epoch [ 836] L = 38.582740, acc = 0.850000\n",
- "epoch [ 837] L = 38.582539, acc = 0.850000\n",
- "epoch [ 838] L = 38.582339, acc = 0.850000\n",
- "epoch [ 839] L = 38.582140, acc = 0.850000\n",
- "epoch [ 840] L = 38.581941, acc = 0.850000\n",
- "epoch [ 841] L = 38.581742, acc = 0.850000\n",
- "epoch [ 842] L = 38.581543, acc = 0.850000\n",
- "epoch [ 843] L = 38.581345, acc = 0.850000\n",
- "epoch [ 844] L = 38.581147, acc = 0.850000\n",
- "epoch [ 845] L = 38.580949, acc = 0.850000\n",
- "epoch [ 846] L = 38.580752, acc = 0.850000\n",
- "epoch [ 847] L = 38.580555, acc = 0.850000\n",
- "epoch [ 848] L = 38.580359, acc = 0.850000\n",
- "epoch [ 849] L = 38.580162, acc = 0.850000\n",
- "epoch [ 850] L = 38.579966, acc = 0.850000\n",
- "epoch [ 851] L = 38.579771, acc = 0.850000\n",
- "epoch [ 852] L = 38.579575, acc = 0.850000\n",
- "epoch [ 853] L = 38.579380, acc = 0.850000\n",
- "epoch [ 854] L = 38.579186, acc = 0.850000\n",
- "epoch [ 855] L = 38.578991, acc = 0.850000\n",
- "epoch [ 856] L = 38.578797, acc = 0.850000\n",
- "epoch [ 857] L = 38.578603, acc = 0.850000\n",
- "epoch [ 858] L = 38.578410, acc = 0.850000\n",
- "epoch [ 859] L = 38.578217, acc = 0.850000\n",
- "epoch [ 860] L = 38.578024, acc = 0.850000\n",
- "epoch [ 861] L = 38.577832, acc = 0.850000\n",
- "epoch [ 862] L = 38.577639, acc = 0.850000\n",
- "epoch [ 863] L = 38.577448, acc = 0.850000\n",
- "epoch [ 864] L = 38.577256, acc = 0.850000\n",
- "epoch [ 865] L = 38.577065, acc = 0.850000\n",
- "epoch [ 866] L = 38.576874, acc = 0.850000\n",
- "epoch [ 867] L = 38.576683, acc = 0.850000\n",
- "epoch [ 868] L = 38.576493, acc = 0.850000\n",
- "epoch [ 869] L = 38.576303, acc = 0.850000\n",
- "epoch [ 870] L = 38.576113, acc = 0.850000\n",
- "epoch [ 871] L = 38.575924, acc = 0.850000\n",
- "epoch [ 872] L = 38.575735, acc = 0.850000\n",
- "epoch [ 873] L = 38.575546, acc = 0.850000\n",
- "epoch [ 874] L = 38.575358, acc = 0.850000\n",
- "epoch [ 875] L = 38.575169, acc = 0.850000\n",
- "epoch [ 876] L = 38.574981, acc = 0.850000\n",
- "epoch [ 877] L = 38.574794, acc = 0.850000\n",
- "epoch [ 878] L = 38.574607, acc = 0.850000\n",
- "epoch [ 879] L = 38.574420, acc = 0.850000\n",
- "epoch [ 880] L = 38.574233, acc = 0.850000\n",
- "epoch [ 881] L = 38.574047, acc = 0.850000\n",
- "epoch [ 882] L = 38.573861, acc = 0.850000\n",
- "epoch [ 883] L = 38.573675, acc = 0.850000\n",
- "epoch [ 884] L = 38.573489, acc = 0.850000\n",
- "epoch [ 885] L = 38.573304, acc = 0.850000\n",
- "epoch [ 886] L = 38.573119, acc = 0.850000\n",
- "epoch [ 887] L = 38.572934, acc = 0.850000\n",
- "epoch [ 888] L = 38.572750, acc = 0.850000\n",
- "epoch [ 889] L = 38.572566, acc = 0.850000\n",
- "epoch [ 890] L = 38.572382, acc = 0.850000\n",
- "epoch [ 891] L = 38.572199, acc = 0.850000\n",
- "epoch [ 892] L = 38.572016, acc = 0.850000\n",
- "epoch [ 893] L = 38.571833, acc = 0.850000\n",
- "epoch [ 894] L = 38.571650, acc = 0.850000\n",
- "epoch [ 895] L = 38.571468, acc = 0.850000\n",
- "epoch [ 896] L = 38.571286, acc = 0.850000\n",
- "epoch [ 897] L = 38.571104, acc = 0.850000\n",
- "epoch [ 898] L = 38.570923, acc = 0.850000\n",
- "epoch [ 899] L = 38.570742, acc = 0.850000\n",
- "epoch [ 900] L = 38.570561, acc = 0.850000\n",
- "epoch [ 901] L = 38.570380, acc = 0.850000\n",
- "epoch [ 902] L = 38.570200, acc = 0.850000\n",
- "epoch [ 903] L = 38.570020, acc = 0.850000\n",
- "epoch [ 904] L = 38.569840, acc = 0.850000\n",
- "epoch [ 905] L = 38.569660, acc = 0.850000\n",
- "epoch [ 906] L = 38.569481, acc = 0.850000\n",
- "epoch [ 907] L = 38.569302, acc = 0.850000\n",
- "epoch [ 908] L = 38.569124, acc = 0.850000\n",
- "epoch [ 909] L = 38.568945, acc = 0.850000\n",
- "epoch [ 910] L = 38.568767, acc = 0.850000\n",
- "epoch [ 911] L = 38.568589, acc = 0.850000\n",
- "epoch [ 912] L = 38.568412, acc = 0.850000\n",
- "epoch [ 913] L = 38.568234, acc = 0.850000\n",
- "epoch [ 914] L = 38.568057, acc = 0.850000\n",
- "epoch [ 915] L = 38.567881, acc = 0.850000\n",
- "epoch [ 916] L = 38.567704, acc = 0.850000\n",
- "epoch [ 917] L = 38.567528, acc = 0.850000\n",
- "epoch [ 918] L = 38.567352, acc = 0.850000\n",
- "epoch [ 919] L = 38.567176, acc = 0.850000\n",
- "epoch [ 920] L = 38.567001, acc = 0.850000\n",
- "epoch [ 921] L = 38.566826, acc = 0.850000\n",
- "epoch [ 922] L = 38.566651, acc = 0.850000\n",
- "epoch [ 923] L = 38.566476, acc = 0.850000\n",
- "epoch [ 924] L = 38.566302, acc = 0.850000\n",
- "epoch [ 925] L = 38.566128, acc = 0.850000\n",
- "epoch [ 926] L = 38.565954, acc = 0.850000\n",
- "epoch [ 927] L = 38.565780, acc = 0.850000\n",
- "epoch [ 928] L = 38.565607, acc = 0.850000\n",
- "epoch [ 929] L = 38.565434, acc = 0.850000\n",
- "epoch [ 930] L = 38.565261, acc = 0.850000\n",
- "epoch [ 931] L = 38.565089, acc = 0.850000\n",
- "epoch [ 932] L = 38.564917, acc = 0.850000\n",
- "epoch [ 933] L = 38.564745, acc = 0.850000\n",
- "epoch [ 934] L = 38.564573, acc = 0.850000\n",
- "epoch [ 935] L = 38.564401, acc = 0.850000\n",
- "epoch [ 936] L = 38.564230, acc = 0.850000\n",
- "epoch [ 937] L = 38.564059, acc = 0.850000\n",
- "epoch [ 938] L = 38.563888, acc = 0.850000\n",
- "epoch [ 939] L = 38.563718, acc = 0.850000\n",
- "epoch [ 940] L = 38.563548, acc = 0.850000\n",
- "epoch [ 941] L = 38.563378, acc = 0.850000\n",
- "epoch [ 942] L = 38.563208, acc = 0.850000\n",
- "epoch [ 943] L = 38.563039, acc = 0.850000\n",
- "epoch [ 944] L = 38.562869, acc = 0.850000\n",
- "epoch [ 945] L = 38.562701, acc = 0.850000\n",
- "epoch [ 946] L = 38.562532, acc = 0.850000\n",
- "epoch [ 947] L = 38.562363, acc = 0.850000\n",
- "epoch [ 948] L = 38.562195, acc = 0.850000\n",
- "epoch [ 949] L = 38.562027, acc = 0.850000\n",
- "epoch [ 950] L = 38.561860, acc = 0.850000\n",
- "epoch [ 951] L = 38.561692, acc = 0.850000\n",
- "epoch [ 952] L = 38.561525, acc = 0.850000\n",
- "epoch [ 953] L = 38.561358, acc = 0.850000\n",
- "epoch [ 954] L = 38.561191, acc = 0.850000\n",
- "epoch [ 955] L = 38.561025, acc = 0.850000\n",
- "epoch [ 956] L = 38.560859, acc = 0.850000\n",
- "epoch [ 957] L = 38.560693, acc = 0.850000\n",
- "epoch [ 958] L = 38.560527, acc = 0.850000\n",
- "epoch [ 959] L = 38.560361, acc = 0.850000\n",
- "epoch [ 960] L = 38.560196, acc = 0.850000\n",
- "epoch [ 961] L = 38.560031, acc = 0.850000\n",
- "epoch [ 962] L = 38.559866, acc = 0.850000\n",
- "epoch [ 963] L = 38.559702, acc = 0.850000\n",
- "epoch [ 964] L = 38.559537, acc = 0.850000\n",
- "epoch [ 965] L = 38.559373, acc = 0.850000\n",
- "epoch [ 966] L = 38.559210, acc = 0.850000\n",
- "epoch [ 967] L = 38.559046, acc = 0.850000\n",
- "epoch [ 968] L = 38.558883, acc = 0.850000\n",
- "epoch [ 969] L = 38.558719, acc = 0.850000\n",
- "epoch [ 970] L = 38.558557, acc = 0.850000\n",
- "epoch [ 971] L = 38.558394, acc = 0.850000\n",
- "epoch [ 972] L = 38.558232, acc = 0.850000\n",
- "epoch [ 973] L = 38.558069, acc = 0.850000\n",
- "epoch [ 974] L = 38.557907, acc = 0.850000\n",
- "epoch [ 975] L = 38.557746, acc = 0.850000\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "epoch [ 976] L = 38.557584, acc = 0.850000\n",
- "epoch [ 977] L = 38.557423, acc = 0.850000\n",
- "epoch [ 978] L = 38.557262, acc = 0.850000\n",
- "epoch [ 979] L = 38.557101, acc = 0.850000\n",
- "epoch [ 980] L = 38.556941, acc = 0.850000\n",
- "epoch [ 981] L = 38.556780, acc = 0.850000\n",
- "epoch [ 982] L = 38.556620, acc = 0.850000\n",
- "epoch [ 983] L = 38.556460, acc = 0.850000\n",
- "epoch [ 984] L = 38.556301, acc = 0.850000\n",
- "epoch [ 985] L = 38.556141, acc = 0.850000\n",
- "epoch [ 986] L = 38.555982, acc = 0.850000\n",
- "epoch [ 987] L = 38.555823, acc = 0.850000\n",
- "epoch [ 988] L = 38.555664, acc = 0.850000\n",
- "epoch [ 989] L = 38.555506, acc = 0.850000\n",
- "epoch [ 990] L = 38.555347, acc = 0.850000\n",
- "epoch [ 991] L = 38.555189, acc = 0.850000\n",
- "epoch [ 992] L = 38.555032, acc = 0.850000\n",
- "epoch [ 993] L = 38.554874, acc = 0.850000\n",
- "epoch [ 994] L = 38.554717, acc = 0.850000\n",
- "epoch [ 995] L = 38.554559, acc = 0.850000\n",
- "epoch [ 996] L = 38.554402, acc = 0.850000\n",
- "epoch [ 997] L = 38.554246, acc = 0.850000\n",
- "epoch [ 998] L = 38.554089, acc = 0.850000\n",
- "epoch [ 999] L = 38.553933, acc = 0.850000\n",
- "epoch [1000] L = 38.553777, acc = 0.850000\n",
- "epoch [1001] L = 38.553621, acc = 0.850000\n",
- "epoch [1002] L = 38.553465, acc = 0.850000\n",
- "epoch [1003] L = 38.553310, acc = 0.850000\n",
- "epoch [1004] L = 38.553154, acc = 0.850000\n",
- "epoch [1005] L = 38.552999, acc = 0.850000\n",
- "epoch [1006] L = 38.552845, acc = 0.850000\n",
- "epoch [1007] L = 38.552690, acc = 0.850000\n",
- "epoch [1008] L = 38.552536, acc = 0.850000\n",
- "epoch [1009] L = 38.552382, acc = 0.850000\n",
- "epoch [1010] L = 38.552228, acc = 0.850000\n",
- "epoch [1011] L = 38.552074, acc = 0.850000\n",
- "epoch [1012] L = 38.551920, acc = 0.850000\n",
- "epoch [1013] L = 38.551767, acc = 0.850000\n",
- "epoch [1014] L = 38.551614, acc = 0.850000\n",
- "epoch [1015] L = 38.551461, acc = 0.850000\n",
- "epoch [1016] L = 38.551308, acc = 0.850000\n",
- "epoch [1017] L = 38.551156, acc = 0.850000\n",
- "epoch [1018] L = 38.551004, acc = 0.850000\n",
- "epoch [1019] L = 38.550852, acc = 0.850000\n",
- "epoch [1020] L = 38.550700, acc = 0.850000\n",
- "epoch [1021] L = 38.550548, acc = 0.850000\n",
- "epoch [1022] L = 38.550397, acc = 0.850000\n",
- "epoch [1023] L = 38.550245, acc = 0.850000\n",
- "epoch [1024] L = 38.550094, acc = 0.850000\n",
- "epoch [1025] L = 38.549944, acc = 0.850000\n",
- "epoch [1026] L = 38.549793, acc = 0.850000\n",
- "epoch [1027] L = 38.549642, acc = 0.850000\n",
- "epoch [1028] L = 38.549492, acc = 0.850000\n",
- "epoch [1029] L = 38.549342, acc = 0.850000\n",
- "epoch [1030] L = 38.549192, acc = 0.850000\n",
- "epoch [1031] L = 38.549043, acc = 0.850000\n",
- "epoch [1032] L = 38.548893, acc = 0.850000\n",
- "epoch [1033] L = 38.548744, acc = 0.850000\n",
- "epoch [1034] L = 38.548595, acc = 0.850000\n",
- "epoch [1035] L = 38.548446, acc = 0.850000\n",
- "epoch [1036] L = 38.548298, acc = 0.850000\n",
- "epoch [1037] L = 38.548149, acc = 0.850000\n",
- "epoch [1038] L = 38.548001, acc = 0.850000\n",
- "epoch [1039] L = 38.547853, acc = 0.850000\n",
- "epoch [1040] L = 38.547705, acc = 0.850000\n",
- "epoch [1041] L = 38.547558, acc = 0.850000\n",
- "epoch [1042] L = 38.547410, acc = 0.850000\n",
- "epoch [1043] L = 38.547263, acc = 0.850000\n",
- "epoch [1044] L = 38.547116, acc = 0.850000\n",
- "epoch [1045] L = 38.546969, acc = 0.850000\n",
- "epoch [1046] L = 38.546823, acc = 0.850000\n",
- "epoch [1047] L = 38.546676, acc = 0.850000\n",
- "epoch [1048] L = 38.546530, acc = 0.850000\n",
- "epoch [1049] L = 38.546384, acc = 0.845000\n",
- "epoch [1050] L = 38.546238, acc = 0.845000\n",
- "epoch [1051] L = 38.546092, acc = 0.845000\n",
- "epoch [1052] L = 38.545947, acc = 0.845000\n",
- "epoch [1053] L = 38.545802, acc = 0.845000\n",
- "epoch [1054] L = 38.545656, acc = 0.845000\n",
- "epoch [1055] L = 38.545512, acc = 0.845000\n",
- "epoch [1056] L = 38.545367, acc = 0.845000\n",
- "epoch [1057] L = 38.545222, acc = 0.845000\n",
- "epoch [1058] L = 38.545078, acc = 0.845000\n",
- "epoch [1059] L = 38.544934, acc = 0.845000\n",
- "epoch [1060] L = 38.544790, acc = 0.845000\n",
- "epoch [1061] L = 38.544646, acc = 0.845000\n",
- "epoch [1062] L = 38.544502, acc = 0.845000\n",
- "epoch [1063] L = 38.544359, acc = 0.845000\n",
- "epoch [1064] L = 38.544216, acc = 0.845000\n",
- "epoch [1065] L = 38.544073, acc = 0.845000\n",
- "epoch [1066] L = 38.543930, acc = 0.845000\n",
- "epoch [1067] L = 38.543787, acc = 0.845000\n",
- "epoch [1068] L = 38.543645, acc = 0.845000\n",
- "epoch [1069] L = 38.543502, acc = 0.845000\n",
- "epoch [1070] L = 38.543360, acc = 0.845000\n",
- "epoch [1071] L = 38.543218, acc = 0.845000\n",
- "epoch [1072] L = 38.543077, acc = 0.845000\n",
- "epoch [1073] L = 38.542935, acc = 0.845000\n",
- "epoch [1074] L = 38.542794, acc = 0.845000\n",
- "epoch [1075] L = 38.542652, acc = 0.845000\n",
- "epoch [1076] L = 38.542511, acc = 0.845000\n",
- "epoch [1077] L = 38.542370, acc = 0.845000\n",
- "epoch [1078] L = 38.542230, acc = 0.845000\n",
- "epoch [1079] L = 38.542089, acc = 0.845000\n",
- "epoch [1080] L = 38.541949, acc = 0.845000\n",
- "epoch [1081] L = 38.541809, acc = 0.845000\n",
- "epoch [1082] L = 38.541669, acc = 0.845000\n",
- "epoch [1083] L = 38.541529, acc = 0.845000\n",
- "epoch [1084] L = 38.541389, acc = 0.845000\n",
- "epoch [1085] L = 38.541250, acc = 0.845000\n",
- "epoch [1086] L = 38.541111, acc = 0.845000\n",
- "epoch [1087] L = 38.540972, acc = 0.845000\n",
- "epoch [1088] L = 38.540833, acc = 0.845000\n",
- "epoch [1089] L = 38.540694, acc = 0.845000\n",
- "epoch [1090] L = 38.540555, acc = 0.845000\n",
- "epoch [1091] L = 38.540417, acc = 0.845000\n",
- "epoch [1092] L = 38.540279, acc = 0.845000\n",
- "epoch [1093] L = 38.540141, acc = 0.845000\n",
- "epoch [1094] L = 38.540003, acc = 0.845000\n",
- "epoch [1095] L = 38.539865, acc = 0.845000\n",
- "epoch [1096] L = 38.539728, acc = 0.845000\n",
- "epoch [1097] L = 38.539590, acc = 0.845000\n",
- "epoch [1098] L = 38.539453, acc = 0.845000\n",
- "epoch [1099] L = 38.539316, acc = 0.845000\n",
- "epoch [1100] L = 38.539179, acc = 0.845000\n",
- "epoch [1101] L = 38.539043, acc = 0.845000\n",
- "epoch [1102] L = 38.538906, acc = 0.845000\n",
- "epoch [1103] L = 38.538770, acc = 0.845000\n",
- "epoch [1104] L = 38.538634, acc = 0.845000\n",
- "epoch [1105] L = 38.538498, acc = 0.845000\n",
- "epoch [1106] L = 38.538362, acc = 0.845000\n",
- "epoch [1107] L = 38.538226, acc = 0.845000\n",
- "epoch [1108] L = 38.538090, acc = 0.845000\n",
- "epoch [1109] L = 38.537955, acc = 0.845000\n",
- "epoch [1110] L = 38.537820, acc = 0.845000\n",
- "epoch [1111] L = 38.537685, acc = 0.845000\n",
- "epoch [1112] L = 38.537550, acc = 0.845000\n",
- "epoch [1113] L = 38.537415, acc = 0.845000\n",
- "epoch [1114] L = 38.537281, acc = 0.845000\n",
- "epoch [1115] L = 38.537147, acc = 0.845000\n",
- "epoch [1116] L = 38.537012, acc = 0.845000\n",
- "epoch [1117] L = 38.536878, acc = 0.845000\n",
- "epoch [1118] L = 38.536744, acc = 0.845000\n",
- "epoch [1119] L = 38.536611, acc = 0.845000\n",
- "epoch [1120] L = 38.536477, acc = 0.845000\n",
- "epoch [1121] L = 38.536344, acc = 0.845000\n",
- "epoch [1122] L = 38.536211, acc = 0.845000\n",
- "epoch [1123] L = 38.536078, acc = 0.845000\n",
- "epoch [1124] L = 38.535945, acc = 0.845000\n",
- "epoch [1125] L = 38.535812, acc = 0.845000\n",
- "epoch [1126] L = 38.535679, acc = 0.845000\n",
- "epoch [1127] L = 38.535547, acc = 0.845000\n",
- "epoch [1128] L = 38.535415, acc = 0.845000\n",
- "epoch [1129] L = 38.535283, acc = 0.845000\n",
- "epoch [1130] L = 38.535151, acc = 0.845000\n",
- "epoch [1131] L = 38.535019, acc = 0.845000\n",
- "epoch [1132] L = 38.534887, acc = 0.845000\n",
- "epoch [1133] L = 38.534756, acc = 0.845000\n",
- "epoch [1134] L = 38.534624, acc = 0.845000\n",
- "epoch [1135] L = 38.534493, acc = 0.845000\n",
- "epoch [1136] L = 38.534362, acc = 0.845000\n",
- "epoch [1137] L = 38.534231, acc = 0.845000\n",
- "epoch [1138] L = 38.534101, acc = 0.845000\n",
- "epoch [1139] L = 38.533970, acc = 0.845000\n",
- "epoch [1140] L = 38.533840, acc = 0.845000\n",
- "epoch [1141] L = 38.533709, acc = 0.845000\n",
- "epoch [1142] L = 38.533579, acc = 0.845000\n",
- "epoch [1143] L = 38.533449, acc = 0.845000\n",
- "epoch [1144] L = 38.533320, acc = 0.845000\n",
- "epoch [1145] L = 38.533190, acc = 0.845000\n",
- "epoch [1146] L = 38.533060, acc = 0.845000\n",
- "epoch [1147] L = 38.532931, acc = 0.845000\n",
- "epoch [1148] L = 38.532802, acc = 0.845000\n",
- "epoch [1149] L = 38.532673, acc = 0.845000\n",
- "epoch [1150] L = 38.532544, acc = 0.845000\n",
- "epoch [1151] L = 38.532415, acc = 0.845000\n",
- "epoch [1152] L = 38.532287, acc = 0.845000\n",
- "epoch [1153] L = 38.532158, acc = 0.845000\n",
- "epoch [1154] L = 38.532030, acc = 0.845000\n",
- "epoch [1155] L = 38.531902, acc = 0.845000\n",
- "epoch [1156] L = 38.531774, acc = 0.845000\n",
- "epoch [1157] L = 38.531646, acc = 0.845000\n",
- "epoch [1158] L = 38.531518, acc = 0.845000\n",
- "epoch [1159] L = 38.531391, acc = 0.845000\n",
- "epoch [1160] L = 38.531263, acc = 0.845000\n",
- "epoch [1161] L = 38.531136, acc = 0.845000\n",
- "epoch [1162] L = 38.531009, acc = 0.845000\n",
- "epoch [1163] L = 38.530882, acc = 0.845000\n",
- "epoch [1164] L = 38.530755, acc = 0.845000\n",
- "epoch [1165] L = 38.530628, acc = 0.845000\n",
- "epoch [1166] L = 38.530502, acc = 0.845000\n",
- "epoch [1167] L = 38.530376, acc = 0.845000\n",
- "epoch [1168] L = 38.530249, acc = 0.845000\n",
- "epoch [1169] L = 38.530123, acc = 0.845000\n",
- "epoch [1170] L = 38.529997, acc = 0.845000\n",
- "epoch [1171] L = 38.529871, acc = 0.845000\n",
- "epoch [1172] L = 38.529746, acc = 0.845000\n",
- "epoch [1173] L = 38.529620, acc = 0.845000\n",
- "epoch [1174] L = 38.529495, acc = 0.845000\n",
- "epoch [1175] L = 38.529369, acc = 0.845000\n",
- "epoch [1176] L = 38.529244, acc = 0.845000\n",
- "epoch [1177] L = 38.529119, acc = 0.845000\n",
- "epoch [1178] L = 38.528995, acc = 0.845000\n",
- "epoch [1179] L = 38.528870, acc = 0.845000\n",
- "epoch [1180] L = 38.528745, acc = 0.845000\n",
- "epoch [1181] L = 38.528621, acc = 0.845000\n",
- "epoch [1182] L = 38.528497, acc = 0.845000\n",
- "epoch [1183] L = 38.528372, acc = 0.845000\n",
- "epoch [1184] L = 38.528248, acc = 0.845000\n",
- "epoch [1185] L = 38.528125, acc = 0.845000\n",
- "epoch [1186] L = 38.528001, acc = 0.845000\n",
- "epoch [1187] L = 38.527877, acc = 0.845000\n",
- "epoch [1188] L = 38.527754, acc = 0.845000\n",
- "epoch [1189] L = 38.527630, acc = 0.845000\n",
- "epoch [1190] L = 38.527507, acc = 0.845000\n",
- "epoch [1191] L = 38.527384, acc = 0.845000\n",
- "epoch [1192] L = 38.527261, acc = 0.845000\n",
- "epoch [1193] L = 38.527139, acc = 0.845000\n",
- "epoch [1194] L = 38.527016, acc = 0.845000\n",
- "epoch [1195] L = 38.526893, acc = 0.845000\n",
- "epoch [1196] L = 38.526771, acc = 0.845000\n",
- "epoch [1197] L = 38.526649, acc = 0.845000\n",
- "epoch [1198] L = 38.526527, acc = 0.845000\n",
- "epoch [1199] L = 38.526405, acc = 0.845000\n",
- "epoch [1200] L = 38.526283, acc = 0.845000\n",
- "epoch [1201] L = 38.526161, acc = 0.845000\n",
- "epoch [1202] L = 38.526040, acc = 0.845000\n",
- "epoch [1203] L = 38.525918, acc = 0.845000\n",
- "epoch [1204] L = 38.525797, acc = 0.845000\n",
- "epoch [1205] L = 38.525676, acc = 0.845000\n",
- "epoch [1206] L = 38.525555, acc = 0.845000\n",
- "epoch [1207] L = 38.525434, acc = 0.845000\n",
- "epoch [1208] L = 38.525313, acc = 0.845000\n",
- "epoch [1209] L = 38.525192, acc = 0.845000\n",
- "epoch [1210] L = 38.525072, acc = 0.845000\n",
- "epoch [1211] L = 38.524951, acc = 0.845000\n",
- "epoch [1212] L = 38.524831, acc = 0.845000\n",
- "epoch [1213] L = 38.524711, acc = 0.845000\n",
- "epoch [1214] L = 38.524591, acc = 0.845000\n",
- "epoch [1215] L = 38.524471, acc = 0.845000\n",
- "epoch [1216] L = 38.524351, acc = 0.845000\n",
- "epoch [1217] L = 38.524231, acc = 0.845000\n",
- "epoch [1218] L = 38.524112, acc = 0.845000\n",
- "epoch [1219] L = 38.523993, acc = 0.845000\n",
- "epoch [1220] L = 38.523873, acc = 0.845000\n",
- "epoch [1221] L = 38.523754, acc = 0.845000\n",
- "epoch [1222] L = 38.523635, acc = 0.845000\n",
- "epoch [1223] L = 38.523516, acc = 0.845000\n",
- "epoch [1224] L = 38.523397, acc = 0.845000\n",
- "epoch [1225] L = 38.523279, acc = 0.845000\n",
- "epoch [1226] L = 38.523160, acc = 0.845000\n",
- "epoch [1227] L = 38.523042, acc = 0.845000\n",
- "epoch [1228] L = 38.522924, acc = 0.845000\n",
- "epoch [1229] L = 38.522806, acc = 0.845000\n",
- "epoch [1230] L = 38.522688, acc = 0.845000\n",
- "epoch [1231] L = 38.522570, acc = 0.845000\n",
- "epoch [1232] L = 38.522452, acc = 0.845000\n",
- "epoch [1233] L = 38.522334, acc = 0.845000\n",
- "epoch [1234] L = 38.522217, acc = 0.845000\n",
- "epoch [1235] L = 38.522099, acc = 0.845000\n",
- "epoch [1236] L = 38.521982, acc = 0.845000\n",
- "epoch [1237] L = 38.521865, acc = 0.845000\n",
- "epoch [1238] L = 38.521748, acc = 0.845000\n",
- "epoch [1239] L = 38.521631, acc = 0.845000\n",
- "epoch [1240] L = 38.521514, acc = 0.845000\n",
- "epoch [1241] L = 38.521397, acc = 0.845000\n",
- "epoch [1242] L = 38.521281, acc = 0.845000\n",
- "epoch [1243] L = 38.521164, acc = 0.845000\n",
- "epoch [1244] L = 38.521048, acc = 0.845000\n",
- "epoch [1245] L = 38.520932, acc = 0.845000\n",
- "epoch [1246] L = 38.520816, acc = 0.845000\n",
- "epoch [1247] L = 38.520700, acc = 0.845000\n",
- "epoch [1248] L = 38.520584, acc = 0.845000\n",
- "epoch [1249] L = 38.520468, acc = 0.845000\n",
- "epoch [1250] L = 38.520353, acc = 0.845000\n",
- "epoch [1251] L = 38.520237, acc = 0.845000\n",
- "epoch [1252] L = 38.520122, acc = 0.845000\n",
- "epoch [1253] L = 38.520006, acc = 0.845000\n",
- "epoch [1254] L = 38.519891, acc = 0.845000\n",
- "epoch [1255] L = 38.519776, acc = 0.845000\n",
- "epoch [1256] L = 38.519661, acc = 0.845000\n",
- "epoch [1257] L = 38.519547, acc = 0.845000\n",
- "epoch [1258] L = 38.519432, acc = 0.845000\n",
- "epoch [1259] L = 38.519317, acc = 0.845000\n",
- "epoch [1260] L = 38.519203, acc = 0.845000\n",
- "epoch [1261] L = 38.519089, acc = 0.845000\n",
- "epoch [1262] L = 38.518974, acc = 0.845000\n",
- "epoch [1263] L = 38.518860, acc = 0.845000\n",
- "epoch [1264] L = 38.518746, acc = 0.845000\n",
- "epoch [1265] L = 38.518632, acc = 0.845000\n",
- "epoch [1266] L = 38.518519, acc = 0.845000\n",
- "epoch [1267] L = 38.518405, acc = 0.845000\n",
- "epoch [1268] L = 38.518291, acc = 0.845000\n",
- "epoch [1269] L = 38.518178, acc = 0.845000\n",
- "epoch [1270] L = 38.518065, acc = 0.845000\n",
- "epoch [1271] L = 38.517951, acc = 0.845000\n",
- "epoch [1272] L = 38.517838, acc = 0.845000\n",
- "epoch [1273] L = 38.517725, acc = 0.845000\n",
- "epoch [1274] L = 38.517612, acc = 0.845000\n",
- "epoch [1275] L = 38.517500, acc = 0.845000\n",
- "epoch [1276] L = 38.517387, acc = 0.845000\n",
- "epoch [1277] L = 38.517274, acc = 0.845000\n",
- "epoch [1278] L = 38.517162, acc = 0.845000\n",
- "epoch [1279] L = 38.517050, acc = 0.845000\n",
- "epoch [1280] L = 38.516937, acc = 0.845000\n",
- "epoch [1281] L = 38.516825, acc = 0.845000\n",
- "epoch [1282] L = 38.516713, acc = 0.845000\n",
- "epoch [1283] L = 38.516601, acc = 0.845000\n",
- "epoch [1284] L = 38.516490, acc = 0.845000\n",
- "epoch [1285] L = 38.516378, acc = 0.845000\n",
- "epoch [1286] L = 38.516266, acc = 0.845000\n",
- "epoch [1287] L = 38.516155, acc = 0.845000\n",
- "epoch [1288] L = 38.516044, acc = 0.845000\n",
- "epoch [1289] L = 38.515932, acc = 0.845000\n",
- "epoch [1290] L = 38.515821, acc = 0.845000\n",
- "epoch [1291] L = 38.515710, acc = 0.845000\n",
- "epoch [1292] L = 38.515599, acc = 0.845000\n",
- "epoch [1293] L = 38.515488, acc = 0.845000\n",
- "epoch [1294] L = 38.515378, acc = 0.845000\n",
- "epoch [1295] L = 38.515267, acc = 0.845000\n",
- "epoch [1296] L = 38.515157, acc = 0.845000\n",
- "epoch [1297] L = 38.515046, acc = 0.845000\n",
- "epoch [1298] L = 38.514936, acc = 0.845000\n",
- "epoch [1299] L = 38.514826, acc = 0.845000\n",
- "epoch [1300] L = 38.514716, acc = 0.845000\n",
- "epoch [1301] L = 38.514606, acc = 0.845000\n",
- "epoch [1302] L = 38.514496, acc = 0.845000\n",
- "epoch [1303] L = 38.514386, acc = 0.845000\n",
- "epoch [1304] L = 38.514276, acc = 0.845000\n",
- "epoch [1305] L = 38.514167, acc = 0.845000\n",
- "epoch [1306] L = 38.514057, acc = 0.845000\n",
- "epoch [1307] L = 38.513948, acc = 0.845000\n",
- "epoch [1308] L = 38.513839, acc = 0.845000\n",
- "epoch [1309] L = 38.513729, acc = 0.845000\n",
- "epoch [1310] L = 38.513620, acc = 0.845000\n",
- "epoch [1311] L = 38.513511, acc = 0.845000\n",
- "epoch [1312] L = 38.513403, acc = 0.845000\n",
- "epoch [1313] L = 38.513294, acc = 0.845000\n",
- "epoch [1314] L = 38.513185, acc = 0.845000\n",
- "epoch [1315] L = 38.513077, acc = 0.845000\n",
- "epoch [1316] L = 38.512968, acc = 0.845000\n",
- "epoch [1317] L = 38.512860, acc = 0.845000\n",
- "epoch [1318] L = 38.512752, acc = 0.845000\n",
- "epoch [1319] L = 38.512643, acc = 0.845000\n",
- "epoch [1320] L = 38.512535, acc = 0.845000\n",
- "epoch [1321] L = 38.512427, acc = 0.845000\n",
- "epoch [1322] L = 38.512320, acc = 0.845000\n",
- "epoch [1323] L = 38.512212, acc = 0.845000\n",
- "epoch [1324] L = 38.512104, acc = 0.845000\n",
- "epoch [1325] L = 38.511997, acc = 0.845000\n",
- "epoch [1326] L = 38.511889, acc = 0.845000\n",
- "epoch [1327] L = 38.511782, acc = 0.845000\n",
- "epoch [1328] L = 38.511674, acc = 0.845000\n",
- "epoch [1329] L = 38.511567, acc = 0.845000\n",
- "epoch [1330] L = 38.511460, acc = 0.845000\n",
- "epoch [1331] L = 38.511353, acc = 0.845000\n",
- "epoch [1332] L = 38.511246, acc = 0.845000\n",
- "epoch [1333] L = 38.511140, acc = 0.845000\n",
- "epoch [1334] L = 38.511033, acc = 0.845000\n",
- "epoch [1335] L = 38.510926, acc = 0.845000\n",
- "epoch [1336] L = 38.510820, acc = 0.845000\n",
- "epoch [1337] L = 38.510713, acc = 0.845000\n",
- "epoch [1338] L = 38.510607, acc = 0.845000\n",
- "epoch [1339] L = 38.510501, acc = 0.845000\n",
- "epoch [1340] L = 38.510395, acc = 0.845000\n",
- "epoch [1341] L = 38.510289, acc = 0.845000\n",
- "epoch [1342] L = 38.510183, acc = 0.845000\n",
- "epoch [1343] L = 38.510077, acc = 0.845000\n",
- "epoch [1344] L = 38.509971, acc = 0.845000\n",
- "epoch [1345] L = 38.509866, acc = 0.845000\n",
- "epoch [1346] L = 38.509760, acc = 0.845000\n",
- "epoch [1347] L = 38.509655, acc = 0.845000\n",
- "epoch [1348] L = 38.509549, acc = 0.845000\n",
- "epoch [1349] L = 38.509444, acc = 0.845000\n",
- "epoch [1350] L = 38.509339, acc = 0.845000\n",
- "epoch [1351] L = 38.509234, acc = 0.845000\n",
- "epoch [1352] L = 38.509129, acc = 0.845000\n",
- "epoch [1353] L = 38.509024, acc = 0.845000\n",
- "epoch [1354] L = 38.508919, acc = 0.845000\n",
- "epoch [1355] L = 38.508814, acc = 0.845000\n",
- "epoch [1356] L = 38.508710, acc = 0.845000\n",
- "epoch [1357] L = 38.508605, acc = 0.845000\n",
- "epoch [1358] L = 38.508501, acc = 0.845000\n",
- "epoch [1359] L = 38.508396, acc = 0.845000\n",
- "epoch [1360] L = 38.508292, acc = 0.845000\n",
- "epoch [1361] L = 38.508188, acc = 0.845000\n",
- "epoch [1362] L = 38.508084, acc = 0.845000\n",
- "epoch [1363] L = 38.507980, acc = 0.845000\n",
- "epoch [1364] L = 38.507876, acc = 0.845000\n",
- "epoch [1365] L = 38.507772, acc = 0.845000\n",
- "epoch [1366] L = 38.507669, acc = 0.845000\n",
- "epoch [1367] L = 38.507565, acc = 0.845000\n",
- "epoch [1368] L = 38.507461, acc = 0.845000\n",
- "epoch [1369] L = 38.507358, acc = 0.845000\n",
- "epoch [1370] L = 38.507255, acc = 0.845000\n",
- "epoch [1371] L = 38.507151, acc = 0.845000\n",
- "epoch [1372] L = 38.507048, acc = 0.845000\n",
- "epoch [1373] L = 38.506945, acc = 0.845000\n",
- "epoch [1374] L = 38.506842, acc = 0.845000\n",
- "epoch [1375] L = 38.506739, acc = 0.845000\n",
- "epoch [1376] L = 38.506636, acc = 0.845000\n",
- "epoch [1377] L = 38.506534, acc = 0.845000\n",
- "epoch [1378] L = 38.506431, acc = 0.845000\n",
- "epoch [1379] L = 38.506328, acc = 0.845000\n",
- "epoch [1380] L = 38.506226, acc = 0.845000\n",
- "epoch [1381] L = 38.506123, acc = 0.845000\n",
- "epoch [1382] L = 38.506021, acc = 0.845000\n",
- "epoch [1383] L = 38.505919, acc = 0.845000\n",
- "epoch [1384] L = 38.505817, acc = 0.845000\n",
- "epoch [1385] L = 38.505715, acc = 0.845000\n",
- "epoch [1386] L = 38.505613, acc = 0.845000\n",
- "epoch [1387] L = 38.505511, acc = 0.845000\n",
- "epoch [1388] L = 38.505409, acc = 0.845000\n",
- "epoch [1389] L = 38.505307, acc = 0.845000\n",
- "epoch [1390] L = 38.505206, acc = 0.845000\n",
- "epoch [1391] L = 38.505104, acc = 0.845000\n",
- "epoch [1392] L = 38.505003, acc = 0.845000\n",
- "epoch [1393] L = 38.504901, acc = 0.845000\n",
- "epoch [1394] L = 38.504800, acc = 0.845000\n",
- "epoch [1395] L = 38.504699, acc = 0.845000\n",
- "epoch [1396] L = 38.504598, acc = 0.845000\n",
- "epoch [1397] L = 38.504497, acc = 0.845000\n",
- "epoch [1398] L = 38.504396, acc = 0.845000\n",
- "epoch [1399] L = 38.504295, acc = 0.845000\n",
- "epoch [1400] L = 38.504194, acc = 0.845000\n",
- "epoch [1401] L = 38.504093, acc = 0.845000\n",
- "epoch [1402] L = 38.503993, acc = 0.845000\n",
- "epoch [1403] L = 38.503892, acc = 0.845000\n",
- "epoch [1404] L = 38.503792, acc = 0.845000\n",
- "epoch [1405] L = 38.503691, acc = 0.845000\n",
- "epoch [1406] L = 38.503591, acc = 0.845000\n",
- "epoch [1407] L = 38.503491, acc = 0.845000\n",
- "epoch [1408] L = 38.503391, acc = 0.845000\n",
- "epoch [1409] L = 38.503291, acc = 0.845000\n",
- "epoch [1410] L = 38.503191, acc = 0.845000\n",
- "epoch [1411] L = 38.503091, acc = 0.845000\n",
- "epoch [1412] L = 38.502991, acc = 0.845000\n",
- "epoch [1413] L = 38.502891, acc = 0.845000\n",
- "epoch [1414] L = 38.502792, acc = 0.845000\n",
- "epoch [1415] L = 38.502692, acc = 0.845000\n",
- "epoch [1416] L = 38.502593, acc = 0.845000\n",
- "epoch [1417] L = 38.502493, acc = 0.845000\n",
- "epoch [1418] L = 38.502394, acc = 0.845000\n",
- "epoch [1419] L = 38.502295, acc = 0.845000\n",
- "epoch [1420] L = 38.502195, acc = 0.845000\n",
- "epoch [1421] L = 38.502096, acc = 0.845000\n",
- "epoch [1422] L = 38.501997, acc = 0.845000\n",
- "epoch [1423] L = 38.501898, acc = 0.845000\n",
- "epoch [1424] L = 38.501800, acc = 0.845000\n",
- "epoch [1425] L = 38.501701, acc = 0.845000\n",
- "epoch [1426] L = 38.501602, acc = 0.845000\n",
- "epoch [1427] L = 38.501503, acc = 0.845000\n",
- "epoch [1428] L = 38.501405, acc = 0.845000\n",
- "epoch [1429] L = 38.501307, acc = 0.845000\n",
- "epoch [1430] L = 38.501208, acc = 0.845000\n",
- "epoch [1431] L = 38.501110, acc = 0.845000\n",
- "epoch [1432] L = 38.501012, acc = 0.845000\n",
- "epoch [1433] L = 38.500913, acc = 0.845000\n",
- "epoch [1434] L = 38.500815, acc = 0.845000\n",
- "epoch [1435] L = 38.500717, acc = 0.845000\n",
- "epoch [1436] L = 38.500619, acc = 0.845000\n",
- "epoch [1437] L = 38.500522, acc = 0.845000\n",
- "epoch [1438] L = 38.500424, acc = 0.845000\n",
- "epoch [1439] L = 38.500326, acc = 0.845000\n",
- "epoch [1440] L = 38.500229, acc = 0.845000\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "epoch [1441] L = 38.500131, acc = 0.845000\n",
- "epoch [1442] L = 38.500034, acc = 0.845000\n",
- "epoch [1443] L = 38.499936, acc = 0.845000\n",
- "epoch [1444] L = 38.499839, acc = 0.845000\n",
- "epoch [1445] L = 38.499742, acc = 0.845000\n",
- "epoch [1446] L = 38.499644, acc = 0.845000\n",
- "epoch [1447] L = 38.499547, acc = 0.845000\n",
- "epoch [1448] L = 38.499450, acc = 0.845000\n",
- "epoch [1449] L = 38.499353, acc = 0.845000\n",
- "epoch [1450] L = 38.499257, acc = 0.845000\n",
- "epoch [1451] L = 38.499160, acc = 0.845000\n",
- "epoch [1452] L = 38.499063, acc = 0.845000\n",
- "epoch [1453] L = 38.498966, acc = 0.845000\n",
- "epoch [1454] L = 38.498870, acc = 0.845000\n",
- "epoch [1455] L = 38.498773, acc = 0.845000\n",
- "epoch [1456] L = 38.498677, acc = 0.845000\n",
- "epoch [1457] L = 38.498581, acc = 0.845000\n",
- "epoch [1458] L = 38.498484, acc = 0.845000\n",
- "epoch [1459] L = 38.498388, acc = 0.845000\n",
- "epoch [1460] L = 38.498292, acc = 0.845000\n",
- "epoch [1461] L = 38.498196, acc = 0.845000\n",
- "epoch [1462] L = 38.498100, acc = 0.845000\n",
- "epoch [1463] L = 38.498004, acc = 0.845000\n",
- "epoch [1464] L = 38.497908, acc = 0.845000\n",
- "epoch [1465] L = 38.497812, acc = 0.845000\n",
- "epoch [1466] L = 38.497717, acc = 0.845000\n",
- "epoch [1467] L = 38.497621, acc = 0.845000\n",
- "epoch [1468] L = 38.497526, acc = 0.845000\n",
- "epoch [1469] L = 38.497430, acc = 0.845000\n",
- "epoch [1470] L = 38.497335, acc = 0.845000\n",
- "epoch [1471] L = 38.497239, acc = 0.845000\n",
- "epoch [1472] L = 38.497144, acc = 0.845000\n",
- "epoch [1473] L = 38.497049, acc = 0.845000\n",
- "epoch [1474] L = 38.496954, acc = 0.845000\n",
- "epoch [1475] L = 38.496859, acc = 0.845000\n",
- "epoch [1476] L = 38.496764, acc = 0.845000\n",
- "epoch [1477] L = 38.496669, acc = 0.845000\n",
- "epoch [1478] L = 38.496574, acc = 0.845000\n",
- "epoch [1479] L = 38.496479, acc = 0.845000\n",
- "epoch [1480] L = 38.496385, acc = 0.845000\n",
- "epoch [1481] L = 38.496290, acc = 0.845000\n",
- "epoch [1482] L = 38.496195, acc = 0.845000\n",
- "epoch [1483] L = 38.496101, acc = 0.845000\n",
- "epoch [1484] L = 38.496006, acc = 0.845000\n",
- "epoch [1485] L = 38.495912, acc = 0.845000\n",
- "epoch [1486] L = 38.495818, acc = 0.845000\n",
- "epoch [1487] L = 38.495724, acc = 0.845000\n",
- "epoch [1488] L = 38.495629, acc = 0.845000\n",
- "epoch [1489] L = 38.495535, acc = 0.845000\n",
- "epoch [1490] L = 38.495441, acc = 0.845000\n",
- "epoch [1491] L = 38.495347, acc = 0.845000\n",
- "epoch [1492] L = 38.495254, acc = 0.845000\n",
- "epoch [1493] L = 38.495160, acc = 0.845000\n",
- "epoch [1494] L = 38.495066, acc = 0.845000\n",
- "epoch [1495] L = 38.494972, acc = 0.845000\n",
- "epoch [1496] L = 38.494879, acc = 0.845000\n",
- "epoch [1497] L = 38.494785, acc = 0.845000\n",
- "epoch [1498] L = 38.494692, acc = 0.845000\n",
- "epoch [1499] L = 38.494598, acc = 0.845000\n",
- "epoch [1500] L = 38.494505, acc = 0.845000\n",
- "epoch [1501] L = 38.494412, acc = 0.845000\n",
- "epoch [1502] L = 38.494319, acc = 0.845000\n",
- "epoch [1503] L = 38.494225, acc = 0.845000\n",
- "epoch [1504] L = 38.494132, acc = 0.845000\n",
- "epoch [1505] L = 38.494039, acc = 0.845000\n",
- "epoch [1506] L = 38.493946, acc = 0.845000\n",
- "epoch [1507] L = 38.493854, acc = 0.845000\n",
- "epoch [1508] L = 38.493761, acc = 0.845000\n",
- "epoch [1509] L = 38.493668, acc = 0.845000\n",
- "epoch [1510] L = 38.493575, acc = 0.845000\n",
- "epoch [1511] L = 38.493483, acc = 0.845000\n",
- "epoch [1512] L = 38.493390, acc = 0.845000\n",
- "epoch [1513] L = 38.493298, acc = 0.845000\n",
- "epoch [1514] L = 38.493205, acc = 0.845000\n",
- "epoch [1515] L = 38.493113, acc = 0.845000\n",
- "epoch [1516] L = 38.493021, acc = 0.845000\n",
- "epoch [1517] L = 38.492929, acc = 0.845000\n",
- "epoch [1518] L = 38.492836, acc = 0.845000\n",
- "epoch [1519] L = 38.492744, acc = 0.845000\n",
- "epoch [1520] L = 38.492652, acc = 0.845000\n",
- "epoch [1521] L = 38.492560, acc = 0.845000\n",
- "epoch [1522] L = 38.492468, acc = 0.845000\n",
- "epoch [1523] L = 38.492377, acc = 0.845000\n",
- "epoch [1524] L = 38.492285, acc = 0.845000\n",
- "epoch [1525] L = 38.492193, acc = 0.845000\n",
- "epoch [1526] L = 38.492101, acc = 0.845000\n",
- "epoch [1527] L = 38.492010, acc = 0.845000\n",
- "epoch [1528] L = 38.491918, acc = 0.845000\n",
- "epoch [1529] L = 38.491827, acc = 0.845000\n",
- "epoch [1530] L = 38.491736, acc = 0.845000\n",
- "epoch [1531] L = 38.491644, acc = 0.845000\n",
- "epoch [1532] L = 38.491553, acc = 0.845000\n",
- "epoch [1533] L = 38.491462, acc = 0.845000\n",
- "epoch [1534] L = 38.491371, acc = 0.845000\n",
- "epoch [1535] L = 38.491280, acc = 0.845000\n",
- "epoch [1536] L = 38.491189, acc = 0.845000\n",
- "epoch [1537] L = 38.491098, acc = 0.845000\n",
- "epoch [1538] L = 38.491007, acc = 0.845000\n",
- "epoch [1539] L = 38.490916, acc = 0.845000\n",
- "epoch [1540] L = 38.490825, acc = 0.845000\n",
- "epoch [1541] L = 38.490735, acc = 0.845000\n",
- "epoch [1542] L = 38.490644, acc = 0.845000\n",
- "epoch [1543] L = 38.490553, acc = 0.845000\n",
- "epoch [1544] L = 38.490463, acc = 0.845000\n",
- "epoch [1545] L = 38.490372, acc = 0.845000\n",
- "epoch [1546] L = 38.490282, acc = 0.845000\n",
- "epoch [1547] L = 38.490192, acc = 0.845000\n",
- "epoch [1548] L = 38.490101, acc = 0.845000\n",
- "epoch [1549] L = 38.490011, acc = 0.845000\n",
- "epoch [1550] L = 38.489921, acc = 0.845000\n",
- "epoch [1551] L = 38.489831, acc = 0.845000\n",
- "epoch [1552] L = 38.489741, acc = 0.845000\n",
- "epoch [1553] L = 38.489651, acc = 0.845000\n",
- "epoch [1554] L = 38.489561, acc = 0.845000\n",
- "epoch [1555] L = 38.489471, acc = 0.845000\n",
- "epoch [1556] L = 38.489381, acc = 0.845000\n",
- "epoch [1557] L = 38.489292, acc = 0.845000\n",
- "epoch [1558] L = 38.489202, acc = 0.845000\n",
- "epoch [1559] L = 38.489112, acc = 0.845000\n",
- "epoch [1560] L = 38.489023, acc = 0.845000\n",
- "epoch [1561] L = 38.488933, acc = 0.845000\n",
- "epoch [1562] L = 38.488844, acc = 0.845000\n",
- "epoch [1563] L = 38.488755, acc = 0.845000\n",
- "epoch [1564] L = 38.488665, acc = 0.845000\n",
- "epoch [1565] L = 38.488576, acc = 0.845000\n",
- "epoch [1566] L = 38.488487, acc = 0.845000\n",
- "epoch [1567] L = 38.488398, acc = 0.845000\n",
- "epoch [1568] L = 38.488309, acc = 0.845000\n",
- "epoch [1569] L = 38.488220, acc = 0.845000\n",
- "epoch [1570] L = 38.488131, acc = 0.845000\n",
- "epoch [1571] L = 38.488042, acc = 0.845000\n",
- "epoch [1572] L = 38.487953, acc = 0.845000\n",
- "epoch [1573] L = 38.487864, acc = 0.845000\n",
- "epoch [1574] L = 38.487775, acc = 0.845000\n",
- "epoch [1575] L = 38.487687, acc = 0.845000\n",
- "epoch [1576] L = 38.487598, acc = 0.845000\n",
- "epoch [1577] L = 38.487510, acc = 0.845000\n",
- "epoch [1578] L = 38.487421, acc = 0.845000\n",
- "epoch [1579] L = 38.487333, acc = 0.845000\n",
- "epoch [1580] L = 38.487244, acc = 0.845000\n",
- "epoch [1581] L = 38.487156, acc = 0.845000\n",
- "epoch [1582] L = 38.487068, acc = 0.845000\n",
- "epoch [1583] L = 38.486979, acc = 0.845000\n",
- "epoch [1584] L = 38.486891, acc = 0.845000\n",
- "epoch [1585] L = 38.486803, acc = 0.845000\n",
- "epoch [1586] L = 38.486715, acc = 0.845000\n",
- "epoch [1587] L = 38.486627, acc = 0.845000\n",
- "epoch [1588] L = 38.486539, acc = 0.845000\n",
- "epoch [1589] L = 38.486451, acc = 0.845000\n",
- "epoch [1590] L = 38.486364, acc = 0.845000\n",
- "epoch [1591] L = 38.486276, acc = 0.845000\n",
- "epoch [1592] L = 38.486188, acc = 0.845000\n",
- "epoch [1593] L = 38.486101, acc = 0.845000\n",
- "epoch [1594] L = 38.486013, acc = 0.845000\n",
- "epoch [1595] L = 38.485925, acc = 0.845000\n",
- "epoch [1596] L = 38.485838, acc = 0.845000\n",
- "epoch [1597] L = 38.485750, acc = 0.845000\n",
- "epoch [1598] L = 38.485663, acc = 0.845000\n",
- "epoch [1599] L = 38.485576, acc = 0.845000\n",
- "epoch [1600] L = 38.485489, acc = 0.845000\n",
- "epoch [1601] L = 38.485401, acc = 0.845000\n",
- "epoch [1602] L = 38.485314, acc = 0.845000\n",
- "epoch [1603] L = 38.485227, acc = 0.845000\n",
- "epoch [1604] L = 38.485140, acc = 0.845000\n",
- "epoch [1605] L = 38.485053, acc = 0.845000\n",
- "epoch [1606] L = 38.484966, acc = 0.845000\n",
- "epoch [1607] L = 38.484879, acc = 0.845000\n",
- "epoch [1608] L = 38.484792, acc = 0.845000\n",
- "epoch [1609] L = 38.484706, acc = 0.845000\n",
- "epoch [1610] L = 38.484619, acc = 0.845000\n",
- "epoch [1611] L = 38.484532, acc = 0.845000\n",
- "epoch [1612] L = 38.484446, acc = 0.845000\n",
- "epoch [1613] L = 38.484359, acc = 0.845000\n",
- "epoch [1614] L = 38.484273, acc = 0.845000\n",
- "epoch [1615] L = 38.484186, acc = 0.845000\n",
- "epoch [1616] L = 38.484100, acc = 0.845000\n",
- "epoch [1617] L = 38.484014, acc = 0.845000\n",
- "epoch [1618] L = 38.483927, acc = 0.845000\n",
- "epoch [1619] L = 38.483841, acc = 0.845000\n",
- "epoch [1620] L = 38.483755, acc = 0.845000\n",
- "epoch [1621] L = 38.483669, acc = 0.845000\n",
- "epoch [1622] L = 38.483583, acc = 0.845000\n",
- "epoch [1623] L = 38.483497, acc = 0.845000\n",
- "epoch [1624] L = 38.483411, acc = 0.845000\n",
- "epoch [1625] L = 38.483325, acc = 0.845000\n",
- "epoch [1626] L = 38.483239, acc = 0.845000\n",
- "epoch [1627] L = 38.483153, acc = 0.845000\n",
- "epoch [1628] L = 38.483067, acc = 0.845000\n",
- "epoch [1629] L = 38.482982, acc = 0.845000\n",
- "epoch [1630] L = 38.482896, acc = 0.845000\n",
- "epoch [1631] L = 38.482810, acc = 0.845000\n",
- "epoch [1632] L = 38.482725, acc = 0.845000\n",
- "epoch [1633] L = 38.482639, acc = 0.845000\n",
- "epoch [1634] L = 38.482554, acc = 0.845000\n",
- "epoch [1635] L = 38.482469, acc = 0.845000\n",
- "epoch [1636] L = 38.482383, acc = 0.845000\n",
- "epoch [1637] L = 38.482298, acc = 0.845000\n",
- "epoch [1638] L = 38.482213, acc = 0.845000\n",
- "epoch [1639] L = 38.482127, acc = 0.845000\n",
- "epoch [1640] L = 38.482042, acc = 0.845000\n",
- "epoch [1641] L = 38.481957, acc = 0.845000\n",
- "epoch [1642] L = 38.481872, acc = 0.845000\n",
- "epoch [1643] L = 38.481787, acc = 0.845000\n",
- "epoch [1644] L = 38.481702, acc = 0.845000\n",
- "epoch [1645] L = 38.481617, acc = 0.845000\n",
- "epoch [1646] L = 38.481533, acc = 0.845000\n",
- "epoch [1647] L = 38.481448, acc = 0.845000\n",
- "epoch [1648] L = 38.481363, acc = 0.845000\n",
- "epoch [1649] L = 38.481278, acc = 0.845000\n",
- "epoch [1650] L = 38.481194, acc = 0.845000\n",
- "epoch [1651] L = 38.481109, acc = 0.845000\n",
- "epoch [1652] L = 38.481025, acc = 0.845000\n",
- "epoch [1653] L = 38.480940, acc = 0.845000\n",
- "epoch [1654] L = 38.480856, acc = 0.845000\n",
- "epoch [1655] L = 38.480771, acc = 0.845000\n",
- "epoch [1656] L = 38.480687, acc = 0.845000\n",
- "epoch [1657] L = 38.480603, acc = 0.845000\n",
- "epoch [1658] L = 38.480519, acc = 0.845000\n",
- "epoch [1659] L = 38.480434, acc = 0.845000\n",
- "epoch [1660] L = 38.480350, acc = 0.845000\n",
- "epoch [1661] L = 38.480266, acc = 0.845000\n",
- "epoch [1662] L = 38.480182, acc = 0.845000\n",
- "epoch [1663] L = 38.480098, acc = 0.845000\n",
- "epoch [1664] L = 38.480014, acc = 0.845000\n",
- "epoch [1665] L = 38.479930, acc = 0.845000\n",
- "epoch [1666] L = 38.479847, acc = 0.845000\n",
- "epoch [1667] L = 38.479763, acc = 0.845000\n",
- "epoch [1668] L = 38.479679, acc = 0.845000\n",
- "epoch [1669] L = 38.479595, acc = 0.845000\n",
- "epoch [1670] L = 38.479512, acc = 0.845000\n",
- "epoch [1671] L = 38.479428, acc = 0.845000\n",
- "epoch [1672] L = 38.479345, acc = 0.845000\n",
- "epoch [1673] L = 38.479261, acc = 0.845000\n",
- "epoch [1674] L = 38.479178, acc = 0.845000\n",
- "epoch [1675] L = 38.479094, acc = 0.845000\n",
- "epoch [1676] L = 38.479011, acc = 0.845000\n",
- "epoch [1677] L = 38.478928, acc = 0.845000\n",
- "epoch [1678] L = 38.478844, acc = 0.845000\n",
- "epoch [1679] L = 38.478761, acc = 0.845000\n",
- "epoch [1680] L = 38.478678, acc = 0.845000\n",
- "epoch [1681] L = 38.478595, acc = 0.845000\n",
- "epoch [1682] L = 38.478512, acc = 0.845000\n",
- "epoch [1683] L = 38.478429, acc = 0.845000\n",
- "epoch [1684] L = 38.478346, acc = 0.845000\n",
- "epoch [1685] L = 38.478263, acc = 0.845000\n",
- "epoch [1686] L = 38.478180, acc = 0.845000\n",
- "epoch [1687] L = 38.478097, acc = 0.845000\n",
- "epoch [1688] L = 38.478014, acc = 0.845000\n",
- "epoch [1689] L = 38.477932, acc = 0.845000\n",
- "epoch [1690] L = 38.477849, acc = 0.845000\n",
- "epoch [1691] L = 38.477766, acc = 0.845000\n",
- "epoch [1692] L = 38.477684, acc = 0.845000\n",
- "epoch [1693] L = 38.477601, acc = 0.845000\n",
- "epoch [1694] L = 38.477519, acc = 0.845000\n",
- "epoch [1695] L = 38.477436, acc = 0.845000\n",
- "epoch [1696] L = 38.477354, acc = 0.845000\n",
- "epoch [1697] L = 38.477271, acc = 0.845000\n",
- "epoch [1698] L = 38.477189, acc = 0.845000\n",
- "epoch [1699] L = 38.477107, acc = 0.845000\n",
- "epoch [1700] L = 38.477025, acc = 0.845000\n",
- "epoch [1701] L = 38.476942, acc = 0.845000\n",
- "epoch [1702] L = 38.476860, acc = 0.845000\n",
- "epoch [1703] L = 38.476778, acc = 0.845000\n",
- "epoch [1704] L = 38.476696, acc = 0.845000\n",
- "epoch [1705] L = 38.476614, acc = 0.845000\n",
- "epoch [1706] L = 38.476532, acc = 0.845000\n",
- "epoch [1707] L = 38.476450, acc = 0.845000\n",
- "epoch [1708] L = 38.476368, acc = 0.845000\n",
- "epoch [1709] L = 38.476287, acc = 0.845000\n",
- "epoch [1710] L = 38.476205, acc = 0.845000\n",
- "epoch [1711] L = 38.476123, acc = 0.845000\n",
- "epoch [1712] L = 38.476041, acc = 0.845000\n",
- "epoch [1713] L = 38.475960, acc = 0.845000\n",
- "epoch [1714] L = 38.475878, acc = 0.845000\n",
- "epoch [1715] L = 38.475797, acc = 0.845000\n",
- "epoch [1716] L = 38.475715, acc = 0.845000\n",
- "epoch [1717] L = 38.475634, acc = 0.845000\n",
- "epoch [1718] L = 38.475552, acc = 0.845000\n",
- "epoch [1719] L = 38.475471, acc = 0.845000\n",
- "epoch [1720] L = 38.475390, acc = 0.845000\n",
- "epoch [1721] L = 38.475308, acc = 0.845000\n",
- "epoch [1722] L = 38.475227, acc = 0.845000\n",
- "epoch [1723] L = 38.475146, acc = 0.845000\n",
- "epoch [1724] L = 38.475065, acc = 0.845000\n",
- "epoch [1725] L = 38.474984, acc = 0.845000\n",
- "epoch [1726] L = 38.474903, acc = 0.845000\n",
- "epoch [1727] L = 38.474822, acc = 0.845000\n",
- "epoch [1728] L = 38.474741, acc = 0.845000\n",
- "epoch [1729] L = 38.474660, acc = 0.845000\n",
- "epoch [1730] L = 38.474579, acc = 0.845000\n",
- "epoch [1731] L = 38.474498, acc = 0.845000\n",
- "epoch [1732] L = 38.474417, acc = 0.845000\n",
- "epoch [1733] L = 38.474337, acc = 0.845000\n",
- "epoch [1734] L = 38.474256, acc = 0.845000\n",
- "epoch [1735] L = 38.474175, acc = 0.845000\n",
- "epoch [1736] L = 38.474095, acc = 0.845000\n",
- "epoch [1737] L = 38.474014, acc = 0.845000\n",
- "epoch [1738] L = 38.473934, acc = 0.845000\n",
- "epoch [1739] L = 38.473853, acc = 0.845000\n",
- "epoch [1740] L = 38.473773, acc = 0.845000\n",
- "epoch [1741] L = 38.473692, acc = 0.845000\n",
- "epoch [1742] L = 38.473612, acc = 0.845000\n",
- "epoch [1743] L = 38.473532, acc = 0.845000\n",
- "epoch [1744] L = 38.473451, acc = 0.845000\n",
- "epoch [1745] L = 38.473371, acc = 0.845000\n",
- "epoch [1746] L = 38.473291, acc = 0.845000\n",
- "epoch [1747] L = 38.473211, acc = 0.845000\n",
- "epoch [1748] L = 38.473131, acc = 0.845000\n",
- "epoch [1749] L = 38.473051, acc = 0.845000\n",
- "epoch [1750] L = 38.472970, acc = 0.845000\n",
- "epoch [1751] L = 38.472891, acc = 0.845000\n",
- "epoch [1752] L = 38.472811, acc = 0.845000\n",
- "epoch [1753] L = 38.472731, acc = 0.845000\n",
- "epoch [1754] L = 38.472651, acc = 0.845000\n",
- "epoch [1755] L = 38.472571, acc = 0.845000\n",
- "epoch [1756] L = 38.472491, acc = 0.845000\n",
- "epoch [1757] L = 38.472412, acc = 0.845000\n",
- "epoch [1758] L = 38.472332, acc = 0.845000\n",
- "epoch [1759] L = 38.472252, acc = 0.845000\n",
- "epoch [1760] L = 38.472173, acc = 0.845000\n",
- "epoch [1761] L = 38.472093, acc = 0.845000\n",
- "epoch [1762] L = 38.472014, acc = 0.845000\n",
- "epoch [1763] L = 38.471934, acc = 0.845000\n",
- "epoch [1764] L = 38.471855, acc = 0.845000\n",
- "epoch [1765] L = 38.471775, acc = 0.845000\n",
- "epoch [1766] L = 38.471696, acc = 0.845000\n",
- "epoch [1767] L = 38.471617, acc = 0.845000\n",
- "epoch [1768] L = 38.471537, acc = 0.845000\n",
- "epoch [1769] L = 38.471458, acc = 0.845000\n",
- "epoch [1770] L = 38.471379, acc = 0.845000\n",
- "epoch [1771] L = 38.471300, acc = 0.845000\n",
- "epoch [1772] L = 38.471221, acc = 0.845000\n",
- "epoch [1773] L = 38.471142, acc = 0.845000\n",
- "epoch [1774] L = 38.471063, acc = 0.845000\n",
- "epoch [1775] L = 38.470984, acc = 0.845000\n",
- "epoch [1776] L = 38.470905, acc = 0.845000\n",
- "epoch [1777] L = 38.470826, acc = 0.845000\n",
- "epoch [1778] L = 38.470747, acc = 0.845000\n",
- "epoch [1779] L = 38.470668, acc = 0.845000\n",
- "epoch [1780] L = 38.470589, acc = 0.845000\n",
- "epoch [1781] L = 38.470511, acc = 0.845000\n",
- "epoch [1782] L = 38.470432, acc = 0.845000\n",
- "epoch [1783] L = 38.470353, acc = 0.845000\n",
- "epoch [1784] L = 38.470275, acc = 0.845000\n",
- "epoch [1785] L = 38.470196, acc = 0.845000\n",
- "epoch [1786] L = 38.470118, acc = 0.845000\n",
- "epoch [1787] L = 38.470039, acc = 0.845000\n",
- "epoch [1788] L = 38.469961, acc = 0.845000\n",
- "epoch [1789] L = 38.469882, acc = 0.845000\n",
- "epoch [1790] L = 38.469804, acc = 0.845000\n",
- "epoch [1791] L = 38.469725, acc = 0.845000\n",
- "epoch [1792] L = 38.469647, acc = 0.845000\n",
- "epoch [1793] L = 38.469569, acc = 0.845000\n",
- "epoch [1794] L = 38.469491, acc = 0.845000\n",
- "epoch [1795] L = 38.469413, acc = 0.845000\n",
- "epoch [1796] L = 38.469334, acc = 0.845000\n",
- "epoch [1797] L = 38.469256, acc = 0.845000\n",
- "epoch [1798] L = 38.469178, acc = 0.845000\n",
- "epoch [1799] L = 38.469100, acc = 0.845000\n",
- "epoch [1800] L = 38.469022, acc = 0.845000\n",
- "epoch [1801] L = 38.468944, acc = 0.845000\n",
- "epoch [1802] L = 38.468866, acc = 0.845000\n",
- "epoch [1803] L = 38.468789, acc = 0.845000\n",
- "epoch [1804] L = 38.468711, acc = 0.845000\n",
- "epoch [1805] L = 38.468633, acc = 0.845000\n",
- "epoch [1806] L = 38.468555, acc = 0.845000\n",
- "epoch [1807] L = 38.468477, acc = 0.845000\n",
- "epoch [1808] L = 38.468400, acc = 0.845000\n",
- "epoch [1809] L = 38.468322, acc = 0.845000\n",
- "epoch [1810] L = 38.468245, acc = 0.845000\n",
- "epoch [1811] L = 38.468167, acc = 0.845000\n",
- "epoch [1812] L = 38.468089, acc = 0.845000\n",
- "epoch [1813] L = 38.468012, acc = 0.845000\n",
- "epoch [1814] L = 38.467935, acc = 0.845000\n",
- "epoch [1815] L = 38.467857, acc = 0.845000\n",
- "epoch [1816] L = 38.467780, acc = 0.845000\n",
- "epoch [1817] L = 38.467702, acc = 0.845000\n",
- "epoch [1818] L = 38.467625, acc = 0.845000\n",
- "epoch [1819] L = 38.467548, acc = 0.845000\n",
- "epoch [1820] L = 38.467471, acc = 0.845000\n",
- "epoch [1821] L = 38.467394, acc = 0.845000\n",
- "epoch [1822] L = 38.467316, acc = 0.845000\n",
- "epoch [1823] L = 38.467239, acc = 0.845000\n",
- "epoch [1824] L = 38.467162, acc = 0.845000\n",
- "epoch [1825] L = 38.467085, acc = 0.845000\n",
- "epoch [1826] L = 38.467008, acc = 0.845000\n",
- "epoch [1827] L = 38.466931, acc = 0.845000\n",
- "epoch [1828] L = 38.466854, acc = 0.845000\n",
- "epoch [1829] L = 38.466777, acc = 0.845000\n",
- "epoch [1830] L = 38.466701, acc = 0.845000\n",
- "epoch [1831] L = 38.466624, acc = 0.845000\n",
- "epoch [1832] L = 38.466547, acc = 0.845000\n",
- "epoch [1833] L = 38.466470, acc = 0.845000\n",
- "epoch [1834] L = 38.466394, acc = 0.845000\n",
- "epoch [1835] L = 38.466317, acc = 0.845000\n",
- "epoch [1836] L = 38.466240, acc = 0.845000\n",
- "epoch [1837] L = 38.466164, acc = 0.845000\n",
- "epoch [1838] L = 38.466087, acc = 0.845000\n",
- "epoch [1839] L = 38.466011, acc = 0.845000\n",
- "epoch [1840] L = 38.465934, acc = 0.845000\n",
- "epoch [1841] L = 38.465858, acc = 0.845000\n",
- "epoch [1842] L = 38.465781, acc = 0.845000\n",
- "epoch [1843] L = 38.465705, acc = 0.845000\n",
- "epoch [1844] L = 38.465629, acc = 0.845000\n",
- "epoch [1845] L = 38.465553, acc = 0.845000\n",
- "epoch [1846] L = 38.465476, acc = 0.845000\n",
- "epoch [1847] L = 38.465400, acc = 0.845000\n",
- "epoch [1848] L = 38.465324, acc = 0.845000\n",
- "epoch [1849] L = 38.465248, acc = 0.845000\n",
- "epoch [1850] L = 38.465172, acc = 0.845000\n",
- "epoch [1851] L = 38.465096, acc = 0.845000\n",
- "epoch [1852] L = 38.465020, acc = 0.845000\n",
- "epoch [1853] L = 38.464944, acc = 0.845000\n",
- "epoch [1854] L = 38.464868, acc = 0.845000\n",
- "epoch [1855] L = 38.464792, acc = 0.845000\n",
- "epoch [1856] L = 38.464716, acc = 0.845000\n",
- "epoch [1857] L = 38.464640, acc = 0.845000\n",
- "epoch [1858] L = 38.464564, acc = 0.845000\n",
- "epoch [1859] L = 38.464488, acc = 0.845000\n",
- "epoch [1860] L = 38.464413, acc = 0.845000\n",
- "epoch [1861] L = 38.464337, acc = 0.845000\n",
- "epoch [1862] L = 38.464261, acc = 0.845000\n",
- "epoch [1863] L = 38.464186, acc = 0.845000\n",
- "epoch [1864] L = 38.464110, acc = 0.845000\n",
- "epoch [1865] L = 38.464034, acc = 0.845000\n",
- "epoch [1866] L = 38.463959, acc = 0.845000\n",
- "epoch [1867] L = 38.463883, acc = 0.845000\n",
- "epoch [1868] L = 38.463808, acc = 0.845000\n",
- "epoch [1869] L = 38.463733, acc = 0.845000\n",
- "epoch [1870] L = 38.463657, acc = 0.845000\n",
- "epoch [1871] L = 38.463582, acc = 0.845000\n",
- "epoch [1872] L = 38.463506, acc = 0.845000\n",
- "epoch [1873] L = 38.463431, acc = 0.845000\n",
- "epoch [1874] L = 38.463356, acc = 0.845000\n",
- "epoch [1875] L = 38.463281, acc = 0.845000\n",
- "epoch [1876] L = 38.463206, acc = 0.845000\n",
- "epoch [1877] L = 38.463130, acc = 0.845000\n",
- "epoch [1878] L = 38.463055, acc = 0.845000\n",
- "epoch [1879] L = 38.462980, acc = 0.845000\n",
- "epoch [1880] L = 38.462905, acc = 0.845000\n",
- "epoch [1881] L = 38.462830, acc = 0.845000\n",
- "epoch [1882] L = 38.462755, acc = 0.845000\n",
- "epoch [1883] L = 38.462680, acc = 0.845000\n",
- "epoch [1884] L = 38.462605, acc = 0.845000\n",
- "epoch [1885] L = 38.462530, acc = 0.845000\n",
- "epoch [1886] L = 38.462456, acc = 0.845000\n",
- "epoch [1887] L = 38.462381, acc = 0.845000\n",
- "epoch [1888] L = 38.462306, acc = 0.845000\n",
- "epoch [1889] L = 38.462231, acc = 0.845000\n",
- "epoch [1890] L = 38.462157, acc = 0.845000\n",
- "epoch [1891] L = 38.462082, acc = 0.845000\n",
- "epoch [1892] L = 38.462007, acc = 0.845000\n",
- "epoch [1893] L = 38.461933, acc = 0.845000\n",
- "epoch [1894] L = 38.461858, acc = 0.845000\n",
- "epoch [1895] L = 38.461784, acc = 0.845000\n",
- "epoch [1896] L = 38.461709, acc = 0.845000\n",
- "epoch [1897] L = 38.461635, acc = 0.845000\n",
- "epoch [1898] L = 38.461560, acc = 0.845000\n",
- "epoch [1899] L = 38.461486, acc = 0.845000\n",
- "epoch [1900] L = 38.461412, acc = 0.845000\n",
- "epoch [1901] L = 38.461337, acc = 0.845000\n",
- "epoch [1902] L = 38.461263, acc = 0.845000\n",
- "epoch [1903] L = 38.461189, acc = 0.845000\n",
- "epoch [1904] L = 38.461114, acc = 0.845000\n",
- "epoch [1905] L = 38.461040, acc = 0.845000\n",
- "epoch [1906] L = 38.460966, acc = 0.845000\n",
- "epoch [1907] L = 38.460892, acc = 0.845000\n",
- "epoch [1908] L = 38.460818, acc = 0.845000\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "epoch [1909] L = 38.460744, acc = 0.845000\n",
- "epoch [1910] L = 38.460670, acc = 0.845000\n",
- "epoch [1911] L = 38.460596, acc = 0.845000\n",
- "epoch [1912] L = 38.460522, acc = 0.845000\n",
- "epoch [1913] L = 38.460448, acc = 0.845000\n",
- "epoch [1914] L = 38.460374, acc = 0.845000\n",
- "epoch [1915] L = 38.460300, acc = 0.845000\n",
- "epoch [1916] L = 38.460226, acc = 0.845000\n",
- "epoch [1917] L = 38.460153, acc = 0.845000\n",
- "epoch [1918] L = 38.460079, acc = 0.845000\n",
- "epoch [1919] L = 38.460005, acc = 0.845000\n",
- "epoch [1920] L = 38.459931, acc = 0.845000\n",
- "epoch [1921] L = 38.459858, acc = 0.845000\n",
- "epoch [1922] L = 38.459784, acc = 0.845000\n",
- "epoch [1923] L = 38.459711, acc = 0.845000\n",
- "epoch [1924] L = 38.459637, acc = 0.845000\n",
- "epoch [1925] L = 38.459563, acc = 0.845000\n",
- "epoch [1926] L = 38.459490, acc = 0.845000\n",
- "epoch [1927] L = 38.459416, acc = 0.845000\n",
- "epoch [1928] L = 38.459343, acc = 0.845000\n",
- "epoch [1929] L = 38.459270, acc = 0.845000\n",
- "epoch [1930] L = 38.459196, acc = 0.845000\n",
- "epoch [1931] L = 38.459123, acc = 0.845000\n",
- "epoch [1932] L = 38.459050, acc = 0.845000\n",
- "epoch [1933] L = 38.458976, acc = 0.845000\n",
- "epoch [1934] L = 38.458903, acc = 0.845000\n",
- "epoch [1935] L = 38.458830, acc = 0.845000\n",
- "epoch [1936] L = 38.458757, acc = 0.845000\n",
- "epoch [1937] L = 38.458684, acc = 0.845000\n",
- "epoch [1938] L = 38.458610, acc = 0.845000\n",
- "epoch [1939] L = 38.458537, acc = 0.845000\n",
- "epoch [1940] L = 38.458464, acc = 0.845000\n",
- "epoch [1941] L = 38.458391, acc = 0.845000\n",
- "epoch [1942] L = 38.458318, acc = 0.845000\n",
- "epoch [1943] L = 38.458245, acc = 0.845000\n",
- "epoch [1944] L = 38.458172, acc = 0.845000\n",
- "epoch [1945] L = 38.458100, acc = 0.845000\n",
- "epoch [1946] L = 38.458027, acc = 0.845000\n",
- "epoch [1947] L = 38.457954, acc = 0.845000\n",
- "epoch [1948] L = 38.457881, acc = 0.845000\n",
- "epoch [1949] L = 38.457808, acc = 0.845000\n",
- "epoch [1950] L = 38.457736, acc = 0.845000\n",
- "epoch [1951] L = 38.457663, acc = 0.845000\n",
- "epoch [1952] L = 38.457590, acc = 0.845000\n",
- "epoch [1953] L = 38.457518, acc = 0.845000\n",
- "epoch [1954] L = 38.457445, acc = 0.845000\n",
- "epoch [1955] L = 38.457372, acc = 0.845000\n",
- "epoch [1956] L = 38.457300, acc = 0.845000\n",
- "epoch [1957] L = 38.457227, acc = 0.845000\n",
- "epoch [1958] L = 38.457155, acc = 0.845000\n",
- "epoch [1959] L = 38.457082, acc = 0.845000\n",
- "epoch [1960] L = 38.457010, acc = 0.845000\n",
- "epoch [1961] L = 38.456938, acc = 0.845000\n",
- "epoch [1962] L = 38.456865, acc = 0.845000\n",
- "epoch [1963] L = 38.456793, acc = 0.845000\n",
- "epoch [1964] L = 38.456721, acc = 0.845000\n",
- "epoch [1965] L = 38.456648, acc = 0.845000\n",
- "epoch [1966] L = 38.456576, acc = 0.845000\n",
- "epoch [1967] L = 38.456504, acc = 0.845000\n",
- "epoch [1968] L = 38.456432, acc = 0.845000\n",
- "epoch [1969] L = 38.456360, acc = 0.845000\n",
- "epoch [1970] L = 38.456287, acc = 0.845000\n",
- "epoch [1971] L = 38.456215, acc = 0.845000\n",
- "epoch [1972] L = 38.456143, acc = 0.845000\n",
- "epoch [1973] L = 38.456071, acc = 0.845000\n",
- "epoch [1974] L = 38.455999, acc = 0.845000\n",
- "epoch [1975] L = 38.455927, acc = 0.845000\n",
- "epoch [1976] L = 38.455855, acc = 0.845000\n",
- "epoch [1977] L = 38.455784, acc = 0.845000\n",
- "epoch [1978] L = 38.455712, acc = 0.845000\n",
- "epoch [1979] L = 38.455640, acc = 0.845000\n",
- "epoch [1980] L = 38.455568, acc = 0.845000\n",
- "epoch [1981] L = 38.455496, acc = 0.845000\n",
- "epoch [1982] L = 38.455425, acc = 0.845000\n",
- "epoch [1983] L = 38.455353, acc = 0.845000\n",
- "epoch [1984] L = 38.455281, acc = 0.845000\n",
- "epoch [1985] L = 38.455209, acc = 0.845000\n",
- "epoch [1986] L = 38.455138, acc = 0.845000\n",
- "epoch [1987] L = 38.455066, acc = 0.845000\n",
- "epoch [1988] L = 38.454995, acc = 0.845000\n",
- "epoch [1989] L = 38.454923, acc = 0.845000\n",
- "epoch [1990] L = 38.454852, acc = 0.845000\n",
- "epoch [1991] L = 38.454780, acc = 0.845000\n",
- "epoch [1992] L = 38.454709, acc = 0.845000\n",
- "epoch [1993] L = 38.454637, acc = 0.845000\n",
- "epoch [1994] L = 38.454566, acc = 0.845000\n",
- "epoch [1995] L = 38.454494, acc = 0.845000\n",
- "epoch [1996] L = 38.454423, acc = 0.845000\n",
- "epoch [1997] L = 38.454352, acc = 0.845000\n",
- "epoch [1998] L = 38.454281, acc = 0.845000\n",
- "epoch [1999] L = 38.454209, acc = 0.845000\n"
- ]
- }
- ],
- "source": [
- "# FIXME: change variable name to math\n",
- "\n",
- "from sklearn.metrics import accuracy_score\n",
- "\n",
- "y_true = np.array(nn.y).astype(float)\n",
- "\n",
- "# back-propagation\n",
- "def backpropagation(n, X, y):\n",
- " for i in range(n.n_epoch):\n",
- " # forward to calculate each node's output\n",
- " forward(n, X)\n",
- " \n",
- " # print loss, accuracy\n",
- " L = np.sum((n.z2 - y)**2)\n",
- " \n",
- " y_pred = np.argmax(nn.z2, axis=1)\n",
- " acc = accuracy_score(y_true, y_pred)\n",
- " \n",
- " print(\"epoch [%4d] L = %f, acc = %f\" % (i, L, acc))\n",
- " \n",
- " # calc weights update\n",
- " d2 = n.z2*(1-n.z2)*(y - n.z2)\n",
- " d1 = n.z1*(1-n.z1)*(np.dot(d2, n.W2.T))\n",
- " \n",
- " # update weights\n",
- " n.W2 += n.epsilon * np.dot(n.z1.T, d2)\n",
- " n.b2 += n.epsilon * np.sum(d2, axis=0)\n",
- " n.W1 += n.epsilon * np.dot(X.T, d1)\n",
- " n.b1 += n.epsilon * np.sum(d1, axis=0)\n",
- "\n",
- "nn.n_epoch = 2000\n",
- "backpropagation(nn, X, t)\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEICAYAAAC3Y/QeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzsnXV4FFf3xz93Zi3uCRbc3R2KtFixlra0hXpLjVLlrb116t63Qu3XFkqLFHer4F4kSCBIDELcszrz+2NDYNkNxBNgPs/D85DZmXvPJrtn7px7zvcIVVXR0NDQ0Li2kKrbAA0NDQ2Nqkdz/hoaGhrXIJrz19DQ0LgG0Zy/hoaGxjWI5vw1NDQ0rkE056+hoaFxDaI5fw2NciCEeF0I8WsVz9lQCKEKIXRVOa/G1YXm/DU0KgkhxAAhREIFjHNKCHF9RdikoXEOzflrXFVcaavhK81ejasHzflr1HiEEJ2FEP8KIXKEEPOEEHOEENMKXxsghEgQQjwvhEgCfio8/pAQIkYIkS6EWCKEqFN43C1kIoT4WwjxYOH/7xVCbBJCfCSEyBBCnBRCDL/g3EZCiH8KbVkLhBZjsw+wEqgjhMgt/FenMEz0hxDiVyFENnCvEOLnc+/nwvdU+P+ZQH1gaeEY/7lgmglCiDghRKoQ4uWK+F1rXDtozl+jRiOEMAALgZ+BYOB34KaLTqtV+FoDYJIQYhDwLnAbUBuIBWaXYtoeQDROx/4B8KMQQhS+9huwu/C1t4B7PA2gqmoeMBw4raqqb+G/04UvjwH+AAKBWZcyRFXVu4A4YFThGB9c8HJfoAUwGHhVCNGqFO9R4xpHe+TUqOn0xPk5/UJ1ClEtEELsuOgcBXhNVVULgBBiAvB/qqruKfz5RSBDCNGwhHPGqqr6feG1vwBfAxGFN6JuwPWFc20QQiwtw3vaqqrqosL/F5y/r5SaN1RVLQD2CSH2AR2Aw2UdTOPaQlv5a9R06gCJqqsCYfxF56Soqmq+6JrYcz+oqpoLpAF1Szhn0gXX5hf+17dw3IzCVf05Yik9F9tfVpIu+H8+Ths1NEqE5vw1ajpngLrCdXkcedE5F0vTnsYZAgKK4u8hQCJwznF7X3B+rVLYElQ43jnqX+L84iRzLz6edxl7NOldjQpHc/4aNZ2tgAOYLITQCSHGAN0vc83vwH1CiI5CCCPwDrBdVdVTqqqm4LwJTBRCyEKI+4EmJTFEVdVYYBfwhhDCIIToC4y6xCVngRAhRMBlht4LjBBCBAshagFPeRincUls1NAoKZrz16jRqKpqBW4GHgAygYnAMsByiWvWAa8A83Gu1psAt19wykPAVJyhoDbAllKYdCfODeF04DVgxiXsOILzRnRCCJF5LuPIAzOBfcApYA0w56LX3wX+WzjGc6WwVUOjWITWzEXjSkMIsR2YrqrqT9Vti4bGlYq28teo8QghrhNC1CoM+9wDtAdWVbddGhpXMlqqp8aVQAtgLuADnABuUVX1TPWapKFxZaOFfTQ0NDSuQbSwj4aGhsY1SI0N+4SGhqoNGzasbjM0NDQ0rih2796dqqpq2OXOq7HOv2HDhuzatau6zdDQ0NC4ohBClKjqXAv7aGhoaFyDaM5fQ0ND4xpEc/4aGhoa1yCa89fQ0NC4BtGcv4aGhsY1iOb8NcqFLa8Ah8Va3WZoaGiUkhqb6qlRs0nfd5xND35E+r7jCCGoN6IHfb5/FlPo5dSLNTQ0agLayl+j1BQkZ7DiuqdI230U1e5AsdlJWLGdVYOfpabIhSgOB6qiVLcZGho1Fs35a5Saoz+uQLHaXY4pNjs5J5NI3hxVTVY5yYqOZ8V1T/GLcSgzvIbz94S3sWTkVKtNGho1Ec35a5SazEOxOMye4/w5J6pPbNOclsWy3pM5uykKFBXFZid2/gZWDX6uxjyRaGjUFDTnr1Fqwnq0QvY2uR1XFYWgdo2wZOaiOBxVbtexn1Y5b0oXOHrFaic7JpHkLQer3B4NjZqM5vw1Sk3Tu4dgCPBG6OSiY7LJgG+DWqwe+jyza43jt+Cx7H1rZpXG3TOiTuIo8PBEoqpkH02oMjs0NK4ENOevUWoM/j6M3vkNjW4fiD7AB1NEEHWHdyc3NglLahaK1Y4tJ5/97//Ovnd+A0BVVRJW7WDjAx+w5dFPSd52qMLtCu3cHJ2HJxKAwLYNK3w+DY0rmRrbzKVr166qpup55bCgzX1kHY5zO6739+aO1IVsuu8D4hZtxp5nBkkgmwy0+8/tdHr17gqzwZqVy/wW92BOzYbCJw7ZqCekWwtG/PMZQogKm0tDo6YihNitqmrXy52nrfw1KoS8+BSPxx0FFs6s3X3e8QMoKo58Cwfe+52cU0kVZoMhwJdRO76m/pjeyF5GDAE+NJ80kiEr39Mcv4bGRWhFXhoVQmCbBqRuP+J23BDkR8KaXdjzLe4XSYLE1Ttp+fCoCrPDt34Eg+e/UWHjaWhcrWgrf40Kodt7k5C9jC7HZG8jXd97CIOfN0J2/6gJSSo2Rq+hoVG5aM5fo0KodV0Hhqx8j7CerdD7eRPYpiH9Z7xIs3uH0WTi9Uh62f0iVaX+mN5Vb6yGhoYW9tGoOGr1b8/ILV+6HQ9oHknP/01h2+QvEHoZgUBVFAbNfwODv081WKqhoaE5f40qofn9w2kwtg+Ja3cjG/TUGdIFvY9XdZuloXHNojl/jSrDGOxP4/EDq9sMNxSbHVVVkQ366jZFQ6PK0Jz/VYwtJ5+UndEYg/0I7tBES3e8iPwzaWye9DGJq3eBqhLRrx19vn8O/yZ1qts0DY1KR3P+FYA1K5eDn83n1PwNGPx9aPXETTS6bUC1OttDXy5k1/PfIxl0qHYHPvXCuGHle/g1rFVtNtUkFLuD5X2fJC8+GdXu1CFK2rCfZb0nc+vxWeh9Kz8k5bDaOPHbemIXbMIY4k/LR0YR1qNVpc+roQGa8y83trwClnZ/jLz4lCKly/R9x0nZdogenz5eLTYlbdzPrhe+x1FgwVHgzK/PPpbImmHPc/Phn7UnACBh5XYsqZlFjh8oKj47OftPmj94Y6XO77BYWXHd02QePOUsfhOCk/P+puu7D9H6iZsqdW4NDdBSPctNzIy15CWmuUgc2/PMRH+7jLxEz1Wvlc3h/y10EzhTFYX8xFTS98ZUi001jZyY0zgsdrfj9jwzmVUgAnfitz/PO34A1Xnj2fX8d1gycyt9fg0NzfmXk9Ord+LIN7sdlww6UrYdrgaLoCA500XW+BxClrGka41NAILaNUIyuD/46ny9COnYtNLnPzV/w3nHfwGSQUfypgOVPr+Ghub8y4l3ZJjH6lVVVfGqFVwNFkH90b3dqm3BmdUS2q1FNVhU86g9qBP+zeoiGc9n+Ai9jCk0gIbj+lX6/MYQf/AUflNV9AFa7YNG5aM5/3LS6rExLg4EnLIFXuFBhPduUy02tZg0Et/64S43AJ23iS7vPlApRVXm1CyiPv2DLY99RsyMNcQt3creab8SM3Mtdg9PRRVBwdl0dr34PUt7Ps7fd04jdVd0qa4XksTwvz6h+YMjMAT5ovf3psmd1zNy25dkx5wmbW+MW0OanJNnWDf2FWb4jGBWyFh2TJ2OvZiOZpejxcOjkL0Mbsd1ft7V9rnRuLbQJJ0rgLglW9h4/wcoVjuqQyGgZSSDF7yJb4OIarPJlltA9HfLiFu8GVN4IK2fuJla/dtX+Dxpe2NYOeBpFJvDubksCVAB4bzhyCYDN278nIAWkRU2Z15CCos7T8KWXYBitRVJRPef8SINby77qj0j6iTrx75CwdkMEAKdl5Hrfv8vdQZ1wpyWxYKW92LNyC1qUCObDET0b8/QVe+Xab6oz/5gz0s/OsNPKuh8TQxd/QFBbRuV+T1oaJRU0llz/hWEYneQefAUej8v/BpfO3niC9s/SGbUyeJPEIKQTk0ZvWt6hc25edLHHPt5tWumDmAKC2T86blIsgcdocvgsFiZE3k7ltQsl+M6byPjjs4gZuZa9r45syh76hyyl5FR278qs8O2pGdzdlMUhgAfwvu2LZPtGhoXUlLnr6V6VhCSTia4Q5PqNqNKMadkXr49oqqSEXUKc0omprDACpk3cfVON8cPYM8rIC/2bJluvvHLtqFYbG7HFYfCsRlrSNt11M3xg/PvnhF1sszO3xjsT/3RmridRtWjxfw1yozQ63DGeC5PRT5hGkMCPB5XHAqGQN9LXmsvsHB2cxQZB0+52GROzkTxcENRLDbyE1MJat8YyeQeo1cVBf/m9Ur5DjQ0qh/N+WuUGWOgL2G92njMdipCCALbNMQrPKjC5m377K3ofFz7AEgGHXWu74wx2L/Y6479sprfI8ax9sYXWdbjcRa1e6Cok1hEv3Yer9H5elFncGdaTBqJfFFqqGTQEdSuMaGdm5fzHWloVD2a879CsOXkk7ormvwzadVtigv9Z7yAT70wdL5e4CFzUdLLXDfrpQqds/Gdg2k95WZkkwF9gA+yl5HwXm3oP7P4eVJ3RbP1sc+x5xZgy87Hnm8m60g8q4dMRVVVgto2osHNfV1uKpJRT2DL+kSO7IV3rWBGbPycsF6tQRJIBh2Nbh/IkFXvVeh709CoKrQN3xqOqqrsfXMGBz6Yg6SXUSw26g7rTv9fX6wxksiKw8H+d39n39u/usXNJS8DIzd9QUinZhU+ryU9m4wDJ/GuF3ZZMbaN971PzMy1oLh+3nW+Xgxb9xFh3VuiKgrR3y9j1ws/YMvOd2bhCEGn1+6m/fN3FF2j2B0ISSAkbe2kUfPQGrhfJZyYtY6oD+fiKLBgy87HYbGRuHoHWx7+tLpNK0KSZey5BR43THGoJP2zv1LmNQb7U+u6DiVS4cw/k+7m+AGEJDAXZvgISSJh+XanVIeqolhsKGYr+976lVMLNmLNymXHs98wt8EdzG14J7tf+Qm7h01gDY0rgQpx/kKI/xNCJAshoop5XQghvhBCxAgh9gshOlfEvNcC+z+Y7VYo5TDbODV/A7bcgjKPqyoKsYs38+dtb/D3HdOcGTTleAo0RQQie9gQlQw6TKHFx+HLQ35SOn/e+jq/mIbyi2kof41/k4Kz6R7PjRzZE9nbverZYbER1qMl4CxWS1y72+0mZs83s//92SzrM4XDXy+m4Ewa+QkpHPx4blHYSEPjSqOiVv4/A8Mu8fpwoFnhv0nANxU071WPOTnL43EhCaxZZRMAU1WVfya8w4aJ7xD7xwZOzvmLP295ne1PurdgLClN7hzsMQwiyRL1b+pb5nGLw2G1sazXZOIWb0Gx2lGsdmIXbmJZ7ydQbO6Cbc3uG4ZvZLhLVa3Ox0SHlydiKswesqRlI+k859nnnTpDXlyyy43BYbaSvu84ZzdqWjwaVx4V4vxVVd0AeF5yORkDzFCdbAMChRC1K2Luq51aAzp4dKqGAB+8a4eUaczkzVHEL9vqIixmzzNz9McVZB6OLdOYXhHBDF4yDWNoAHo/L3S+XnjXCWHo2g8rZW8ibvEWLGnZLvn+qt2BOTWLuKVb3c7X+3gxasfXdHr9XsJ6tKLeiB4MnPcaHf87segcvyZ1kDx08xI6Ga/aIdg9PGkpVnuJpSVy486y+ZFP+KP53awY+AwJK7eX6DoNjcqgqoq86gLxF/ycUHjszIUnCSEm4XwyoH79+lVkWs2my7T7SVy9E3ue2enohED2MtDzf1PKvOGYsHKHR80dVVFJXL2LwFYNyjRunUGduP3MPNL2HCsqequsTdGsw7HY89ydsT3PTNbhOI/X6P28aTd1PO2mjvf4uqST6fnFZDY//AmOfGcsX9Lr0Pt502j8AHJiTrv93iSjHt8SNMjJjTvL4k6TsOUUoNod5MQk8ueOw3R68z7aPXvbZa/X0KhoalSFr6qq3wHfgTPbp5rNqRH4N63L2L3fs/+93zm7cT9+TevS/vnbCe9VdvEvfYAPkl7v1MW5AEkno/f3Lpe9kiwT1q1lucYoCQGtGqDz8XJbjet8TAS0KvvCocmE6/GpH07Uh3PIjU2m9qCOtJs6Hp2PiaiP5kKBKJLLFpKEwc+byJE9Lzvuvnd+K3L853AUWNk19VuS/t5H/5kvYrxMgZqGRkVSYameQoiGwDJVVdt6eO1b4G9VVX8v/DkaGKCq6pmLzz2HlupZeeTGJ7Og5b1ucgU6HxO3npiFZNCh9/ep0R2/HFYbC1reQ15CapFDFToZn8hwxh35GUlf8euajIOn2HD3e2QedGoZhXZrSf+ZL5aoNeb8FneTfSzR42tCpyOibxuG//lJhdqrcW1S07R9lgCThRCzgR5A1qUcv0bl4hsZTv8ZL7Dx3vfPV+eqENG/PXMb3IHqcOBdN4ze3zxF3aHdqtfYYpANekZu/ZJtU74kbvFmEIL6Y/rQ84vJl3T8trwC4hZvwZqZS53rOxPQvORqo0FtGjJm93TMaVkIWS7VSt27bmixzl+120nZfoTs46e15vEaVUaFOH8hxO/AACBUCJEAvAboAVRVnQ6sAEYAMUA+cF9FzKtRdhqO60/dYd1I+nsfkk4m+oflJKzYXtSOMvdUEuvHvcaIDZ/VWPmC7ONn8K4bSqspN9PkjkGXLSQ7u+Uga0e8gKqqqHYFUGn+4I30+OzxUj3lmIrRFroU7Z+/g5QdR4r2Ei5GMujIT0jRnL9GlaFV+F7FZB46xek/92IM9qP+mN7FZt0UnE1nXqMJLn2IARCChuP6MXDua5hTszi7OQpjkB8RfdtWe3Xrtie/5NiPK51FVkIgG/V0eOlOOrw80eP5is3O7Dq3YknLdjmu8zExYM6rRI7oUek2H5m+hO1PfYVidU9FlU0GxifMuaQ2kYZGSahpYR8NnIVVuaeS0Pt5V5i8scd5VJXNkz7mxG9/gqoi9DJbH/+coas/IKy7+2ZsbmwyklHv7vxVlbhlW1k95D8kbdyPbNQ72wz6+zB07YcEtqyejKzUXdEc/XHF+VW0quIosLDv7Vk0vnMwfo3cs4jPbo7ymP9/LsW1Kpx/y0dGU3d4DxZ3fAhbTn5RxbHOx0Srx8dojl+jStHkHaqIhJXbmVNvPAvbP8ic+rez6oapmFMyAacufsyMNRyftQ5LRvkbrMcu3MTJ2X/hKLDgMFux5xRgy8pj3eiX3VoTAvg3r+dZmgFQzDZOr3NWvdqy87HlFJB/Oo01w56vtsrW2EWb3W9UhcQv95w778nxnyPzcCyLOj7Ekm6PEv3dMo+/I0/jleS8i/FrEMHY/T/Q7N6heNcJJah9Y3p99SRd3n2o1GNpaJQHbeVfBWQeOsWft77hEu9N+mcfa4a/QMvHxrBt8hcInQQIVIdCv1+ep9Et1112XIfVhjUjB2NogEsHqKM/LHcp4Co6v8BK6o4jbmmixkBfWk4eS/TXS0rWc1dVsaTnkLrjCGE9Wl3+/ApGNukRsoSquDpfIUnOpxMPRPRpi+pQ3F+QBLknzhSFYrYfjiVxzS4G/fG6x3Gyjsaz+eFPSN4YhZAF9cf2pdfXT5ZqH8A3Mpy+P0y95DkOqw2H2Yrez7tGZ11pXLloK/8q4OAXC91W1qrdQebhOLY+/plzdZ5rxp5bgKPAwsZ73i96KvCE4nCw8/nv+C14DPMaTeD3iHFEf7/s/OseYsoACFBsnler3d6fRJf3HypxOEpIEtbsvBKdW9E0Gj/QowyDqig0GNvH4zU6bxP9fnkB2cvoVOsEJJMBIYTL78uRbyFx1Q5S9xx1G8OSkcOy3k9wdsMBVEVBsTmIW7SZlQOfqbCnIHu+mU0PfsSswNH8FnoT81vcw+k//62QsTU0LkRz/lVAzvHTHledqqIUZp1chIBTCzYWO96el3/k8FeLsOc7wzrW9By2P/01p+ZvAKDJxOvdmp04xxWE9fS8UhdC0PrxsQxa+KZTm/8yKDY74b3akLztEMv7TmGG7wjmNZlA9A/LKz0cFNCsHt0/eQzZZEDnY0Ln64XsZaTfjBcuefNqeHM/bj70Ex1enkjrJ2+m3ojuHv8uikMhefNBt+MxM9YUKX4WnWuzk3vqLEn/7KuQ9/b3HdM48dt6HGZrUSXw+tEvk3GpPskaGmVAc/5VQJ1BnVwExc6h2h2oiqebglpsTFux2Tn85WK3lEFHvoW9b84AoMnEGwjv0xadr/MGIBn1yN5Grpv1MrIH7ZoLCe/VGq+IoGKzeYQkIXsb6fHZY2QdjWfV9c+RvOUgjnwLuSeT2PHU1+x/7/dLzlERtHx4FLeenEXPL56g15dTGJ8wp0ShMt8GEXR85S56fPo4we2bIPTuTxCSQYdXrWC34xlRJz2maqqKcvlexiUgN+4sp9fudvvbOyw2Dnw0p9zja2hciBbzrwJaPDKKQ18uxGzPQi0Mu+i8TUSO6knc0q1uDkUAkSN7eRzLmpVX7EZjXnwK4JRpGLLiXU6v3U3i2l0YQwNoOvEGfOqFXdZWIQTD1n3EujH/JTsm0bmXIAka3zmY/PgUTOGBtHxkFKFdW7B25Es4ClwdlT3fzP53f6PN07eg8yDxXJF4RQTT7L5LickWz6n5G9j/3u9Ff48LkQ16Ike5//5Du7Tg5Oy/3PZThBAEtStbA/dzZB6O5dgvqz22xFQdCpmHPOsVaWiUFc35VwHGID/G7PmWvdN+JX7pVgyBvrR5chxN7x3K9ie/5NhPq7DnW0A4873bTR1fbLGPMdgPvZ83Fou71HNwxyZF/xeSRN2h3cpUoevbIIKxe78n61gCtux8gts39lg1m743xiUEUoSqUnA6Fb/GNbNgyZKezYa730Px8HTlUz+cG5a/6/HG1WTi9ex9a4YzJFMYLpKMeoLaNyasZ+sy2aI4HGy4+13iFm0BgccnC6HXEV5MuE5Do6xozr+K8IoIptf/ptDrf1Ncjvf4fDKNxg/k5Jy/EDqZJncOJrRri2LHEZJEtw8msXXyFy6OQvY20rWC0wUDmtW75Ov+zeqRf9q9p7CqKJgiKq5he0VhycjhzF97Sd4chZA8NRwWNBo/gKA2DT1er/d1ykLveHY68cu2Iut1NLl7CF3eeaDMGTlHf1hB/OKtbjpLRQiBzstAq8fHcOTbpSSu2YVv/XBaPjKagBYll6bQ0LgYzfmXkJxTSeycOp3E1bvQeRtpMWkkHf478bIx9MshhCCiT1si+rjp4blhN1uJW7iJvLhkWk+5mYSVO8iPTya4Y1O6vPOgxwKuyqTja3c7Qz8X3YRaPHRjjekvfI7o75ex/cmvkAw6FKvd856KiucN+AvwqRvGwNmvlNseW04++9+fTdSHc4qtQdD5elF7YEc6vHIX68a8Qn5iKvY8M0InE/3dcgbOeaXY8KCGxuXQnH8JMKdlsbT7o1jTc1EVBXtuAVEfzyN933GuXzytSmzIjU9mea/JWHPysecWOJul1A7h5uhfinLMc+OT2fPf/yNx1U70/t60euImWk8eW2lSDLUHdOS6X19i+9Nfk5+QguxtpPUTN9HpjXsrZb6ykhF1ku1PfY3DbC12Ix1A9jLQ8Jb+lW6PYrOzvO8Uso8lFO/4vU0M/ON1Qrs04/CXi8iLO4vD7EwXVu0OHHYHG+/7gNuT/nCp8dDQKCma8y8BR79bjj3P4pKZ4yiwcHrdHjKPxFWJzMHmhz6m4GxGUazZnlNArjmJnVO/pf6YPmQeiiXqwznYcvJRHQrmlEx2v/QDmVEn6fPds5VmV4Oxfak/pg+OAguyyVDtmj+eOPp/K916F3jCGORHSOdLi8NVBLGLNpNzMqnImXvCXmDhz5tfRXUoSAadx3MdFhuZB08R3L6JhxE0NC5Nzfum1kBSth/2GJOV9DIZByo//1qxOzizfo9bTrpisxPzy2o23v0ee179CWtmrss5jnwLx2euJS8xpVLtE0Kg8zbVSMcPYM3K9VzdexGW9BwOfjq/0u1J3nrQY0tI4PzvUFVx5FtQLDbsuZ6rrlWHA71f+ZrvaFy71Mxvaw0jsE1DJA+yAapDwb9p8RkteQkpbHzgA2bXvZUFbe/n6I8ryl4AVdyGouqMH1OMc5NMBtL3Hi/bnFcJDW/qV1TzcCkcBRaO/t+KSrfHt2EtZC+j23Ghkz1vlHv4zAhJIqBFpEcROw2NkqA5/xLQ8tHRyAbXCJlk0BPUrnGxGvIFyRks7vwwx2espeBMOlmHYtn+1FfseObrUs8v6WTqDO7sMQf8cig2e4l6zF7N1BvRg1r923uuer6IC9ssVhZNJgx2l6eQBKbQAAxBfh6vEXqds8Oanzc6Py98G0YweOFblW6rxtWL5vxLgE+9MIb99QkhnZshZAnJoKPBuH4MWflusdcc+mJhUfz9HPY8M9HfLqMgOaPUNvT5/lm8agej8/MCSTgd2WWyCyWDjpCOTYtNXbxWEJLE4MXT6Pfz8zS8bQDN7huGT/1wt/Nko57Gd15f6faYQgIY9ufH+Leoh2wyIBn1hHRqxoiNn1NncCfPVcc6mTF7v6fP989yw7J3GHd0Br4NIirdVo2rF62ZSymxF1iQdPJle8Qu7/ckyZuj3I7rA3wYNO816lzfpdRzO6w24hZtJutoAkHtGrHz+W/JOereGlDIEkKWqDe8B31/+g/GQF+STmdz8lgaIWE+NGsVdlUpRdpyCzg1fwMFSelE9G1HeO82l31/af8eY+WgZ1Fsdhz5FnS+Xvg1rs2Nm75AXwJto4pAVVXyElKQ9Dq8C+Uk8hJTWNThIWxZeUULB52PifYvT6DDC3dWiV1VRXJSDulp+UQ2CMTH1z0MplE2tGYulYTOQ6zWE/5N65Ky7ZD7Jq3V7nHVWRJkg55Gtw0o+tmnXhirBhc6sAIrOl8vfOqHM3jRm3jXCkHv64XiUPjm443s3haPrBOoKgSFePPiWzcQGHzlbxam7Y1h1aBnUewOHGYrslFPRL92XL942iVv0CGdmnHriVmc+G09ubFnCe/VhshRvTyqhVYWQgh8I10/Cz51w5zV4G/O4PS6f/GqFUS7qeNpOK7yU1Crivw8K1+8+zcxR1PR6STsNoWho1tyy8ROV9WipKajrfwrifT9x1nW+wmXAijJoCOsRytG/PNZhc1jTsvi+K/ryDlxhog+bWlwU18Xp7dm2RHmzdyD1XI+li1Jguatw3lx2pAKs6PRo2DnAAAgAElEQVQ6UFWV32vdguUi+WvZ20i3DybR6rGx1WSZxqX47J2/OLDnNPYLCuoMRh33PtqDPgMaV6NlVwfayr+aCW7fhIFzX2PLpI+xZDiLw+oO7Ua/n5+v0HlMIQG0eXJcsa+vXxnt4vgBFEUl5kgKOdlm/PwvvwlaU4n6aK6b4wdniuvRH1Zqzr8GkpdrcXP8AFaLnZWLDl2Rzt9mc7Bm6WE2rDuOqqr0GdCYYWNbYzTWbPdas627wokc0YPb4ueQl5CCwd8bQ4BvldtgNXuuIBWScLspXGlEfTKv2NdsuQXsmDod2aCn8Z2Dq2XTOzf2LFlH4vBvXk9LySwkP8+GJAvw8LHMzSlG36gGo6oqH72xnhNHU7Fand+npfOj+HdnAq++PwypDBl6VYXm/CsZT3HdkqCqKmfW7+H4b+sRQtDkrhuodV2HUsdEu/Sqz1+rjrqttAICvQgOvXJi/g6rzZlpVShloNgdmJOL73aWF3eWg5/MQ0gSBz/7g85vP0Dbp26pMls33PUu8Uu3Ihn1KBYbdYZ0ZcDsVypd5voclvRsFJsdrwj3vgTVSUiYDyaT3m3hIUmCdh1r5g1SVVVsNgW9XnL7/kUfSuZkTFqR4wewWR2cTshi/7+n6dj10uKI1UnNvS1dYTgsVk798Q+HvlhAyo4j5e5mteXRT1l/06vE/LyaYz+vZt2ol8tUIzDmtnYEBHlhKHwE1ekkjEYdk57sfUVsrmUcPMWyPk8w03sEM71H8Ped07Bk5iLpZExhxffNVax2p1CbQ8FRYGXPSz9WeqXzOf597Wfil23DYbZiy8rDYbZyes0udj3/XaXPnZeQwooBTzO7zq3MbXgnC9rcR+pu95aU1YUkCe55tAcGo1xUt6jTSXj76Bl7e4fqNc4DWzec5OkH5jNp/O88ftdcViw66PLdPnE0FbuHnhAWs53j0alVaWqp0TZ8K4Cso/Gs6P8U9gILitWOpJNLlHFSHKm7j7LiuqfctN1lLyOjdnxd6hCGucDG5r9PcPhAEhG1/Rg4tDmh4VUfgiotBckZzG9xD7bs/KIqV8mgI6hdI0bt+IYj05ewa+p3Lk3nhSx5lHKQvY30+PRxWjx0Y6XbPSt4DNbMXLfjOm8jE3OWV9pNV3E4mN/sbvLik11+B3o/b8Ydm4FXeM2R2T4Zk8bKRYdIOZtDy7a1GDq6FYFBNUsJds/2eL75eKPLqt5g1DF2fDtuvNmpwrv1n5P89M02LBeFVw1GmTvv78rAoc2r1GYo+YavtvKvAP667U3MKVnYcwqcWix5ZpI27OfQ/xaWabyEFds9CnmpdgcJK7aXejyTl57Bw1sw+T/Xcetdna8Ixw9w9McVzsb3F/bMtdrJOhJPyvbDtHxkNF3ffwhjaABIAq9awdQZ0hU8xFmFJJA8FE9VBhd3+io6XmD13Pymgjizbg/mtCyPGlDHflldafOWhUZNQ3jsuX689uEIxt/TucY5foD5s/a6OH5wbkwvmx+FUvg77tIzEr1ediu4lGWJHn0bVpGlZUNz/uUkNz7Z2b/1oi+1I9/C0R9XlmlMnY/Jo6MSernKCpBqAhkHTnqWYBaC7GOJCCFo9fhY7jg7n7vzVjD62K9sC26Ow0Pps+pQqT+6dxVYDeF92ng8Htq9ZaWK3+XGnvX41OMwWyukx/C1Rkqy+9MbgMXswFy40jcYdbz8zlDq1Q9Er5fRG2Rq1fXnxWlD8Papmv2dsqJt+JYT1e4oVnRNsdmL4oOledRvdNsA9rzyk4fJoMG4fmWys6ajqioOu4LugpteaNcWxC3Z4t7aUFFceuYKIZCNBhbM3ElsgQFzy840PrwHBKgIZAH9f30JY7B/lbyXHp9PZkXfJ3FYrChWO0KvQzbq6fXVlMtfXA5Cu3nuAKfz9SKib7tKnftqpHbdAE4dd+9U5+Wtx+R1XuixTmQAb38+ivTUPFTVual9JaA5/1KSn5ROZtRJfBvWwr9pXXwb1sK7djA5J864nCcZ9QhZ4hfjUADqj+lNry+nlCj7wqdeGP1++g8b7/vA+QRQuHF53W8v16i4bUWgKCrLF0SxYuFBCvJtBIf6cOf9XejaqwHN7h/OgfdnO0Nghb0UZJOBsJ6tCenY1G2srRtOYrcrJDZpQ0qdhoScTUCVJDLqNmDCiJ5V9p6C2zVmbNSPHPp8Pqk7ownu2JQ2T42r9HTPkE7NqNW/PUn/7C+SIJcMOrwigmg0fmClzn01ctvdnfjs7b8uivnL3DKxI5KHNqDBoVeG0z+HtuFbQlRFYevjn3Ps59XIJgOK1U547zYMXvAGmUfiWH39VKfEQIEF2ceEarWjKkrRY7jQyfhEhjPuyM8l3gS2Zudxeu1uEIK6Q7pWSMgnKzqenBOnCWrfGJ+6YeUer7ws+H0vKxcdckn9Mxhkprw4gHad6pAbd5Ydz35D4sqdSCY9ze4bRuc37/Mos/H4XXM95opLsmD6b7fX+KKbkmDLyefojyuIX7YNrzohtJ58k0v7TofVxsGP5xH9w3IcFhsNx/Wn02t3V9lTz9VG1N7TzPllD2cSsgkK8eKmOzrQ+7qaXYhW0g1fzfmXkIOfz2fPy//nklkiGfU0uLkfA2a97JRZmLWevLizqCoc/X65W8MOnZ8X/X95gQZj+5Z6/uzjp9n+1JecXrcH2WSg2b3D6PLOAyXWGrJm57F+zCuk7Dji7GNrsdH4jkH0/u6ZamsDaLc5eOyuuW6ZEgCNm4fy2gfDSzXeL9O388+6GBwX1DQIAc1bhfPSO0PLbW91Y83OY0nXR8lPTHWu7CWBbDLQ68spNLt3WHWbp1FD0LJ9KphDny9wcfwAisVG7IKN2M1Wp8zClJvp/tGj6H29PHZqcuRbyDocV+q5zalZLO3xGAkrd6BYbNiy8oj+dinrxvy3xGNseeRTkrcdwlFgKco9PzHnLw59vqDU9lQUublWFMXz4iP5THapx7tlYiciavlhMjlX+EaTDj9/Ew9OqZqN3vJSkJzBrpd+YEnXR1g/7jXObjno8vrhrxaRn5Byvquc4uz2tW3Kl9g9dJrT0LgUV/5zcAlQVbXcudXWrDzPLygqjnyzS+VmUJuG6DzcAGRvI4FlkBk4+v1y56bnBY7SYbaSvOUg6QdOENzu0o+hdrOV2AWb3PrYOvItHPrfAto+c2upbaoI/PyN6HQSNqt7kUzd+oGlHs/H18C0z0eyd2cCcacyCI/wo1vv+kUFbjWZ/KR0Fnd8CGtmHorVRtq/MSSu3knv6U/TdOINAMQu3OQx+0lIgrR/Y4jo7TnLqDgKkjM4s/5fdD4m6gzpWmXVxxo1g5r/rSgjDouV3S/9SPR3y7DnWwjt2pyeX04hrFvLy1/sgTqDOxG7YJNLE3cAn/rhbt2X6o/tg+n578gzW4s6Q53TbK83okep507dfdTjl16SZWcD78s4f0eBpdj8clt2vtsxVVE4vW4PCSu2YQwJoMldN+BXCd3AZFlizPj2LPhtr1vM/5YJnco8Zpee9enSs35FmVkl7H9nFtaMXBRbYQissIfv9in/o/H4gUh6HaYQzxXNql3BGFS62o2oj+ey55WfEHoZIQRCCG5Y8S7hvUp3A9E4j8OhsG75Ef5cfQyrxU7XXvUZc1t7fP1qZq+Cqzbss+GudzkyfYmz4EZVSd0ZzapBz5Id4978pCR0fe8h9AHeSAZnipeQJXTeJnp/+4zbU4Vs0DNy25c0HNcf2WRA9jLQ8LbruHHz/8qkFx/UvnGxPYQDWkRe9npDoK/HVo5Ckqhzg2toULE7WDf6Zf685TUOfbGQfW//ysI293NqwcbLzqOqKocPJLH0jwNs+vM45gL3QrWLGTa6FRMf7E5ouA86vUSDxsE888ogmrcuW8+Dyub0+j0s7f4YM/1HsqjDg8Qt3VIh4yau3nne8V+A4lDIKszRb/3kzei8XVVYhSzh16Q2ga0alHiulB1H2PPqzzjMVuw5Bdiy87Fm5bH2xpdwWDzUVWiUiOmfbOKPWXtJSswmPTWfP1ce5fXnVmCxeBZXrG4qZMNXCDEM+ByQgR9UVX3votfvBT4EznneL1VV/eFSY5Znwzc3PpkFLe5xWy0LnUzzB0bQ+5unyjRu/pk0Dn42n+QtBwloEUnbZ28t1ZeurOTGJvFH07vcCnhCOjdj9K7pJRojacN+1o54EYfVhmp3IBn16HxMjN75jUsK4vHf1rPl4U/cqlR1vl7ccXZ+sRvMdpuDj95cz4ljadisDvQGGVmWeHHaDdRvVLPExcpK4ppdrL/p1fMxd5yhvL4/TqVxOVMpi+v8Jhn13HpiFt61QwDY984s9k37FcmgQ3Uo+NQLY8jq9/GtX/KWjpsf+YSjP6xwCSMC6P29ue63/xJZhqfTa4ldW+NYviCKrEwzbdrXYsz49lgtDl59drlbCNNo1HHng10ZcIPnXt+VQZXp+QshZOAr4AYgAdgphFiiquqhi06do6rq5PLOVxJyYhKRjHo356/aHaTviynzuN61Q+j2/qTymldqYmasRehkV+cvnKs+xeEg+1gihgCfIgfhiVr92zN6z3QOfjafrCNxhPdpR+vJY9zqDo7PWudRnkBIgrObDlD3Bs+fqXUrojl+NLUofHMug+erDzfw3ldjrggRucux8z/fujh+cO6b7Jz6bbmdf9tnb2XD3hiX371k0BHRt53L37XDSxNo+cgoUnYcwRQW6OwrXcrfrS2nwM3xA6AWL02h4WTZgigWz9lf9Dnf9NcJdm2LZ+z4dh5z/y0WO0cOJFWp8y8pFRHz7w7EqKp6AkAIMRsYA1zs/KsM/+b1UDxtjOllQjrXvD/C5Tj2fyudGjcXojr70P4eMQ7FYkOxOwjr0YqBc14ptpAsoHkkvb++9FOP7CG8dG4+2VDMa8CG9TEe+wOkp+WTnJRLRG0/D1ddWWRFx3s8np+YimKzl0nE7xwNxval/UsT2PfmDBRFRbU7MIb40+3Dh93ONQb7U29Y9zLP1XBcf+KXbHFz9IrNjk9kuDPTaMN+jKEBtJs6nmb3Dbsqbt7lxWK2uTh+cBYpWsw2jhw860FUBHR6ifAa+tmviJh/XeDCb0VC4bGLGSeE2C+E+EMI4TFQLYSYJITYJYTYlZJSdvldn7phNBjXH/miEIVsNND22dvKPG51oTg8N11R7QrW9BzseWYUi43kLQdZM+LFcs3V/IER6Hzcu3tJBh3hfdoWf+Elo4c1s5aktPjUDfV43BDki6iA3r8RvduAJKE6HKCqmFOzWTngaTIPnSr32BdSf0xvIvq3P/93liRkbyPtnr+dNcP+Q9yizVjSssmOjmf7k1+y51UPUiPXIKcTspE9iAY6HCpJp7PxDzS5rf5lWaqRq36oug3fpUBDVVXbA2uBXzydpKrqd6qqdlVVtWtYWPmqT/v99B/aPH0LhiA/hE4mom87Rmz4rMo7Ktly8kndfZSCs+llut5eYMGvSR031UBPqHYH2dEJpO8/ftlz0/cd5+Tcv8mIOulyvN6IHjS7fziylwHZy4jOzwu9vzfXL5l2yc3qfoOaYDC4vx4Y5E14rZq58iktHV+7B9nbdUGh8zbR4aUJFbIy3vLop86wUmFIRrXZseUUsPM/35Z77AuRZJnrl0zjulkv0+SuG2j12Ghu3Pg5+Ymp2PNdM8PseWYOfjwPa3Yxqc7XEIHBXh61+wHCwv148e2hNG0Zhk4noTfIhEX48txrg2us7ENFhH0SgQtX8vU4v7ELgKqqF6oj/QB8UAHzXhJJr6PLtPvpMu3+yp7KI6qq8u8bvxD1wRxnRa3VTr0RPeg/4wW3jI3iUGx2VvR/yrnyu2DxLApXH54UHIVeJv90GsHtm3gc05ZXwNqRL5G6M7pI+z68VxuuX/wWOm8TQgh6fj6ZVpPHcmbdHgyBvkSO7oXe59LSEtePbMmenQnEnkjHYrZjMDo3fB+f2u+qCRk0vesG7LkF7Hn1J2w5+cheRtq/cAdtni5/hzBbXgHZxzxkoqkqSRsOlHt8lyEVBVSoP7q3i9Jp8paDRanJFyIZdGQfSyS0S9Vr09ckgoK9adWuFocOJGG3Xdh8XmbEzW0IDvHm5XeGkp1lxmZ1EBzqXaM/+xXh/HcCzYQQjXA6/duBOy88QQhRW1XVc8pno4HDFTBvjcBhtZGy7TCSQUdotxZFUgkxv6zh4EfzcJitRRvPCSu2s/Wxz0vcxD120WayouNwFFyUtSRJNHtwBDE/r3J7TbHYLrmvsePZ6aRsO+yyh5C8OYpdL/1Az8/O78cHNKtHQLOSt6DT62VenDaEQ/vPEBOdSmCQFz36NsDL++oqHGr56GhaPDwSa3Y+ej+vCpPGkI0GJL0Oh8N9r8oQUDErR2t2HtunfMmJOX+h2OyE92pD7+lPFzUH8m9Wl8zDcW41IYrVjncxIa9rjcee68d3n21h/7+JyLKETicx4YFutGxzPtvKP6Bki7vqptzOX1VVuxBiMrAaZ6rn/6mqelAI8SawS1XVJcAUIcRonG2b04F7yztvZZKy4whHvl5MQXIm9cf0pundQzymOMYv38Y/E99xfllUFZ2PicGLpxHWrSUHPpztJgdxTlKh19dPlmj1f3rdbuy5HjJv9DIBzethDPbHnJLpbFmIsw9Ay0dHF6v8qaoqx2eucds8dpitxPy0ip6fTUax2dn71kwOf7UYW04+4T1b0+OLyR5VNC9GkgRtO9ahbcc6lz33SkZIEsbAim2II+lkmtx9A8dnrHXJUpO9jbR+cly5x1dVlTXDnidtz7Giz0vyloMs7zuFcdG/4BUeRPsX7iRxzW7XVFaTgXojeuBd6+pI1y0NpxOy+GPmv0QfSsYvwMiNN7Wh76AmPPnSAHJzLOTmWAiL8PW4D3AlUCFWq6q6QlXV5qqqNlFV9e3CY68WOn5UVX1RVdU2qqp2UFV1oKqqRypi3sog+vtlrBz0DDEz15K4agc7nv2GZb0muzny3Phk/hr/JrasPGzZ+dhyCihIymDNkP9gzzcX21xcCIHVQ1WtJ3zqhRYVlV2IJMv4Na7NmD3f0urxsfg1qUNotxb0/vYZul4mFdVxcdbQueOFncM23v8BUR/Pw5qRg2p3cHbTAVb0f4qcE6dLZLNG2enx6ePUHdoN2WRAH+CDbNTTZOL1tH2m/GGltD3HyDhwssjxA6CqKBYb0d8tAyCsRysG/P5fvOuGIhn1SEY9jW4fSP+Z5UsiuBJJTsrhjakr2bMjntwcC2cSspnx3Q4Wzt4HgK+fkVp1/K9Yxw9XsbxDWbDlFrD96a9dmoc48i1kxyRy7OdVtHpsbNHx4zPXeIy5K4pC3JIt1OrfntjFm93yqQ1BfnhFlEyTv+m9wzjw/hxXTR4hkL0M1BvWHUmvo/vHj9L940dLNJ4Qglr92pO0Yb/ro70Q1B7UifzTqcT+scHtBuEwW4n6eC69vipbcZxGydB5GRm88E1y45PJPZlEQMvICuvfkBUdDx7y0B1mKxn7TxT9XH90byJH9cKckonez7vEqrFXG0vnHcBqsbt8TawWBysXHmL42DZ4eRWf9nylcOXetiqBlO2HkXTu90NHvoVTf2wAnK3y4pdvIys6wT33HmfGjSU9hy7vPoje1+t8CqAQyN5Gen45pcSbQL6R4Qxa+AamsAB0vl7ovE34N63L8L8+KXNOea+vn0Tv710kFyGbDBgCfOjx+eNkHU1A8iDupdodpO05Vqb5NEqPb2Q4tfq3L7Pjt2TkcObvvWQdPZ+BHdS2oefG9l4GQi/SuxJC4BUedM06foBj0SkeFWdlWSL5TE41WFTxaCv/CzAE+LgJtxW9FujH3xPeJm7hJmf1cIEFIUkez689sCMBzSMZ8+937H/vd5I3R+HXtC7tX7iD8J6tS2VT3Ru6Mv70PDIOnEQ2GQhoEVmuDILAVg0Yd+Rnor9bTtq/xwjp3IwWk0Y6v+zeJo83NKGTCepw+Zi/RvWiqip7XvuJgx/NQzLqUax2Qjo1ZfDitwhu34TwXm1I3hxVtKcgJKc+VfMHStc34VogorY/ZxLcZcVtdgdBwVdHH23N+V9ASJfmeIUHklMoBncO2duIIciXk3P+csneQQiETkItbB6i8zHReMLgIr0fv0a16fPtM+W2S5LlEm24lhSviGA6vnKX23GfemFEju5F/NKtLllEslFP22erR/ZZAyzp2ex8/jti/9gAkqDx7QPp8s6DGAJcN51Pzv2bQ5/Od/mMpu6KZt2YVzCF+JO2+6izgluAqqjUHdKVHp8+pnX58sCocW05tP+MSzWv3iDTsWs9/AOvDuevdfK6iKxjCay+YSqWjByEkFCsNjq9fg8HP59PwRn3Qi0hy0T0a4tsMtD8wRtpcFPfGp3bezkcVtt5Kew8c7mlsDXKh2Kzs7Dt/eSeOluk+ikZdAS0cD5ZCul85HZpj8dI3RnteSAhihY0Om8TrSaPoet7Va9TdSWxa1scM7/dQW6ucw+wZ79G3PNw9xrfH0Jr41gOVEUhedthrOnZhPdugzHYn5n+Iz125xKyxITMJZctgroSURXFxblczaSn5bN6ySGOHk6mdt0Aho9pTWTDitlsLQ+n/viHjQ98iD3nopagvl4MnPMK9YafV+Cc12QCuSeTSjSubDJw+5l5bk8PGq4oikpOthkvL32Nd/rn0No4lgMhSUT0bkPkyF5Fj8R1Bnf2mC0R2LpBlTr+3Phk8hLKrntUGq4Vx3/2TA4vT1nC2uXRnDiaxtZ/TvLm8yuJ2lv96a3p+0+4OX5wZumkX5ClA1BveA+EvmRFZ5JRX9QnQKN4JEkQEOh1xTj+0nBtfLsrgG4fPYIhwKcoS0boZXQ+zmYuVUH6/uMsaHMfC1rcw/zmd7Ow3QNkHDxV7PmqolBwNh27B3XTmozFbGPGt9t5+I7ZPHDrLD575y9Sk3Mrdc65M/ZQkG8ravyuKCpWi4Ofv9lOdT8Z+zeti87XfXGh8zLg39RVP7HDyxMwBvkhDJd3VIrFhk9kzWyYo1E1XJXOP33fcU4t2Ej28Ypbufk3qcPNh36i7XPjqT24M60eHcPYfd+XOnunLNhy8lk54BmyDscVbeZlHopl5XVPYctzXxXG/LqW2bVvZV6jCfwWMoatT3zhsUtUTUNVVT58fT3/rIvBXGDDblPYuyuR16euID+v8m5ihw8keexymZGWT15O9d48G97S31kNfuE+kiQwBPoS2r0lu1/5iZWDnmHr5M+x5RZw04EfCe3c3ONT6jlkk4F6N16bVbsAVquDpNPZFJSg09zVzFX1LGPJzGXt8BfIiDrpbHRitRM5qhfXzXq5TO0TL8YrIpgub91XAZaWjpNz/3Z33qqKw2ondv5Gmt49pOhw4uqdbHnkU5dCtWP/twrVoVxWy7+qOXo4mQWz9pIQn0Wt2n70uq4RcacyXESzVEXFYraz6c/jDBnVqlLs8PYxkJfrwckLp2hXdaLzNtHl3QfZ8vAnRaJrslFP57cfZHGnSUVy3mc3RRHz8xoGLXqT9H3HPTdrEU4NocZ3Dqbn/56o4ndS/aiqyvKFB1ky1ymUpzgU+g5swsRJ3dHprsp18CW5qpz/5kkfk/bvMZcS9vhl2zjwwWw6vDShGi0rH/mJqR47LDkKLOQnproc2/vWTBfHf+68mJ9X0+2Dh9F7CCFUB4f2n+HTaX9hLWx7l5Nl5kRMmkflaqvFwanjZZPELgnDRrdizow9rml9eomuvRqUKdZryy0gbfdRDEG+BLVrXK7sr5xTSWx74gsXtU2H2cbmBz9CtTuK6kxUuwO73cHWRz9DFLPqN4UHcdup35CNV5fYXknZ/PcJt2Ysm/85gd4oM+GBbpe9PjE+k61/n8TuUOjasz5NW5ZPdr66uWqcv91sJX7JFlftEpyO78g3S65o5x/avSU6Xy+3bCPZy0BoD9fVcM4pz9keQpacJftV7PwzMwpYNj+KA3sS8Q/0YvjY1nTuHsnvP+0ucvznOBdzvxiDQSayYWCl2ThoeAvOJGbzz9pj6PQydrtCyzYR3Pto6XvZHpm+hB3PTUfS6VAdDnzqhzNkxXv4Nih5j90LOfbTKneZZVV1lfy4gNy4s0jFxPyDOzS5Zh0/wNJ5UW7d5qwWB3+vOcb4uzujK9wsPxmTxp+rjpKbY6Frz/r06NuAP1cdZe7Mf3HYFRRFZf3KaPoObMzEB7txLDoVc76NZq3C8PG9cqqirxrnr1htqJ4edbny+5LWHdKVoLYNSd93vKj4SvYyENyxKbUHdnQ5N6xbC+KWbHWT5RWyVOWyvNmZBbzy1DLycq04HApJp3M4dTyNMbe1JzHOs/AdgCwLHA6n/UI4i2v6Da68CmNJEtw1qTtjxrfndHwWIWHehEWUvgHN2c1R7HhuOo58Cw6cT1/Z0QmsGfY8Nx36qUxPAPmn09wWNICzuY+nyI6QaPvMrRz85A+Xz73sbaTzG/eWev6riaxM9/0xAMWhYjbb8dXLrF8Zzeyfd2OzOlBVOLj3DKuXHiYxLhP7BYsTq8XBxvXH2bklDrPZjt3mPD8wyIv7Hu9Jx64ll0OvLq6aQJfB34eAFh66Q0oSdYdd/pGuJiMkiWHrP6bDyxPxa1oX/2b16Pjfuxi65kM3h9LpzfvQXdRtSvY20umt+y7Zg7cyWLXkMPl5Tsd/DqvFweI5+/ErRvPc20dPz34N0ekkhICWbSN49f3h+PpV/orKP8BEy7YRZXL8AIe+WODWX0FVFPISUkjfG1OmMesO6eox20dIksfWkcGdm9Lp9Xvp+sEkvOuFIhl0hHRtzpAV7xHWo3L2TK4UGjcL8Xjc19+Ij6+B/Dyr84nU4ihaO1ks9sKFivud1mZTyMm2FN0owPmk+7/3/2HnlthKehcVx1Wz8gfo+8NzrLphKorVhmK1I5sM6Hy96PreQ9VtWrnReRnp8NKEy4avgts1ZsTGz9n90g+k7ozGu3YIHXkL/mMAACAASURBVP47kUa3DagaQy/g4L4zLqulc9jtCl17RrJh/QmslvOrWoNR5sZxbRl5c1smPNiNE8fS8PM3ElHnymgDaU7OdHviAmcVuCXNXSemJDQY24eoj+aQcfBU0V6OzsdE5OjenJr7t9v5GXuPkxefTKtHx9Dq0TFlmvNqZfw9XXj7xdVYrefVOg1GmQkPdkMIwdHDyeh0EraLwpF2u1LsPoon7DaFOb/soVvvBhVpfoVzVTn/sB6tuOnAjxz+ahGZh2IJ79OGFpNGYgoJqG7TqpSQjk0ZsuK96jaD4BAfjxu1iqISezKD0be2Y9n8AygOFSEEQ0e3ZMTYNqxcfIj5s/ai00koikpQiDdTXxtMaHjNrkaNHNWLlB1HXJqhgDMkGdqtRZnGlPQ6hv/zGUe/W8bxWevQeZto8cgoLOk5xC3e7La5ryoqJ+f+Q7vnbivz+7haadA4mFfeH8bC2fs4FZNOeC1fxoxvT6t2tQDw8tIXX9dRynqPlLO5KIrq1tC9JnFVOX8A3wYRdPvg4eo2QwMYPrY1/+6M9/i9ORWTxuSp/Rk+phXZWWb8Akzo9TKHDySx4Le92KyOohXY2TM5fPzWn7zzxahSxc0TYjPY9OdxzGY7XXrWp23H2pWqu9Ri0kiiv11KXkLK+b0ZbyOd37qvXDIKOpOB1lNupvWUm4uORX0yr0hQ8EIUuwO7h9oPDSeRDYOY8sIAj681axmG0aTHXOC6x2Iwyoy6pR1L5x1ASAJVVVEcKqqqFu1NXYx/gKlGO364Cp2/RtWSmpzLb/+3iwP/nkavl+k7qAm3TOiIwaijeetw/ANMZGW6b7jLOpnsLDOBwd4Eh57vUbtm2RG3jAxVUUlLySM+NpP6JdTbWbcimjk/78Zud6AosOWfk7TvVIfHpvavtC+l3teL0bumc+TbpcQt2owpLJDWU26i9sBOFT5XvRE92PPKT27HZZOeyJG9Kny+awFJlpj62mA+eH0dVosdgcBuV7jpjg6MGNuGQcOa8++OBOx2Bx261mPX1rjCz5jrTVhvkBh9W7tqehclR3P+GmUmL9fK61NXkJttQVWdm7l/rowm7mQ6L7zlLDzr1rs+f60+5r5CUlVq1XUPx2Vnec7MkiRBXo7F42sXk5NtZvZPu7HZzt9ELGY7+/89zYE9p+nQte4lri4fej9v2j03nnbPja+0OQACW9an1eSxHP5qUdFThs7bSJO7biC0S3OXcy3p2RyZvpTT6/fg36QOrafcTFDbRmQejiX6++UUJKUTOaIHDW8bUOVJATWNyIZBfP7jOI4cPEt+vo2WrSPw9XcmG/j6Gek3uEnRuUNGtqRxsxBm/bCT2BMZKIqKl7eOsePbc/3/t3fe4VGV2R//vFPTSQIhhdBC7y1SRUGkK6hgX8uqq6661nWXn72vqGvXtbus7tqwgShFeu+dUNIgJCGkkJ5Muff9/TFDSJgZ0mcm5H6eJ09mbj1zMzn3vec953umNSzM500056/RYNYuT8ZSUbPVnc2mknI4j6OpBXROiOSy2QPYtPYoFeXWqhuAyaznmluGYjK5ZqskjujI0dQCl0k3RVE9Zmuczf7d2egNAttZqfCWSjtbNqQ3q/P3JhfMvZNOM0aT8uUypKKScP0lxIyrmfpbfqKABUPvwlpYilJpJWfNHlL+t5w+f7mSpLd/RLXZkXaFjIUb2f/WD0xb82ar7uAFjieAvgNj67Rt915RPP3qNFRVUllhIyDQ6PfhntOcN6meGt4nLTnfpVALHG0AM46eAiAiMogX3rqMS6b2Iio6mJBQE4oi+f5/u/j2ix3YbTX3HzelJ23bBWM8fWNwSixcd+swzAF1G5UajXrHjmfbpRPnnTpj9Jj+jP7XQ4z56BFixw9xmdPY/fx/qMwvqmruIhUVpdzCvle+RqmwVBWQ2csqKUw6yuHPfvP6Zzgf0OkEQcGmFuP4QRv5azSC+M7hGDfrXUbpADFxZ7pDRUQGcdms/qxfmUJFuQ0poazEytKFB8nOKOaBx8ZVbRsYaOTZf05j1dIj7Nx6nLDwACZO703PPnVXoOw/JA53edlGg46xl3RzWW61Kvz2437WrkhBVSWjLu7K5bP6E3AeNOnOWLQZaXP9+7grEFPKLaR9vZK+917R/IY1kLJSKyuXHGb39kzatgtm0uW9Sejh3eLF8wXN+Ws0mIsn9uDXH/c7YutOZ2Iw6IjtEEa3njX/IX//9RDWasUwADarwt5dWeRkFxMde+ZmERBoZMrMvkyZ2TDFVLPZwIOPjefNF1c6WhZKh4jXzOsGujgKh5Lo76Ql51fdxJb8nMSe7Zk8+9o0dPqW/XBsahNMWT22N4YFNZstZ6MqKhvWpLF6WTKqIrnwkgTGTujuUWSttMTCkw/9UlVYJQRs33yMW/88kjHjErxm9/mC5vzPgbW4jKxl20FK4iYlYgoLrn2nVkRYmwCeeHkKn7+3ieRDuej0OhJHdeLmu0a4hB/SjuTVUOs8jcGgIzOjqIbzbwr6DIjh7X/PZvf2LCyVdvoNjiEwyISqqDUc+qH9J13mGGw2hZPZJezansnQ4W6qxlsQfR+czea/vIO9vNpEukGH3mBAsdhq5K8bggPoffflXrPtX6+vY/e2TCzOQr9j6QVs3XCUex+9iIP7ctDrdfQdGFMVqlv88wGKCyursmtOJxl88eEWRozpXKXN428UFVawY3MGqioZnBhP2yj/8COtwvkrFivbH/uUw58swlZWSfuRfRn57v3nbIqe/sNa1tz8D3R6xxdKtSuMnfd3us6+2Ftmtwg6dAzniZenYLer6AQeR8odu0aQtC/HRbxNsas1QkRNiTnAyPAxndm28SjP/W0xRYUVGI16Lp3Wi1k3Dkav15F6JM9l3gGgstJO6uG8Fu/8e9w6mVO7Uzj44UL0ZhPSrhDerzPD37iXlbOfwV5WiUQibQq975nptTTRtOR8dm07XiOt12pROHTgJPffOt85bwMSyf1zxtFvUCw7tx53WzEugePHCunSrW4JAd5k/apUPn9/U1UL5a8+2841Nw9pNnny+tAqnP/qG17k+OItVSlxJzfs59eLHuSKPZ8Q2iXGZfuKnALW3PQSSoWV6m5h7c0vEz26H0FxWozxbGrTQ584rTcrfztcw/kbjTp69IkiLv5MyqeiqAghzjlxJqXk4L4cUo/kER4ZROKoTpg9TOQm7T3Bh2+sr5qYtih2li06iNWq8Ic7LqBtVDBGox5FcS3s8ZcRWmMQQjDizXsZMOd6CnYeISg+isgBjhDJNce+JnvlTix5xUSPHUBwvPckig/tz0F1UyB1+umwupN/66VVvPnZLI/6Toqi+qWaZuGpCj5/f5PLnNi3X+xkwNA4Yt2kOnuTlh3QrAMl6Sc4/tsWF8Et1WLjwJvfu90n7bs1uMsWAUj7dnVTm9gqaBsVzGMvTSahR1uHUqdRx+hxCTzwf+MAOJpawHN/+43bZ/+XP137Pz59dyOVbjotWa0K/3hiKW+8uJL5X+5i3gebefiO78nMcK8S+uNXu10ykqwWhdVLj2CptDFkeEeMZj1nF/4aDHpGju3SFB/dLwiKiSR+6ogqxw+gM+jpMDGRhOsv8arjBwgNC0Bf1wYqArZvymDyjD4uzXV0OkHHLhFERfuf9MeOzRluvYiqqGxe53vht/Pe+Rcfyqjqu1sd1WYnf+cRt/vYyyrctj1UbfYWLw/tSzonRPL0q9P4dP6NfPztDdx27yjMAUYK8sp46fElpBzOQ0rH6G/j6lTHhO1ZLFlwgNQj+Vgq7ajOLl+lpVbef22t23PmnChxu1zoBEWFlZhMep74xxQ6J0RiMOowGHV06NSGx16cRGBQ69W+b26GjexY57RIVXHk0A8d3pHLruqP0agnMMiIyawnvlM4D8zxz1Csoqjukqqc8hDue1d4k/M+7BPWqyOqxXUEqTMaaDu0p5s9oOP0kex67guUs5po6MxG4qfXv8GHRk30Z80LLP/tkMtksM2mknIkj+PHConvdKaRy9oVKa6ppRJyskooyCurIRUB0LlrJIWnMl1SGwUQ0daR2RITF8az/5xOUWEFUpWER3ov46W1EhBo5O/PTeStl1ZRXm5FCMco3mZVsJ2dGCBgwNA4AGZeO5BLp/ciLTmfNuGBdKyj3IcvGHJBPN/8e4fLcoNBz7CRnXxgUU3O+5F/aJcY4qeNQB9QcxSnDzDS78FZbveJ6N+VXn+ajiHY2ThbCAzBAfS4dco5J4l9iWK1UZycia2k3Nem1JtjaafcTuTp9TpOZJ0lhexJXFG4F16cdeNgl0pik1nP5dcMqJpUPE2b8EDN8XuRrt3b8vonV/H4S5OZ8/wk3p13NUNHdsIccGZMajI7JuirJwUEh5jpPzjOrx0/QLv2Icy6cRBGkx6dTiCEoyvdpZf1pnNCpK/NQ3iUMPUxiYmJctu2bU1yLMViZceTn3Poo1+wl1XSflQ/Rr7zFyIHuRb8nEZKyYnVu0n573KQKt1uvJSYcYPPqQqpWG3sfuFLDn28CKXCQofJF3DBq3cR0qlhLfzqyv63vmfnU/9GqqqjzP/GCYx674EWo9Pyw1e7+PWH/S4jPqNJzwtvXEZMhzP/+D9/s4eF8/fV0O0BiIsP4x/vutevTzmcy9f/3sHR1ALahAdw+dUDGHtJt2ZV+NRoGFJKdm/LZMPqNAwGHWMndKuSXPYnTvvNunyHsjKK2LQuDVWRJI7q5DErSUpJRvopigor6dq9bYMbGAkhtkspE2vdrjU4f2/x+4zHyVq+s0rPXeh1mCJCmXVoHuaI5mlIkvbtKtbd/mrNln2BZrrfMonR7z/YLOdsaooKK5hz789V1b/gcPz9BsXy0OPja2xrtdj5xxNLycooorLSjtlsQG/Q8X8vTKRTV9+PpryJVFVyNydhLSqj/ai+jZKN9ngOKanIOYUxJNDr/Z/9kcoKG199vp0Nq1Kx2RR694/m5rtG1MhYawinCsp57dnl5J4oRacX2G0ql8/uz8xrB9b7WJrz9zKFSUdZkPhnl0Ye+kAzQ565hQGPNo/K40+D/8SpPakuy/UBJm7I/6nFiHSdyCrmv59u5cCeE5jNBsZN7sGV1w1yCc2AoxnM3p1ZpB7OI6JdECPGdK7X5OzmdeksnL+PosIKeveLZtaNg5ut1qC5KDqUwZIpf8dSUIwQAtWmkDj3T/S978omO0fGr5vZcNfrWPKLkCp0umI0F378V4yhrTc09tJjS0ipXrAoICjIyNz3ZhIW7rg5Hks/xcF9JwhrE8CQ4R09piFX55m//srR1ALUan3IzWYDf37kQobUs9akrs7/vJ/w9RYFe1LRGfScXS6kVFjI3ZzUbOctz8r3uM5aVNZinH9MXBiPPDmhTtvqdIJBwzowaFj91Tm/+nwby389VBVi2rrxGHt3ZPHcG9NpH9My2kVKVWXJ5L9RlpFbY6Jj25yPaTu0J9Gj+zX6HPk7j7DymmdrdAo79vMGVhQ+y+TFcxt9/JbI0dQC0lLyayYnSLBZVVYuPcLlswfw0Zvr2b7pGFJK9AYd8z7YwpznJ54zxn/yRAnHjxXWcPzg6B+8ZGFSvZ1/XWmSCV8hxBQhxCEhRLIQYo6b9WYhxDfO9ZuFEF2a4rz+RFi3OKTqOmmpMxsJ79t8vTyjRvbBJUkdMIYGEtg+3M0erZPyMisvPraExT8n1ZhbkKrEYrGzcP4+H1pXP3I3J2E5VeIyw61UWDn4/s9Nco69r31bpQR6GtViI2fNHkrSTzTJOVoa2ZlFbtNTbTaFo6kFbFyTxo7Nx7A6M5YqK+yUl1l586WVnttD4hCrOzsD7jQlxXXrYdEQGj3yF0LogfeAicBxYKsQYoGU8kC1zW4HTkkpuwshrgPmAs3b7cLLtB3Wk/A+nSnYk4JqPVMjoDcZ6HXXZc123mEv3s6JlbuwV1jAOXLQB5kZ/vo9CF3LSOayVNo4uN/RPLtX3/YN1miRUnJo/0lOniihU9eIGhNrH7+9gZRDuW73U1XJvl1ZPPe338jMKKJd+2Bm3TCYoSP8R9pBtSskvfsjhz5a5NDmd5O+jJRU5hU1yflKjmRWfZ+qozMbKTt20m1lfEuktMRC4akK2keH1Cr3Hdcx3GV0Do75qS7d2rJq6REsFlepkLJSK8fSTnkc/cd3DndbDGYw6hjWjN/Bpgj7DAeSpZSpAEKIr4GZQHXnPxN4xvl6PvCuEEJIf51waABCCCYtfYUNd7/OsZ/WI1VJ5MAERn/0MMEdmq96MnJAApdvfo8dz8wjd1MSoV1jGPTEH+gwsdaQn1+wZX06H7+9wTHykaDTCx74v3H06le/DKniokpefmIp+bllSOnQhOnWM4qHn7wERVHZsz3TY79VgFP55RTkOdJkjx8t5F+vr22QWqTFYuebf29n3cpUbFaFPgOiufnOETUylhrCyqufIXPZdpeG7dUxBAXQ5aqxjTrPaaLHDnAZyIBj9B/er/meZL2F1arw2bsb2brxKAaDDqnCjGsHcNlV/T3u06lLBN16tiP5YF5VtpmjWl3PuEk92LX1uNv9hHAUfHnCaNRz013D+fe/HFIQUjpuKG3aBDB5RvNpADV6wlcIMRuYIqW8w/n+JmCElPK+atvsc25z3Pk+xblN3lnHuhO4E6BTp07Djh71fQl0Q1CsNlSbHWOwlh1xLnJzSnjsLwtd5BcCAg289dnseunpv/XSKnZvP17DwRtNeiZd3puJ03vz6F0/uaSHnkZ4qBEIjwjkzc9m1Ssl9OUnlpJ8KLcqtCQEBAaZmPv+TMLaBNT5ONXJ33mERWMfOKfj1weZadMznukb3sUQ0PjK5LLMXH4aeAfWonJwhjP1QWZ6/3kGw1+9u9HH9zWfvruBjWvSaxQMmsx6br9vFCPHdvW4n8Vi59t5O1i7IgW7TaHPgBhuunM4MXFhLP/tEF//e7tLD+qQUDPv/Ht2rfLgqUfyWPbLQQryyhk4LI7xk3sSFFz/v2WLnPCVUn4EfASObB8fm9Ng9CZji8mx9yXrV6WhuHmMRsKOLRmMvrhuo26bTWG3m5G9zaqw9vcUrv7DEELDzBTkuxbAGY06VFW6fSooLqrEalXqlK0BjiyPlCN5NecUpMOOVUuPMOPqhjX1zt1y0GNxW2j3DoR2jaHzVWPpfvOkJnH8AMEdopix7QO2P/Ep2ct3YooIpf/DV9PzjmlNcnxfYrHY2bA6zaWq3GpRWDh/3zmdv9ls4KY7h3PTncNd1l18aXe2rD9KWrJDfsRo1CF0gnv+OrZOfSESerTjrocurP8HaiBN4fwzgeqBqXjnMnfbHBdCGIA2gOc0FY1WQXmpxUXiGUBRJRXlZ2LaUkqSD+WSkV5I+5gQ+g6MrTHxpqrS44SazaYghOCP947knbmrsdtUVFWiNwjMZgPPvX4Zrz77OzlZrhpA5gCD21RTT2RlFHqcEExPafjXPbhDO7eZZPoAEz3vmMrAv13f4GOfi9CusYz77xPNcmxfUlFm9fg0V3SqosHHNRj1/P25iezdmcX+3dm0CQ9kzPgEwiP8MwLQFM5/K9BDCNEVh5O/DrjhrG0WALcAG4HZwIrzKd6v0TAGJcazalkylkpXEb3+gx0NtC2VNl59ZjnH0k6hSoleJwiPDOLxlyZV5VWbzQY6J0SSllzTwep0giEXxAMwcGgHnpo7lSULksjOKqZ3v2gmXd6bNuGBXHndID57b2ONx3WTWc/0q/rVqydrXHwb9xOCRn2jyvk7TL4AY2ggtrKKGpOwwqCnxy2TG3zc1kpYeCCBgUYXjSghqFe7UHc0Jg3Z2zQ6HURKaQfuA5YAScC3Usr9QojnhBAznJt9CrQVQiQDDwMu6aAarY++A2PoOzCmRljFbDZwyZSeVZ29fvjfbtJTCrBY7NisCpWVdnJzSvjs/U01jnX7faMIDDJWNX43mQ2EhQdw7S1Dq7bp2CWCO+4fzZMvT+Hqm4bQxnnzGHVRV264LZGQUDMGg46AQCOXzerPZbM8T/65o1PXSBJ6tMNgPPNvJQQYTTrGT+pxzn0ryq2s+T2ZhfP3cnB/To0nGZ3RwLQ1b9J2SA/0ASb0gWZCEmKZvPQVAqObtqq5JP0E2x//lNV/eJHDn/3myCI7z9DpBDfcnlhDHlqnE5gDDMz+wxAfWuZdtApfDZ+iKirbNmWwcXUqBqOeiy7tTv/BsVWP5ffe9C2lJa4OSK8XfPj19TXCMiXFlaz5PZmsjCISerZjzLiEek0aq6qkotxKYKCxwb17LZWO8v/1q1Kx21R694vmpruGn7P8Py05n7lPLUNVJDabHaPJQI/eUTz0xCUuTXLKs/JQrHZCOkc3uTZR1vIdLJ/5JKrdjmq1YwgOIDg+iss2vdss0hHepKLCxpKfD7Bl/VFMAQYundaLyLZBLPx+H7knSunRO4qZ1w6sU6V3eZmVvNwyotoH+6XstybvoHFecPcNX9eI/59GpxN8+NV1teZm+xIpZa0OuiKvkDenvYLhWCbloW3I7NoHS1AIJrOe624dxoSpvbxjq6ryTcdrqcguqLFcZzYy4NFrGfrcH93ul5NdzNJfDpKdWUyvvu2ZMKUXIWFNU1WuqrJeYTdPWK0KTz+8iNyc0qqML7NZz8ixXbntvrq3rVQVlf9+uo3Vy5LRG3Qoisr4ST24/rbEJrGzqWiR2T4aGmczdHhHNq5Nq9HyTwhHZoQ/O36oXfGx9FgOPw29m6jCMvSqgpqbRVz6IfaMmkRxZHtWL0v2mvMvPpKJrdg1G0q12Ej7dpVb539wXw7/fH45druKqkgO789h2aKDPPfP6S59FerDof05fPHxFjLSCwkINHLp9F5cdf0gj1WwtbF5bTr5eWU1Un0tFoUNq9OYPqs/0bHnlvWw21VWLTnMgu/2UlxU6cjgch5r1bIjhIUHcPnshmVy+ZKWUQKq0Wq55pahhEcEVmm8m8x6goJN3P4X7zQab062/d/H2IpK0asOR6KTKgbFTs/dG5xbeO+pXB9kRnooRDIEu9YnSCn59N0NWC1K1Y3ZZlMpK7Hy/f92NdiOY+mneO255WSkO9pyVlbYWLogiXkfbG7wMffvznKbVKDTC5I9VH2fRkrJGy+s4Jv/7KCosNKlHsRqUVj8c/NpdzUn/j100mj1hEcE8vJ7M9m8Np3UI3nExbdhzPgEv2zYXV8yF28FNw43qLSYQJ3C2AneaxwU0rE94f06U7AzpYZGlSEogN5/du2TUFJUWVURXR1Vdejx14XKChvpqQWEhpnp0NGhQ/XL/L0uWThWq8KGValcc9PQBoWUItsFO8I0Z6UVC0GtaZiHD5zkyMFcl8Kt6pSVWT2u82c056/h95jNBi66tDvDx3Rm3YoUPnpzPW2jgpkwrVeV02iJGIIDsZ4qdV0hoEuv9rVmCDU14797hsXjH8ZSUOyQyLArdLn6InreNsVlW5PZ4PG5JCCo9kn2pb8c5Lv/7KiKnUfHhvHwk5eQkV7ottraYNSTe7K0Qc5/3KQeLFt0EKXa4F8ICAo20af/uWVEDieddG0behadu/p3RzFPaM5fo0VQVmrlmb8uovBUBVaLgk4nWLs8hT8/MtavBNjqQ58/z2DXi1/WlG0w6Gk3bhi3vTS1WTqNHT96iqNpp2gfE0L3XlE1zhHaJYbZKV+SvWo35Zl5tB/Vl7Du7vPVAwKNDBragT07Mmu04DSZ9Uyc1gu7XSVp7wnKSi307h9TY4SdtPcE332xwyHr4XSsmccKef35FXROiCQ7qxh5Vr2E3abSPqZhGUftY0K5f844PnxznSNMpUpi4sK4f87FtWZ1tYkIxGjSuw0bnf68N95xQYPs8jWa89doESxZcICC/PKqknxVlVitCp+8s4F3Eq9u8GSgL+n/6LXk704hY8EGdCYD0q4SMaArE799vMkdv92m8Pbc1STtOYFOJ5BA++gQ/v78RELDzsT0hU5H3CV1y3W/4/5R/PO5FWQcPYVer8NuUxg+ujO9+kXz4G3zqyZFFbvKZbP6c8V1gwBYsjDJJYyiqpKc7GKuumEQ2zdnYLWccbYms56xE7o1KtQ3YEgcb382m6zjRZjMhjr3brhgdGf+96lr1qEQjiLFq64f5Bf9eBuC5vw1WgTbNh5z0WIBh1piZkYRnfy8mbc7dAY9479+kuKULE7tSSWkawxtBzdPnH/h9/s4sOdEjRBG1vEiPn13Iw8+Nv4ce3omOMTMU69M5Vj6KfJPltKpayQRkYE8eMcPLjr0i37cT69+0fQZEENxYaXb4+n1OoKDTcx5fiJffrKVoyn5BAabmDyjD5dd2fgGNTq9jvjO9fueBAYa+ftzE3n3ldWUFDk+U0ioiXv/djHderZrtE2+RHP+Gi0CT8U0iiIJrEchV1OSlpzP0bQComNC6dUvusG53mHd4gjrFtfE1tVk1ZIjLrFrRZHs2Z6F1WJvVNpspy4RVTffwwdOYql0rcuwWhRWLD5MnwExDErsQHpKvouYnmJX6ZwQSUCgkadfmdpge5qart3b8tqHV5J9vBiJJC6+TbOE5LyN5vw1WgQTL+vFsfSCGuECnU7QoWMboqK9W31qtdh5/YUVpBx2KJLrhCCibRCPvXhGb8jf8CRnDfKcWvP1xWKxe3SM5eWOrJiMo4Uujl/o4Oqbh9SrItubCCGI69i4Ju3+RssLlGq0SkZc2IXxk3piNDq0d8wBBqJiQrh/zjiv2/Lzt3tIPpiH1aJgtTj0hk6eKOHTdzd63Za6Mjgx3u2TSVzHNk0qUdCjd5RbpVaz2cDIC7uSnpLP7m2uTU8MBj2durTM2HlLRRv5a7QIhHCIcU29si8ph/MIDw+kW692Pnn8XrM8xWUkrSiSvTuzsVoVTKaGtaFsTq65eQj7d2dTXm7FalEwGnXoDTru+MvoJj1PQKCRm+8azn8+3ILdrqCqDmnsTl0jGHVRF5YuOohid83ldr1PLAAAHvVJREFUtFkV9u/JpnctqZcaTYfm/DVaFBGRQSSO7FRjWVmpha0bj1FZbqP/kDjiO9Ut9z/reBFJe08QEmpmyAXxdY572z2EUCQSVVGBpnH+drvK9k3H2LE5g5AwM+Mm9qBjAye2wyODePm9GaxdkUryoVziOoQxblIPwiODmsTW6oyd0J3O3dqyeulhSoqtDBvZkWEjO2Ew6AgJMWMw6lxCTUaTntDQ5inck1KyaukRFny7l6LCCmLj23DDbYn0GxTbLOdrKWjCbhotmn27snjrH6sQCBRFRacTjJ3QjZvuHO7xqUBKybwPNrNuZSrgUAjV6XT87dlL6dq9rdt9qvPRW+vZuKam3hDCMfF5/R+HEdk2uNE9e+02hblP/c7RtAIslXZ0Okdo5Oa7hnu18repKS+z8tAd31NZUTNv3mTW888Pr2yWOZPfftrPj1/twVI9fdSk55GnJpyXTxp1FXbTYv4aLRarVeGduWuwWhQsFjt2u4rVqrBuRSr7dmV73G/bxmNsWJWGzao4egRU2Ckvs/LGiyvdNmM5m2tuHkqb8DN6QwajDr1ekJVRxNsvr+bJh37hhTmL3UpR15WNa9I5mlpQVVykqo7P+5+PtlBZ4ZpN01IICjbxyFMTCA0zExBoICDQSFCwiQcfG98sjl9RVH7+dm8Nxw+Oazn/y51Nfr6WhBb20WixHNx3wu1yi8XO2uUpDBjiPn1y9bJkF2cADi3+tOQ8uvWMOud5wyMCmfveDDasTiP1SB6WSjs7txzHalWqql1Tk/P58I11PPLUhHp+Kgeb16W7tVGv13E46SQDh7pW3loqbezffQIpJf0Gxfpt5kzPPu15+/PZpBzJQ6qQ0LOdS9+Cc6Gqkv27s0k+mEt4ZCDDx3QhOMT9pHVpicVtfQg4wn6tGc35a7RYVFWCh/neUwVllJVa3FaFek57FB4dxdmYA4yMn9yT8ZN78uRDvzikCqqh2FUO7D1BabGlQXo0gR70caSUVFbYmP/lTk7mlNKnfzSjL+5K0r4c3n9trTPUJVFVyZ0PjOGC0Z3rfW5voNPr6NG7/i0TrVaFV55exrG0U1gq7ZjMer6Zt4O/PzfRbcguOMSMXi+wuXlYqk3K+XxHc/4aLQ67TWHT2nQ2rU3H6kFzJT2lgAf++D0zrxnA5VfX1FoffXFXUo/kuUgMCEGDqjbLSt2rOup0gvJyq4vzP7Anm2/m7SQ7s4i2UcHMunGwyyT2+Mk92LXtuIuNer2OT97eiKKo2O0qu7YcZ+H8fRQXVboUcX345nq69Yoism3TT+r6imWLDnI0paDqZuu4PgrvvbqGVz+4wmWex2DQMfXKfiz6YV+Na2k06erdpvN8Q4v5a7Qo7DaFlx5fyrwPN7N3Z1ZVjP7sHHarRcFmU1gwfy+7t9eUGB4zvhvde0WdidkbdJhMeu5++EIMxvpn6gwYEodO7/oIEhBgpF1UzaYm+3dn88YLK0lPycdSaScro4gP31jH+pUpNbbrOzCW6Vf2w2DUVcXGg0NNGAy6qvkNcIS4TuWXu82tR0q2rE+v9+fxZ9avSHF5ygIoKqzg5IkSt/vMvGYAV10/iBBnNpEQICW8/8+1fPD6OrfhtdaANvLXaFFsWpvO8aOFLiNiiUSnFzUzcHDcBJYuTGLQsDMxcoNBx6NPT2DPziz27cwitE0AF47vRtuohnWfuuK6gWzffIyKcht2m4rQCYwGHX+8Z6SLauQ383a4OC+rReGb/+xk9LiEGiPXK64bxLhJPUjal0NQsIno2FCefPAXl/N7mqS221UsFeeXY/NY1yHBUwxQCMGUmX3RG3R89dk2VJWq8N62jcdQFJV7H72oeQz2YzTnr9Gi2LrhmNuRmsmoR0qwKq6jQndZNzq9jsGJ8QxOjG+0TRGRQbz09gyWLTrIgT0naB8dwpSZfd2qPWZ7mGQscYZtzq41CI8MYtRFXQHH6Fb1lJrtCPXXwGjSM3CYe0lmf6S8zEpZqZW27YI8Si2PHNuFH77e7XKTj2wX5FHyWUrJR2860nPPvnw2m8LOLRkNnptpyWjOX6NFERxqqnpsr4G7ZYDRqPeK3n9YmwBm3TCYWTd43kZKSVCICWtBhcu6gEADxloqg9uEB9K1W1tSDue5jvYlNa6L2WxgxNgudapb8DWWShufvLORHVsy0OkEJpOBa24ZQmWFnf27somKDmbCtN6EhplZseSwi9a/OcDAvX+72ONTwe7tmWzfnOH2+wGgN+goLKzQnL+Ghj9zyZSebN1w1CXsExBoYvYNg/jik63YrApSOka+EZGBTJze20fW1uTrf2+npMhVzthk1nPZrP51kqq459GL+McTSykurKhqTHIaKR1zH0OGxzN+ck/6D24ZFaz/en0d+3ZmVYVirBaFz97dhMGgw253FO6t+T2F/kPiKHbTRzcgwHDOqu6Nq9M8NmMBx3Wrq77/+YTm/DVaFN17RTH7xsF898VODEY9UkrMZgOPPj2Bjl0i6NA5gmW/HORUQTmDEzswblKPJhUuayj5uWUs//WQi5olwNDhHZlWR736yLZBzH1vJhvXpPHpOxtc1gudICo6xGONQ3VsVjsL5+8j5Ug+nbqGM2P2AK9fq8KCcvbtzMLmJsX29KT26cY9O7e4H71XlNvIzSkhOtZ9VfW5Gv0YDDquvH6QX+oxNTea868jllMlJL37E8d/20xQhyj6PTSb6NGNbzChUX8mz+jLhZd049CBkwQFmejZJ6oqRtytZzu6PXyhjy105eC+HIeNbpycXi/qJVCn0wmCQ0yYzAYqymsmsCt2lWNpp2o9xomsYh67f2FVltC+nVks/imJp16dStdu3gsVnSqowGDUu3X+Z+MpbGOzq5gDPBe0jRmfwLaNrnNFQsCf7h/NSOecSmtDc/51oDK/iAVD76Iytwil0griIJm/bWbE23+h523+03SiNREcYmbo8JbTu/f0XIULAkLbBLhZcW7i4tvU6J17GoNBV6c4/6vP/u6SHqqqkleeXMa//nddve1pKLEdwhrdT0BAjR7BZ9N3YAzjJvdgxeLDSCnR63RIJPfPGVenJ6TzFc3514H9r8+n4mQhqsU5ypISe7mFzQ++R8INEzAE+D6soOHf9B8c5z78IGlQOmb7mFAGDoljz86sM8VdwjHPcWktcxxWq0JeTpnbdeXlNrIzi4jt4J3GJQGBRmZcPYAF3+11mcepjttJfifmWtRYhRDccFsi4yb1YO+OLAICDSSO6tSonsDnA5rzrwMZizadcfzVEDpB4b402iX28oFVGr6kIK+MJQuTSD6YS1zHcKZe0Ze4eM8O02DQ0X9wLJvXHXVZt25VKtfcMpSg4PoNIu56aAyfvruJXduOY7ep9O7fnhvvuKDWit7alHx3bc30mvMHuHz2ANrHhLLo+30UFVXSp38MQki2bjiG3uCY12kbFUxYmwAOHzhZY5JbrxeMHle3sE1cfJtz/o1aG5rzrwMBUe4zCVSbgjmy9WUJtHZOZBbzzKO/YrUqKHaV1CP5bFqbxiNPnlsiODPDfY6/waAjO7OoVkG56qQl5/PP55ZjsynodAK9XjDywi506Fh7LwOz2VEx7Ekd1Bcy7yMu7MKIC7tUvbdU2ph0eR/yc8uIaBtMQo+2nCqo4IW/L6aszILNqmA06omKCeHqm4Z43d7zAc3514F+D80md+N+7OVnioWEQU/EwARCE1pvzLC18vW/t1NZYasKQ6iqxGpR+Pxfm5j73kyP+8XEhXH8WKFLMZbdphDZru7VxTabwqvP/O6iKfTFx1vp2qNdnRq+3Hz3BXz0hmu2kMEgGDjUd99pq8XOvA82s2ldOkIIAoOM3HTncLr1bEdk2yBe+eAKdm07zsnsEjp2iaDfoFi37Sm9TX5uGbknS4mLb0NYA+ZwfIHm/OtAx2kjGPz0Lex8Zh46kwHVZie8T2cm/Picr03T8AFJ+3Lcxp9PniihosJGoAcp5WlX9mPPjsyaAmNGPf2HxBJRj45a+3dlu00ZtdsVVv+ezB/uuKDWY4y5uBt7t2exed3RqjCK0Si4aGJP4js3rFtYU/DRWxvYtTWjKuffZlX4+M31hIcH0rNvewwGnYsIni+xWOz867W17NuVjcGow25TuGhid/5wx3C/uCmdC83515EBj15Lr7suI3/HEQKjIwjv459SuRrNT1CQ+5CJTicwnkMYrlvPdtzzyFjmfbCZ0hILErhgdCdu/fOIep3fkd7p6vxVFY/iZu6466ELGT0ugQ2r0hDCkRLZFK0NK8qtbFqbTnZmMV27tSVxdKdzXpfTFBdVsrOa4z+N1aqwcP7eBvdGaE6++GgL+3ZlY7MpVVLha5enEBMbxqTL+/jYunOjOf96YAoLJnbcYF+boeFjLr2sNz99vfusEbyOEWO71tqUZMjwjgy+IJ6iwkoCg4y1Zqq4o/eAaLdpnuBQDc3JLvZY8FQdIQQDh3Zw2ximoWRnFvHCnMVYrQpWi4I5wMAPX+3i6Vem1SqfcCq/HINB77anwskTpU1mY1NhtylsXJPmerOyKCxekOT3zr9Rks5CiEghxDIhxBHnb7fPi0IIRQixy/mzoDHn1NDwNVNn9GHURV0xGvUEBhkxmvT0GRDDzXfWHm4Bh9MNjwhskOMHh5DcZA+ORbGrLPphf4OOWxeklGxYncrzcxbz5EO/sOiHfTWKpz5+ewNlpdaqG6Ol0k5+Xjnffbmj1mPHxIWiusn51+kEPfvUfTLcW9hsiovO0GnKy9z3ePAnGjvynwMsl1K+LISY43z/dzfbVUgptSGzxnmBTq/jtntHcdUNg8nKKCQqOoSoaO9mfQ0d0ZFliw66SltLSD2S12zn/fy9TWxae6bFZEb6KX776QBPvDyFiMhA0pLzXeZDFLvK1g3H+OM9o855bHOAkctm9+eX7880XhECTGaDS0MefyAg0EjbqGCXpxIhoHc//28M39hmLjOBec7X84ArGnk8DY0WQ3hEIH0HxtbJ8VssdtavSuXXH/dz5ODJRqdTtmsf4nbUKQTE1SHdsyGcyCpmw5q0GiN9KaGk2MITDywkI73QYyWWu2Y37phx9QD+eM9I4juFExpmZtjITjzz2lS/FF4TQvDHe0ZiMusRzsldvV4QEGjk2luH+ti62mnsyD9aSpntfH0C8HS7CxBCbAPswMtSyp8aeV4NjRZDRvop/vHEUux2FbtNwWDU07NPex58fHy9GpdXJzwikKEjOrJjy/Ea7RuNJn2ztSc8kpTrMYPFZlN57bnlHmS1dYwZl1CncwghGH1xAqMvrtv2vqbvwFiemjuV337aT9bxYrr3jmLqzL4NbgzkTWp1/kKI34EYN6ser/5GSimFEJ6GM52llJlCiARghRBir5Qy5eyNhBB3AncCdOrkP+lcGhoNRUrJO3NX18jJVxQ7h/bnsOK3Q42aFPzTA2P4+vPtrPk9GbtdpX1sKLfePYJOdcjzbwhh4QHu9YmcnC0yB44Rf8eukVx1/aBmsckf6Nglgjsf9D8xwdqo1flLKS/1tE4IkSOEiJVSZgshYoGTHo6R6fydKoRYBQwBXJy/lPIj4COAxMRE75cZamg0MSdPlHAqv9xl+en0xYmX9a6Xomd1jEY9N905nBtvT8RuV126gJ1GSomiyAY/ZZym/+BYzAEGKuuhRaTX63hq7pQGf0aN5qOxMf8FwC3O17cAP5+9gRAiQghhdr5uB4wBDjTyvBoaLQKp4qm1LMXFFn79sfGZOTq9zq3jVxSV+V/u5O4bvub2q//LnPt+Zv/ubDdHqBt6vY7/e2ESwfXQIFLsqub4/ZTGOv+XgYlCiCPApc73CCEShRCfOLfpA2wTQuwGVuKI+WvOX6NVEB0X6rncX8KvPzbfv8IXH21hycIkx0hdQvbxYt58cSVpyfkNPmZshza8+fks+g2KwWDQVaW6hoS6uSEIzql1pOFbhC9EnOpCYmKi3LZtm6/N0PAhuTmlbFqbhrXSzqAL4unWs12LHEWmHsnj2Ud/87j+8x/+0ORSAGWlVh7443euTVIEDLkgngcfG9/oc+TmlJB1vJjYDmHY7SrP/e037DYFm03FaNRhMOp56pWpmpKmlxFCbJdSJta2nVbhq+GXbFidymfvbUKqEkVRWbwwiZEXduG2+0a1uBtAQo92dIgPI/N4scu6mLjQZtGAKcgrQ29w0yFLQpYHddH6EhUdWiPNde77M1m5+DDpqQV0SYhk/JSetAn33GRFw7dozl/D7ygrtfLZe5tqpDBaLQqb1x9lxNgu9B/c8pRU/3DncN54YSXWap/JZNZzw211qwquL+2iQ9x2yBICOiVENss524QHcsV1529Wz/lGY2P+GhpNzr5dWejdFAVZKu1sWpPufYOagL4DY3n02UvpMyCGsDYB9OrbnkeenMCgxKbT1alOYKCRS6f1wmSuKahmNOmZ6YfVso0hN6eEhfP38t2XO0k+mOuTfgQtEW3kr+F3ONodujp/IUDfyHRFX9KzT3vmPD/Ra+e75uahtIkIZPFPBygtsdClW1tuuH1YnfT+ayM3pxRFUYmODfVpGG79qlQ+f38TqipRFZWlC5MYMaYLt/+l5YUHvY3m/DX8jv6DY1FV15CF0aSvc6WohkMQberMvkyd2bfJjnkis5i3567m5IkShICQUDN/fmQsPfu0b7Jz1JWyUiufv+8aHtyy4SgjL2qZ4UFv0nKHURrnLQGBRu599CJMZj0msx6DUYfRpGfi9N707Ot9J6PhwG5TeOnxJWRlFGJzSjYX5JXz2rPLKSqs8Lo9+3dnO58Sa9KSw4PeRBv5a/glgxPjeePjWWzbfAxrpZ2BQzsQ06F2jXqN5mPPjiwsFruLfo+qSNatSGH6Vc2jKeQJT1lSQtRdSK41ozl/Db8lJMzMuIk9fG1Gk1FcWEHhqQqi48IarOXvS04VlLttH2mzKeTnuUpYNDf9B8e6ndyVwPGjhRzan0OvFiCt7Cu0sI+GRjOgKGqVY7JY7LwzdzUP/ekHXnxsCffd/C2/fL/PK3ZUVtg4nHSSnGzXGoP60r1XlFthN3OAwSf69QGBRu7960UYTbqa2WESUg7n8dqzy9m8Lt3rdrUUWt7wQ0PDjzl84CT/+XAzx48VYjIZGDe5B4UFFezelondpla1/Pv52z1ERYcw4sIuzWbL4gUH+P7LXegNOhS7SscuETz42DjCGlh41TkhkgFD4ti7M6uq2YrRqCM6NpShIzo2pel1JiomhIBAI6XFFpd1VqvClx9v5YLRnf2+mbov0Eb+GhpNxPFjhbz67O9kHC1ESseIf8Xiw2xZn17V3Ps0VovComYc/e/dmcX3/92F1apQUW7DalVIT8nn7ZdXN+q49z56Edfd6kgXjY0P4/LZA3jiH5MbrRjaEKSUvPXSKkqKLZ56yFBRYaOwwPshqZaANvLX0Ggifv1hn4ucQvU0xLMpLKxsNlt++2m/S4tHRZGkpxaQm1NKVHRIg46r1+uYMLUXE6b2agozG0V2ZjEF+WWOIL8HpJQE1UOFtDWhjfw1NJqIjPRCjw29z0boRLPGyYs83Fj0eh2lJa4hkpaIzaqgO0chl9GoZ/iYzgQEGr1oVctBc/4aGk1El+5t3caW9XqB0XTmX02nEwSYDcy6sfl0cAYN64DB6PrvLaWkQ6fm6fHrbTp2Dsdg1Ltdp9MJBl3QgVv/PNLLVrUcNOevodFETL+qH0ZTTWdkMuu5aEJ3/vrUpQwYGkdMXBgXXtKN59+cTnRs89UtTL2iLyGh5ho3AJNZz/V/HIbJ5N5htjR0eh13P3yhoxDQOedgMuuJ7RDGKx9cwV/+dnGLTKn1Fpqev4ZGE3I0tYD/frqNlEO5BAWbmHR5b6Zf2Q+dm0rU5qa02MLihUns3ZFJRNsgpszs65OUzOYm72Qpa35P5lR+Of0Gx5I4qrNPJqD9hbrq+WvOX0NDQ+M8oq7Ov/XeHjU0WhGWShsH9+VwNLVAkzzWALRUTw2N857Vy47w5Sdb0et1qKokPCKQR56aQHRsaO07a5y3aCN/DY3zmNQjeXz58VasFkexl6XSzskTJbz6zO/aE0ArR3P+GhrnMct/PeRSXSwlFBdVknI4z0dWafgDmvPX0DiPKSqsdCt9oNOJ86bYS6NhaM5fQ+M8ZsjweJc+vgB2m0r3XlE+sEjDX9Ccv4bGecyFl3Qjqn1IjcIuk1nPzGsHEhJq9qFlGr5Gy/bR0DiPMZsNPP3qVFYtS2bbxmMEh5iYOL03/QbF+to0DR+jOX8NjfMcc4CRyZf3YfLlfXxtioYfoYV9NDQ0NFohmvPX0NDQaIVoYR8NDQ2vYLHYWf7rITavS8ccYGDC1F4MH9MZcQ5Nfo3mQ3P+GhoazY7NpvD83xdzIqu4qrtZenIBhw6c5OY7h/vYutaJFvbR0NBodrasO8rJEyU12lpaLHbWLEsmN6fEh5a1XjTnr6Gh0ezs3ZmJpdLuslynFxxOyvWBRRqa89fQ0Gh2ItoGode7xvaFgLA2AT6wSENz/hoaGs3OuEk90J/VzUwICAg00m9gjI+sat00yvkLIa4WQuwXQqhCCI+dY4QQU4QQh4QQyUKIOY05p4aGRssjOjaMe/46lqBgEwGBBkxmPdFxYfzf85N80uJSo/HZPvuAq4APPW0ghNAD7wETgePAViHEAinlgUaeW0NDowUxZHhH3pl3NRnppzCbDcTGh2lpnj6kUc5fSpkE1PYHHA4kSylTndt+DcwENOevodHKMBh0dO3e1tdmaOCdmH8HIKPa++POZRoaGhoaPqLWkb8Q4nfA3YzM41LKn5vSGCHEncCdAJ06dWrKQ2toaGhoVKNW5y+lvLSR58gEOlZ7H+9c5u5cHwEfASQmJmoNRjU0NDSaCW+EfbYCPYQQXYUQJuA6YIEXzquhoaGh4YHGpnpeKYQ4DowCFgkhljiXxwkhfgWQUtqB+4AlQBLwrZRyf+PM1tDQ0NBoDI3N9vkR+NHN8ixgWrX3vwK/NuZcGhoaGhpNh5DSP0PrQohc4Gi1Re2APB+ZUx80O5sWzc6mRbOzafFHOztLKaNq28hvnf/ZCCG2SSk9VhH7C5qdTYtmZ9Oi2dm0tBQ73aHVVWtoaGi0QjTnr6GhodEKaUnO/yNfG1BHNDubFs3OpkWzs2lpKXa60GJi/hoaGhoaTUdLGvlraGhoaDQRmvPX0NDQaIX4rfOvR6OYdCHEXiHELiHENm/a6Dx/i2hoI4SIFEIsE0Iccf6O8LCd4ryWu4QQXpPhqO36CCHMQohvnOs3CyG6eMu2s+yozc5bhRC51a7hHT6w8TMhxEkhxD4P64UQ4m3nZ9gjhBjqbRuddtRm5zghRFG1a/mUt2102tFRCLFSCHHA+b/+gJtt/OKa1gsppV/+AH2AXsAqIPEc26UD7fzZTkAPpAAJgAnYDfT1sp2vAHOcr+cAcz1sV+qDa1jr9QHuAT5wvr4O+MZP7bwVeNfbtp1lw0XAUGCfh/XTgN8AAYwENvupneOAX3x5LZ12xAJDna9DgcNu/u5+cU3r8+O3I38pZZKU8pCv7aiNOtpZ1dBGSmkFTje08SYzgXnO1/OAK7x8/nNRl+tT3f75wATh/TZQ/vB3rBUp5Rqg4BybzAT+Ix1sAsKFELHese4MdbDTL5BSZkspdzhfl+DQKDu7J4lfXNP64LfOvx5IYKkQYruzH4A/4g8NbaKllNnO1yeAaA/bBQghtgkhNgkhvHWDqMv1qdpGOsQCiwBvt4Sq699xlvPRf74QoqOb9b7GH76PdWWUEGK3EOI3IUQ/XxvjDDcOATaftaolXVOg8T18G0UTNYq5UEqZKYRoDywTQhx0jiiaDG82tGkM57Kz+hsppRRCeMrx7ey8ngnACiHEXillSlPbeh6zEPhKSmkRQtyF42nlEh/b1FLZgeP7WCqEmAb8BPTwlTFCiBDge+BBKWWxr+xoKnzq/GXjG8Ugpcx0/j4phPgRx6N5kzr/JrCzzg1tGsO57BRC5AghYqWU2c7H0ZMejnH6eqYKIVbhGOU0t/Ovy/U5vc1xIYQBaAPkN7NdZ1OrnVLK6jZ9gmOuxd/wyvexsVR3sFLKX4UQ7wsh2kkpvS6kJoQw4nD8/5VS/uBmkxZxTavTosM+QohgIUTo6dfAJMBt5oCP8YeGNguAW5yvbwFcnliEEBFCCLPzdTtgDHDAC7bV5fpUt382sEI6Z9q8SK12nhXnnYEjPuxvLABudmaojASKqoUE/QYhRMzpeR0hxHAc/srbN3ycNnwKJEkpX/ewWYu4pjXw9Yyzpx/gShxxMwuQAyxxLo8DfnW+TsCRcbEb2I8jDON3dsoz2QCHcYyifWFnW2A5cAT4HYh0Lk8EPnG+Hg3sdV7PvcDtXrTP5foAzwEznK8DgO+AZGALkOCj72Vtdv7D+V3cDawEevvAxq+AbMDm/G7eDtwN3O1cL4D3nJ9hL+fIpvOxnfdVu5abgNE+svNCHHOLe4Bdzp9p/nhN6/OjyTtoaGhotEJadNhHQ0NDQ6NhaM5fQ0NDoxWiOX8NDQ2NVojm/DU0NDRaIZrz19DQ0GiFaM5fQ0NDoxWiOX8NDQ2NVsj/A/NNv9z9zL1nAAAAAElFTkSuQmCC\n",
- "text/plain": [
- "<Figure size 432x288 with 1 Axes>"
- ]
- },
- "metadata": {
- "needs_background": "light"
- },
- "output_type": "display_data"
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEICAYAAAC3Y/QeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzsnXd4VNXWh999pqeSTu+9V+kIIlKkioqK9arYsF8+e7le+7WLHS9NEFRAekcvvfcWCCWNkoT0MvXs748JgWEmkJ4A530eHpIz5+y9Msmss8/aa/2WkFKioaGhoXF9oVS2ARoaGhoaFY/m/DU0NDSuQzTnr6GhoXEdojl/DQ0NjesQzflraGhoXIdozl9DQ0PjOkRz/hoaV0AIMUUI8W7+172FENEVNK8UQjSuiLk0rj8056+hUQyklOuklM2udJ4Q4kEhxPqKsElDoyRozl/jukIIoa9sGzQ0qgKa89e4JhBCnBRCvCKEOCiESBNCTBZCmIUQfYUQCUKIl4QQZ4DJ+ecPFULsFkKkCyE2CiHaXjRWByHETiFElhBiNmC+6LW+QoiEi76vI4SYK4RIFkKcE0JMFEK0AL4HugshsoUQ6fnnmoQQnwgh4oQQZ4UQ3wshLBeNNUEIcVoIcUoI8Y/yf9c0rmc0569xLTEWGAg0ApoCr+cfrw6EAvWAcUKIDsB/gceAMOAHYEG+czYCfwLT86/5HRjtazIhhA5YBMQC9YFawCwp5SHgcWCTlDJASlkt/5IP8+1qDzTOP//N/LEGAf8EBgBNgJtL/3ZoaBSO5vw1riUmSinjpZSpwHvA3fnHVeAtKaVNSpkHjAN+kFJukVK6pJRTARvQLf+fAfhCSumQUv4BbCtkvhuAmsAEKWWOlNIqpfQZ5xdCiPx5n5dSpkops4D3gbvyT7kTmCyl3C+lzAHeLtU7oaFxBbT4p8a1RPxFX8fidswAyVJK60Wv1QMeEEI8fdExY/75EkiUnoqHsYXMVweIlVI6i2BbBOAH7HDfBwAQgC7/65rAjiLMqaFRJmgrf41riToXfV0XOJX/9aXStfHAe1LKahf985NS/gqcBmqJizx0/li+iAfqFrKJfOmcKUAe0OqiOYOllAH5r5/2Yb+GRrmhOX+Na4mnhBC1hRChwGvA7ELO+wl4XAjRVbjxF0LcKoQIBDYBTuAZIYRBCHEb7vCOL7bidtof5o9hFkL0zH/tLFA7fw8BKaWaP+/nQohIACFELSHEwPzzfwMeFEK0FEL4AW+V5o3Q0LgSmvPXuJaYCawAjgPHgHd9nSSl3A48CkwE0oAY4MH81+zAbfnfpwJjgLmFjOMChuHevI0DEvLPB1gDHADOCCFS8o+9lD/XZiFEJrAKaJY/1lLgi/zrYvL/19AoN4TWzEXjWkAIcRJ4REq5qrJt0dC4GtBW/hoaGhrXIZrz19DQ0LgO0cI+GhoaGtch2spfQ0ND4zqkyhZ5hYeHy/r161e2GRoaGhpXFTt27EiRUkZc6bwq6/zr16/P9u3bK9sMDQ0NjasKIUSRqsO1sI+GhobGdYjm/DU0NDSuQzTnr6GhoXEdojl/DQ0NjesQzflraGhoXIdozl+jVDhy8nDZ7JVthoaGRjGpsqmeGlWb1D3HWP/IJ6TuOYYQgtpDutLzpxcxhwdXtmkaGhpFQFv5axSbvKQ0ltz4HOd2HEE6XagOJwlLtrCs/4tUFbkQ1eVCqmplm6GhUWXRnL9GsTny8xJUu2fnQtXhJOvEGZI27K8kq9xkRMez5MbnmGoayDTLYP4e+x62tKxKtUlDoyqiOX+NYpN+MBaX1XecP+v46Qq25gLWcxks6jGes+v3gypRHU5i56xlWf9/VpknEg2NqoLm/DWKTUTXFuj8zF7HpaoS0qYBtvRsVJerwu06OnmZ+6Z0kaNX7U4yYxJJ2nigwu3R0KjKaM5fo9g0vv8WjMF+CL2u4JjObCSgXnWWD3yJWdVHMzN0JLv/Pb1C4+5p+0/gyvPxRCIlmUcSKswODY2rAc35axQbY5A/w7d9R4O7+mEI9sccFUKtwTeQHXsGW0oGqt2JIyuXvR/9yp73ZwIgpSRh2VbWPfwxG5/4nKTNB8vcrvCOTdH7eCIBqNa6fpnPp6FxNVNlm7l07txZaqqeVw9zWz1ExqE4r+OGID/uTpnH+oc+Ju7PDThzrKAIdGYjbf7vLjq8eX+Z2WDPyGZOswewpmRC/hOHzmQgrEszhvzvC4QQZTaXhkZVRQixQ0rZ+UrnaSt/jTIhJz7Z53FXno3TK3dccPwAqsSVa2Pfh7+SdfJMmdlgDA5g2NZvqTuiBzqLCWOwP03HDeWWpR9qjl9D4xK0Ii+NMqFaq3qkbDnsddwYEkjCiu04c23eFymCxOXbaP7YsDKzI6BuFP3n/KvMxtPQuFbRVv4aZUKXD8ehs5g8jun8THT+8FGMgX4InfefmlCUQmP0Ghoa5Yvm/DXKhOo3tuOWpR8S0a0FhkA/qrWqT59pr9DkwUE0uvdmFIPO+yIpqTuiR8Ubq6GhoYV9NMqO6n3aMnTjRK/jwU3r0O3rZ9g8/iuEQYdAIFWVm+b8C2OQfyVYqqGhoTl/jQqh6T8GU29kTxJX7kBnNFDzlk4Y/C2VbZaGxnWL5vw1KgxTaBANx/SrbDO8UB1OpJTojIbKNkVDo8LQnP81jCMrl+Rt0ZhCAwlt10hLd7yE3NPn2DDuUxKXbwcpierdhp4//ZOgRjUr2zQNjXJHc/5lgD0jmwNfzOHknLUYg/xp8fQoGtzZt1Kd7cGJ89j+0k8oRj3S6cK/dgQDln5IYP3qlWZTVUJ1uljc61ly4pOQTrcO0Zm1e1nUYzx3HJuBIaD8Q1Iuu4PjM1cTO3c9prAgmj8+jIiuLcp9Xg0N0Jx/qXHk5LHwhifJiU8uULpM3XOM5M0H6fr5U5Vi05l1e9n+8k+48my48tz59ZlHE1kx6CVuOzRFewIAEpZuwZaSXuD4gYLisxOz1tD0kVvLdX6Xzc6SG58n/cBJd/GbEJz4/W86f/AoLZ8eVa5za2iAlupZamKmrSQn8ZyHxLEzx0r0D4vISfRd9VreHPp6npfAmVRVchNTSN0dUyk2VTWyYk7hsjm9jjtzrKRXgAjc8ZlrLjh+AOm+8Wx/6Uds6dnlPr+Ghub8S8mp5dtw5Vq9jitGPcmbD1WCRZCXlO4ha3weodNhS9UamwCEtGmAYvR+8NUHWAhr37jc5z85Z+0Fx38RilFP0vp95T6/hobm/EuJX50In9WrUkos1UMrwSKoO7yHV7UtuLNawrs0qwSLqh41bupAUJNaKKYLGT7CoMMcHkz90b3LfX5TWBD4Cr9JiSFYq33QKH80519KWjw5wsOBgFu2wBIZQmSPVpViU7NxQwmoG+lxA9D7men0wcPlUlRlTclg/+d/sPHJL4iZtoK4hZvY/e4vxExfidPHU1FZkHc2le2v/MTCbk/x9z3vkrI9uljXC0Vh8F+f0fSRIRhDAjAE+dHonpsZunkimTGnOLc7xqshTdaJ06wa+QbT/IcwI2wkWyd8j7OQjmZXotljw9BZjF7H9YF+lfZ3o3F9oUk6lwFxCzay7h8fo9qdSJdKcPM69J/7DgH1oirNJkd2HtE/LiJu/gbMkdVo+fRtVO/TtsznObc7hqV9n0d1uNyby4oACQj3DUdnNnLrui8JblanzObMSUhmfsdxODLzUO2OAonoPtNeof5tJV+1p+0/weqRb5B3Ng2EQG8xceOvr1Pzpg5Yz2Uwt/mD2NOyCxrU6MxGovq0ZeCyj0o03/4v/mDnqz+7w08S9AFmBi7/mJDWDUr8M2hoFFXSWXP+ZYTqdJF+4CSGQAuBDa+fPPF5bR8hff+Jwk8QgrAOjRm+/fsym3PDuE85OmW5Z6YOYI6oxphTv6HofOgIXQGXzc7sOndhS8nwOK73MzH6yDRipq9k9zvTC7KnzqOzmBi25ZsSO2xbaiZn1+/HGOxPZK/WJbJdQ+Niiur8tVTPMkLR6wht16iyzahQrMnpV26PKCVp+09iTU7HHFGtTOZNXL7Ny/EDOHPyyIk9W6Kbb/yizag2h9dx1aVydNoKzm0/4uX4wf17T9t/osTO3xQaRN3hmridRsWjxfw1Soww6HHHeK5MWT5hmsKCfR5XXSrGagGXvdaZZ+Pshv2kHTjpYZM1KR3Vxw1FtTnITUwhpG1DFLN3jF6qKkFNaxfzJ9DQqHw0569RYkzVAojo3spntlMBQlCtVX0skSFlNm/rF+9A7+/ZB0Ax6ql5c0dMoUGFXnd06nJ+jRrNyltfYVHXp/izzcMFncSierfxeY0+wELN/h1pNm4ouktSQxWjnpA2DQnv2LSUP5GGRsWjOf+rBEdWLinbo8k9fa6yTfGgz7SX8a8dgT7AAj4yFxWDjhtnvFqmcza8pz8tn7kNndmIIdgfncVEZPdW9Jle+Dwp26PZ9OSXOLPzcGTm4sy1knE4nuW3TEBKSUjrBtS7rZfHTUUxGajWvC51hnbHr3ooQ9Z9SUT3lqAIFKOeBnf145ZlH5bpz6ahUVFoG75VHCklu9+Zxr6PZ6MYdKg2B7UG3UCfX16pMpLIqsvF3g9+Zc97v3jFzRWLkaHrvyKsQ5Myn9eWmknavhP41Y64ohjbuoc+Imb6SlA9/971ARYGrfqEiBuaI1WV6J8Wsf3lSTgyc91ZOELQ4a37afvS3QXXqE4XQhEIRVs7aVQ9tAbu1wjHZ6xi/39+w5Vnw5GZi8vmIHH5VjY+9nllm1aAotPhzM7zuWGKS3Lmf3vLZV5TaBDVb2xXJBXO3NOpXo4fQCgCa36Gj1AUEhZvcUt1SIlqc6Ba7ez59y+cnLsOe0Y2W1/8jt/q3c1v9e9hxxuTcfrYBNbQuBooE+cvhPivECJJCLG/kNeFEOIrIUSMEGKvEKJjWcx7PbD341lehVIuq4OTc9biyM4r8bhSVYmdv4E1d/6Lv+9+151BU4qnQHNUNXQ+NkQVox5zeOFx+NKQeyaVNXe8zVTzQKaaB/LXmHfIO5vq89w6Q7uh8/OuenbZHER0bQ64i9USV+7wuok5c63s/WgWi3o+w6Fv55N3+hy5Cckc+PS3grCRhsbVRlmt/KcAgy7z+mCgSf6/ccB3ZTTvNY81KcPncaEI7BklEwCTUvK/se+z9t73if1jLSdm/8Wa299my7PeLRiLSqN7+vsMgyg6hbqjepV43MJw2R0s6j6euPkbUe1OVLuT2HnrWdTjaVSHt2Bbk4cGEVAn0qOqVu9vpt1r92LOzx6ynctE0fvOs885eZqcuCSPG4PLaid1zzHOrtO0eDSuPsrE+Usp1wK+l1xuRgDTpJvNQDUhRI2ymPtap3rfdj6dqjHYH78aYSUaM2nDfuIXbfIQFnPmWDny8xLSD8WWaExLVCj9F7yLKTwYQ6AFfYAFv5phDFz5n3LZm4ibvxHbuUyPfH/pdGFNySBu4Sav8w3+FoZt/ZYObz9IRNcW1B7SlX6/v0X71+8tOCewUU0UH928hF6HpUYYTh9PWqrdWWRpiey4s2x4/DP+aHo/S/q9QMLSLUW6TkOjPKioIq9aQPxF3yfkHzt98UlCiHG4nwyoW7duBZlWten07j9IXL4NZ47V7eiEQGcx0u3rZ0q84ZiwdKtPzR2pShKXb6dai3olGrfmTR246/TvnNt5tKDorbw2RTMOxeLM8XbGzhwrGYfifF5jCPSjzYQxtJkwxufril5Ht6/Gs+Gxz3DlumP5ikGPIdCPBmP6khVzyut9U0wGAorQICc77izzO4zDkZWHdLrIiklkzdZDdHjnIdq8eOcVr9fQKGuqVIWvlPJH4EdwZ/tUsjlVgqDGtRi5+yf2fvgrZ9ftJbBxLdq+dBeR3Usu/mUI9kcxGNy6OBeh6HUYgvxKZa+i0xHRpXmpxigKwS3qofe3eK3G9f5mgluUfOHQaOzN+NeNZP9/ZpMdm0SNm9rTZsIY9P5m9n/yG+SJArlsoSgYA/2oM7TbFcfd8/7MAsd/Hleene0TfuDM33voM/0VTFcoUNPQKEvKLNVTCFEfWCSlbO3jtR+Av6WUv+Z/Hw30lVKevvTc82ipnuVHdnwSc5s/6CVXoPc3c8fxGShGPYYg/yrd8ctldzC3+QPkJKQUOFSh1+FfJ5LRh6egGMp+XZN24CRr7/+Q9ANuLaPwLs3pM/2VIrXGnNPsfjKPJvp8Tej1RPVqxeA1n5WpvRrXJ1VN22cBMF4IMQvoCmRczvFrlC8BdSLpM+1l1j340YXqXAlRfdryW727kS4XfrUi6PHdc9Qa2KVyjS0EndHA0E0T2fzMROLmbwAhqDuiJ92+Gn9Zx+/IySNu/kbs6dnUvLkjwU2LrjYa0qo+I3Z8j/VcBkKnK9ZK3a9WeKHOXzqdJG85TOaxU1rzeI0Ko0ycvxDiV6AvEC6ESADeAgwAUsrvgSXAECAGyAUeKot5NUpO/dF9qDWoC2f+3oOi1xE9aTEJS7YUtKPMPnmG1aPfYsjaL6qsfEHmsdP41QqnxTO30ejum65YSHZ24wFWDnkZKSXSqQKSpo/cStcvnirWU465EG2hy9H2pbtJ3nq4YC/hUhSjntyEZM35a1QYWoXvNUz6wZOcWrMbU2ggdUf0KDTrJu9sKr83GOvRhxgAIag/ujf9fnsLa0oGZzfsxxQSSFSv1pVe3br52Ykc/Xmpu8hKCHQmA+1evYd2r93r83zV4WRWzTuwncv0OK73N9N39pvUGdK13G0+/P0Ctjz3DardOxVVZzYyJmH2ZbWJNDSKQlUL+2jgLqzKPnkGQ6Bfmckb+5xHSjaM+5TjM9eAlAiDjk1PfcnA5R8TcYP3Zmx2bBKKyeDt/KUkbtEmlt/yf5xZtxedyeBuMxjkz8CV/6Fa88rJyErZHs2Rn5dcWEVLiSvPxp73ZtDwnv4ENvDOIj67Yb/P/P/zKa4V4fybPz6cWoO7Mr/9oziycgsqjvX+Zlo8NUJz/BoViibvUEEkLN3C7NpjmNf2EWbXvYtlAyZgTU4H3Lr4MdNWcGzGKmxppW+wHjtvPSdm/YUrz4bLaseZlYcjI4dVw1/zak0IENS0tm9pBkC1Oji1yl316sjMxZGVR+6pc6wY9FKlVbbG/rnB+0aVT/xi37nzvhz/edIPxfJn+0dZ0OUJon9c5PM98jVeUc67lMB6UYzcO4kmDw7Er2Y4IW0b0v2bZ+n0waPFHktDozRoK/8KIP3gSdbc8S+PeO+Z/+1hxeCXaf7kCDaP/wqhVwCBdKn0nvoSDW6/8YrjuuwO7GlZmMKDPTpAHZm02KOAq+D8PDspWw97pYmaqgXQfPxIor9dULSeu1JiS80iZethIrq2uPL5ZYzObEDoFKTq6XyForifTnwQ1bM10qV6v6AIso+fLgjFbDkUS+KK7dz0x9s+x8k4Es+Gxz4jad1+hE5Qd2Qvun/7bLH2AQLqRNJr0oTLnuOyO3BZ7RgC/ap01pXG1Yu28q8ADnw1z2tlLZ0u0g/FsempL9yr82wrzuw8XHk21j3wUcFTgS9Ul4ttL/3IzNAR/N5gLL9GjSb6p0UXXvcRUwZAgOrwvVrt8tE4On30aJHDUUJRsGfmFOncsqbBmH4+ZRikqlJvZE+f1+j9zPSe+jI6i8mt1gkoZiNCCI/3y5VrI3HZVlJ2HvEaw5aWxaIeT3N27T6kqqI6XMT9uYGl/V4os6cgZ66V9Y98woxqw5kZPoo5zR7g1JpdZTK2hsbFaM6/Asg6dsrnqlOqan7WySUIODl3XaHj7XztZw598yfOXHdYx56axZbnv+XknLUANLr3Zq9mJ+5xBRHdfK/UhRC0fGokN817x63NfwVUh5PI7q1I2nyQxb2eYVrAEH5vNJboSYvLPRwU3KQ2N3z2JDqzEb2/GX2ABZ3FRO9pL1/25lX/tt7cdnAy7V67l5bP3kbtITf4/L2oLpWkDQe8jsdMW1Gg+FlwrsNJ9smznPnfnjL52f6++12Oz1yNy2ovqARePfw10i7XJ1lDowRozr8CqHlTBw9BsfNIpwup+ropyEJj2qrDyaGJ871SBl25Nna/Mw2ARvcOILJna/QB7huAYjKg8zNx44zX0PnQrrmYyO4tsUSFFJrNIxQFnZ+Jrl88ScaReJbd/E+SNh7AlWsj+8QZtj73LXs//PWyc5QFzR8bxh0nZtDtq6fpPvEZxiTMLlKoLKBeFO3fuI+unz9FaNtGCIP3E4Ri1GOpHup1PG3/CZ+pmlJVr9zLuAhkx53l1ModXr97l83Bvk9ml3p8DY2L0WL+FUCzx4dxcOI8rM4MZH7YRe9nps6wbsQt3OTlUARQZ2h3n2PZM3IK3WjMiU8G3DINtyz5gFMrd5C4cjum8GAa3zsA/9oRV7RVCMGgVZ+wasTrZMYkuvcSFEHDe/qTG5+MObIazR8fRnjnZqwc+iquPE9H5cy1sveDmbR6/nb0PiSeyxJLVChNHrqcmGzhnJyzlr0f/lrw+7gYndFAnWHe7394p2acmPWX136KEIKQNiVr4H6e9EOxHJ263GdLTOlSST/oW69IQ6OkaM6/AjCFBDJi5w/sfvcX4hduwlgtgFbPjqbxgwPZ8uxEjk5ehjPXBsKd791mwphCi31MoYEYAv2w2bylnkPbNyr4WigKtQZ2KVGFbkC9KEbu/omMowk4MnMJbdvQZ9Vs6u4YjxBIAVKSdyqFwIZVs2DJlprJ2vs/RPXxdOVfN5IBiz/weeNqdO/N7P73NHdIJj9cpJgMhLRtSES3liWyRXW5WHv/B8T9uREEPp8shEFPZCHhOg2NkqI5/wrCEhVK96+fofvXz3gc7/rleBqM6ceJ2X8h9Doa3dOf8M7NCh1HKApdPh7HpvFfeTgKnZ+JzmWcLhjcpPZlXw9qUpvcU949haWqYo4qu4btZYUtLYvTf+0macN+hOKr4bCgwZi+hLSq7/N6Q4BbFnrri98Tv2gTOoOeRvffQqf3Hy5xRs6RSUuIn7/JS2epACHQW4y0eGoEh39YSOKK7QTUjaT548MJblZ0aQoNjUvRnH8RyTp5hm0Tvidx+Xb0fiaajRtKu9fvvWIM/UoIIYjq2Zqonl56eF44rXbi5q0nJy6Jls/cRsLSreTGJxHavjGd3n/EZwFXedL+rfvdoZ9LbkLNHr21yvQXPk/0T4vY8uw3KEY9qt3pe09F4nsD/iL8a0XQb9YbpbbHkZXL3o9msf8/swutQdAHWKjRrz3t3riPVSPeIDcxBWeOFaHXEf3jYvrNfqPQ8KCGxpXQnH8RsJ7LYOENT2BPzUaqKs7sPPZ/+jupe45x8/x3K8SG7PgkFncfjz0rF2d2nrtZSo0wboueWpBjnh2fxM7X/0vism0Ygvxo8fQoWo4fWW5SDDX6tufGX15ly/PfkpuQjM7PRMunR9HhXw+Wy3wlJW3/CbY89y0uq73QjXQAncVI/dv7lLs9qsPJ4l7PkHk0oXDH72em3x9vE96pCYcm/klO3FlcVne6sHS6cDldrHvoY+4684dHjYeGRlHRnH8ROPLjYpw5No/MHFeejVOrdpJ+OK5CZA42PPopeWfTCmLNzqw8sq1n2DbhB+qO6En6wVj2/2c2jqxcpEvFmpzOjlcnkb7/BD1/fLHc7Ko3shd1R/TElWdDZzZWuuaPL478d6lX7wJfmEICCet4eXG4siD2zw1knThT4Mx94cyzsea2N5EuFcWo93muy+Yg/cBJQts28jGChsblqXqf1CpI8pZDPmOyikFH2r7yz79WnS5Or97plZOuOpzETF3Ouvs/ZOebk7GnZ3uc48q1cWz6SnISk8vVPiEEej9zlXT8APaMbN/VvZdgS83iwOdzyt2epE0HfLaEBC68h1LiyrWh2hw4s31XXUuXC0Ng6ZrvaFy/VM1PaxWjWqv6KD5kA6RLJahx4RktOQnJrHv4Y2bVuoO5rf/BkZ+XlLwAqrANRemOH1OIc1PMRlJ3HyvZnNcI9Uf1Lqh5uByuPBtH/ruk3O0JqF8dncXkdVzodb43yn38zQhFIbhZHZ8idhoaRUFz/kWg+RPD0Rk9I2SK0UBIm4aFasjnJaUxv+NjHJu2krzTqWQcjGXLc9+w9YVviz2/otdRs39HnzngV0J1OIvUY/ZapvaQrlTv09Z31fMlXNxmsbxoNLa/tzyFIjCHB2MMCfR5jTDo3R3WAv3QB1oIqB9F/3n/LndbNa5dNOdfBPxrRzDor88I69gEoVNQjHrqje7NLUs/KPSag1/NK4i/n8eZYyX6h0XkJaUV24aeP72IpUYo+kALKMLtyK6QXagY9YS1b1xo6uL1glAU+s9/l95TXqL+nX1p8tAg/OtGep2nMxloeM/N5W6POSyYQWs+JahZbXRmI4rJQFiHJgxZ9yU1+3fwXXWs1zFi90/0/OlFBix6n9FHphFQL6rcbdW4dtGauRQTZ54NRa+7Yo/Yxb2fJWnDfq/jhmB/bvr9LWre3KnYc7vsDuL+3EDGkQRC2jRg20s/kHXEuzWg0CkInULtwV3pNfn/MFULIONoAinbogmoG0lkz9bXlFKkIzuPk3PWkncmlahebYjs0eqKP9+5XUdZetOLqA4nrlwb+gALgQ1rcOv6rzAUQduoLJBSkpOQjGLQ45cvJ5GTmMyf7R7FkZFTsHDQ+5tp+9pY2r18T4XYVVFkHT9FTkIKIW0aYCrkiUej+GjNXMoJvY9YrS+CGtciefNB701au9PnqrMo6IwGGtzZt+B7/9oRLOuf78Dy7OgDLPjXjaT/n+/gVz0MQ4AF1eXi77HvETdvPYpBh5TufrKD13yKX42wEtlRlTi3O4ZlN72I6nThstrRmQxE9W7DzfPfvewNOqxDE+44PoPjM1eTHXuWyO6tqDOsu0+10PJCCEFAHc+/Bf9aEe5q8HemcWrVLizVQ2gzYQz1R5d/CmpFYc/IZvWoN0nefAjFZEC1OWj53Gg6vVfyYjmN4qOt/MuJ1L3HWNTjaY8CKMWoJ6JrC4b874sym8d6LoNjv6wi6/hponq2pt6oXh5O7+DXc9n+yiQPO4ReR1Sv1gxe81mZ2VEZSCn5tfrt2C6Rv9b5mejy8ThaPDmykizTuByrRr5B4rJtHum3en8zPb7Vt7EgAAAgAElEQVR7jkb3DqhEy64Nirry12L+5URo20b0++0t/GqGuTXkTQZqDbqB/mVcFGYOC6bVs6Pp9uV4GtzZ12u1e+jbBV56MdLpImnTQawp3vpAVxP7P/nNy/GDO8X1yKSllWCRxpWwpWWRuHybV92FM8fKvk9/rySrSofLZmfvx7OY0/wB/mh6P7v/Pb1oTZEqGS3sU47UGdKVO+Nnk5OQjDHID2NwQIXb4KujF7hDDs7C9GSuEvZ/VrizcGTnsXXC9+iMBhre079SNr2zY8+ScTiOoKa1tZTMfOwZOSg6BV+JybarcDEipWTF4Fc8aoH2fjCT+EWbuHXj11W6+lpz/uWMr7huUZBScnr1To7NXI0Qgkb3DaD6je2KHROtN6oX0T8s9OruZakRWiSJ56qCy+5wZ1rlf5hUpwtrUuHdznLiznLgs98RisKBL/6g43sP0/q52yvM1rX3fUD8wk0FMe2at3Sm76w3yl3m+jy21ExUhxNLlHdfgsokoG4k+gCLW8X2IoReR62BV4xUVApSSlw2BzqTwevzd3bdPlK2HfYoAnVZ7aQfiiNx2Tbq3Nqtos0tMlrYp4xw2eyc/ON/HPxqLslbD5e6m9XGJz5n9ag3iZmynKNTlrNq2GslqhFo/8Z9WKqHovfLb+xi1KP3N9N7yktXxeZa2oGTLOr5NNP9hjDdbwh/3/MutvRsFL0Oc0ThfXNVu9Mt1OZSceXZ2fnqz+Ve6XyeXW9NIX7RZlxWO46MHFxWO6dWbGf7Sz+W+9w5Ccks6fs8s2rewW/172Fuq4dI2eHdkrKyEIpC9++eR+dnKihcVIwGjMH+tH/rgUq2zptjv67mt7p38UvArcwMH8W+T2Z7fLaTtxzCZfOW3nBm55G8+WBFmlpstA3fMiDjSDxL+jyHM8+Ganei6HVFyjgpjJQdR1hy43NesXqdxcSwrd8WO4ThyM4jZtoKzvy9m8DGtWj+2LCrIkc8LymNOc0ewJGZW1Dlqhj1hLRpwLCt33H4+wVsn/CjR3xV6BSfUg46PxNdP3+KZo/eWu52zwgdgT092+u43s/EvVmLy+2mq7pczGlyPznxSR7vgSHQj9FHp2GJrDoy2yk7jrD/09/IOnaK6n3b0+r52wvSXasKsfM38L+x73l8DvV+Ztq/eR9t/u8uAI7NXM3Gxz/3kuvQ+5np8unjNH9sWIXaDNqGb4Xy153vYE3OwJmV59ZiybFyZu1eDn49r0TjJSzZ4lPISzpdJCzZUuzxDAEWWjw5gn6/vUXn9x+5Khw/wJGfl7gb31/cM9fuJONwPMlbDtH88eF0/uhRTOHBoAgs1UOpeUtn8KHVLxSB4qN4qjwobJ/FmWf33fymjDi9aifWcxk+NaCOTl1ebvOWhPBOTek783WGbfmWLh+Nq3KOH2DXG5O9FmDOXCt7P5xZ0E2v3qhe6EwGL/kVYdDR8K5+FWZrSdCcfynJjk9y92+95EPtyrVx5OeSZZzo/c0+HZUw6CqsAKkqkLbvhG8JZiHIPJqIEIIWT43k7rNzuD9nCaMOTSbr2ClQvR2sdEnqDu9RAVZDZM9WPo+H39C8XMXvsmPP+nzqcVntZdJj+Hoj6+QZn8edObaClb7eYmLI2i8IaV0fndmIzmwkqFkdBq/5tFISPIqD5vxLiXS6ChVdUx1OpJTFjv83uLOvbychod7o3iUxs8ojpcR1SfpfeOdm7tjwpaiqR89cIQQ6k5Fdb04hO/as9/mKoM8vr2IKDSprs33S9cvxGAL9UPL1oIRBjz7AQvdvnrnClaUjvIvvDnD6AAtRvdqU69zXIoV1SjME+3moqVZrUY+ReyYx+sg0bjs8hdGHphSq+VWV0Jx/Mck9k8qpVTvIjHHLKgTUr45fDe9HVsVkQOgUppoGMtU0kDV3vE3e2dQizeFfO4Lek/8PncWEIcj9h6b3M9P319erVNy2LJCqyp4PZjIzbCTT/AbzW/27OTl3HQBN/jHY3RHsohuhzmwkoltLwto39hrr+K9r3GGiSxGC2hWYSRLapiEj9/9Mi/EjierdhuaPD2Pknp8I79i0XOcN69CE6n3aeiiGKkY9lqgQGoyp2iGIqkjnDx/1Ul/V+Zno+O7DPhdn/rUjCKh7dYRUQdvwLTJSVdn01JccnbIcndmIancS2aMV/ef+i/TDcSy/eYJbYiDPhs7fjLQ7kapa8Bgu9Dr860Qy+vCUIm8C2zNzOLVyBwhBrVs6l0nIJyM6nqzjpwhp2xD/WpWf6rnz7Skc+OR3j01bnZ+J/nPfodYtncmOO8vWF78jcek2FLOBJg8NouM7D/mU2ZgZMQrbuUyv40Kv4970BQUZT1czjqxcjvy8hPhFm7HUDKPl+FEe7TtddgcHPv2d6EmLcdkc1B/dhw5v3V9hTz3XGokrt7P9/34kIzoev1rhdHj7ARqNLX/xv9JQ1A1fzfkXkQNfzmHna//1cFKKyUC923rTd8ZrbpmFGavJiTuLlHDkp8XeGQCBFvpMfZl6I3sVe/7MY6fY8txETq3aic5spMmDg+j0/sNF1hqyZ+awesQbJG897O5ja3PQ8O6b6PHjC5VWiOKyO5gZPtJns5Lwrs0ZtumbYo236akvOPLzUs+aBkUQ1asNQ/7+vLTmVjr2zBwWdH6C3MQUd165ItCZjXSf+AxNHhxU2eZpVBG0bJ8y5uCXc71KtlWbg9i563Ba7W6ZhWdu44ZPnsAQYPHZqcmVayPjUFyx57amZLCw65MkLN2KanPgyMgh+oeFrBrxepHH2Pj45yRtPogrz1aQe3589l8c/HJuse0pK2ypWYU2TM+KOVXs8Tq+9wiBjWqiz39C0gdYMIcH0/u/E0plZ0WRl5TG9lcnsaDz46we/RZnNx7weP3QN3+Sm5B8oaBIdXf72vzMxKu+Wluj4rkuKnyllKXOrbZn5Ph+QZW4cq0elZshreq7qxgvuQHo/ExUK4HMwJGfFrtTzi7KYnFZ7SRtPEDqvuOEtml42eudVjuxc9d76am4cm0c/HourV+4o9g2lQXm8GAUk8FnRk9J3idTtQBG7plE/KJNpO45TmDDGtS/vU+Rn44qk9wzqcxv/yj29BxUu4Nzu2JIXL6NHt8/T+N8sbPYeet9vldCEZzbFUNUD99ZRoWRl5TG6dW70PubqXlL5wqrPtaoGlyzzt9ls7Pj1Z+J/nERzlwb4Z2b0m3iM0R0aX7li31Qs38HYueu92jiDuBfN9Kr+1LdkT0xv/QjOVZ7QWeo85rttYd0LfbcKTuO+PzQKzqdu4H3FZy/K89WaH65IzPX65hUVU6t2knCks2YwoJpdN8AAsuhG5ii19H+jfvY9eYUr5h/p3f/UeIx643sVaLQWmWy9/0Z2NOyUR35Iav8Hr5bnvmahmP6oRj0mMN8VzRLp4oppHhphfs//Y2db0xGGHQIIRBCMGDJB0R2L94NROMCLpfKqsWHWbP8KHabk87d6zLizrYEBFbNxcc1G/ZZe98HHP5+gbvgRkpStkWz7KYXC7J0ikvnDx/FEOyHYnT38hU6Bb2fmR4/vOD1VKEzGhi6eSL1R/dx5/5ajNS/80Zu3fB1ifTiQ9o2LLSHcGHpaBdjrBbgs5WjUBRqDvAMDapOF6uGv8aa29/i4Ffz2PPeL8xr9Y+CDJzLIaXk9N+72fvBTI5OXY6jkCblF9Pq+dvp+tVTBNSvjmIyENqxCQMWvldlUxNPrd7JwhueZHrQUP5s9whxCzeWybiJy7ddcPwXobpUMvJz9Fs+e5vXprXQKQQ2qkG1FvWKPFfy1sPsfHMKLqsdZ1Yejsxc7Bk5rLz1VVw2H3UVGkXi+8/W88eM3ZxJzCQ1JZc1S4/w9j+XYLN5/16rAmWy4SuEGAR8CeiASVLKDy95/UHgP8B5zztRSjnpcmOWZsM3Oz6Juc0e8FotC72Opg8Pocd3z5Vo3NzT5zjwxRySNh4guFkdWr94R7E+dCUlO/YMfzS+z6uAJ6xjE4Zv/75IY5xZu5eVQ17BZXcgnS4UkwG9v5nh277zUJw8NnM1Gx/7zKtKVR9g4e6zcwoNobjsDlYMfpmUrYfdTVUsRhS9nsF/fUZou0bF/ImrJokrtrN61JseIl46PxO9fp5Aw1KmUhbW+U0xGbjj+IyCxjt73p/Bnnd/QTHqkS4V/9oR3LL8o2KlGG54/DOOTFriVQxnCPLjxpmvU6cET6fXE9s3xbF47n4y0q20aludEWPaYre5ePPFxTjsnj2gTSY99zzSmb4DKi7vv8I6eQkhdMA3wAAgAdgmhFggpbxU1Wi2lHJ8aecrClkxiT5jydLpInVPTInH9asRRpePxpXWvGITM20lQq/zdP7CvepTXS4yjyZiDPa/bGeu6n3aMnzn9xz4Yg4Zh+OI7NmGluNHeKk+Hpuxyqc8gVAEZ9fvo9YA339Thyb+6Ra5yi+HP5/B89eYd7jt0JSrQkTuSmz7vx88HD+49022Tfih1M6/9Yt3sHZ3jMd7rxj1RPVq4/F7bffqWJo/PozkrYcxR1Rz95Uu5nvryMrzWQWNLFyaQsPNorn7mT97L3ab28mv/+s42zfHM3JMGxQfsiI2m5PD+85UqPMvKmUR878BiJFSHgcQQswCRgCVJmkX1LQ2qq+NMYOOsI5V75dwJY7+d6l38ZJ096H9NWo0qs2B6nQR0bUF/Wa/UaiMb3DTOvT49vJPPTof4aXz8+mMhbwGHJ28zEsHBdwqk1nHTxPUqOZl570ayIiO93k8NzEF1eEskYjfeeqN7EXbV8ey551pqKpEOl2YwoLo8p/HvM41hQZRe9ANJZ6r/ug+xC/Y6OXoVYcT/zqR7kyjtXsxhQfTZsIYmjw06Jq4eZcWm9Xh4fgBVFViszo4fOAsvt4hvUEhskbV7E9cFjH/WsDFn4qE/GOXMloIsVcI8YcQwmegWggxTgixXQixPTm55PK7/rUiqDe6j3d1nslI6xfvLPG4lcV5EalLkU4Ve2oWzhwrqs1B0sYDrBjySqnmavrwEPT+3sVQilFPZM/WhV94ufBhFa0lKS7+tcJ9HjeGBCDKoPdvVI9WoChIlwukxJqSydK+z5N+8GSpx76YuiN6ENWn7YXfs6Kg8zPR5qW7WDHo/4j7cwO2c5lkRsez5dmJ7HxzcpnOf7VyKiETnc7bZbpckjOnMgmqZvZa/et0SpVc9UPFbfguBOpLKdsCK4Gpvk6SUv4opewspewcEVG66tPek/+PVs/fjjEkML9nbRuGrP2iwjsqObJySdlxpMjSDpfizLMR2KgmPpcVlyCdLjKjE0jde+yK56buOcaJ3/4mbf8Jj+O1h3SlyT8Go7MY0VlM6AMtGIL8uHnBu5fdrG784ECvmy2AX80wt/3XAO3fesBLa0jvZ6bdq2PLZGW88YnP3WGl/JCMdDhxZOWx7f9+KPXYF6PodNy84F1unPEaje4bQIsnh3Prui/JTUxxN1m56GbtzLFy4NPfsWcWkup8HVEt1ILT4XshFhEZyCvvDaRx8wj0egWDUUdEVAD/fKs/oeH+FWxp0SiLsE8icPFKvjYXNnYBkFKeu+jbScDHZTDvZVEMejq9+48SpwyWFiklu/41lf0fz3ZX1Nqd1B7SlT7TXi6yzIDqcLKkz3Puld9Fi2eRv/rwpeAoDDpyT50jtK3vTVZHTh4rh75KyrboAu37yO6tuHn+v9H7mRFC0O3L8bQYP5LTq3ZirBZAneHd3Ro7l6Hl06OIX7iJc7ticGbnofc3I/Q6+s5645oJGTS+bwDO7Dx2vjkZR1YuOouJti/fTavnS98hzJGTR+ZRH5loUnJm7b5Sj+8xpKqChLrDe3gonSZtPFCQmnwxilFP5tFEwjuVrzZRVSck1I8WbapzcN8ZnI4Lnz2jSceQ21oRGubHa+8PJDPDisPuIjTcr0r/7ZeF898GNBFCNMDt9O8C7rn4BCFEDSnl6fxvhwOHymDeKoHL7iB58yEUo57wLs0KpBJipq7gwCe/47LaCzaeE5ZsYdOTX9J7yktFGjv2zw1kRMfhyrska0lRaPLIEGKmLPN6TbU5LruvsfXF70nefMhjDyFpw362vzqJbl9c2I8PblKb4Ca1i2QnuENqg//6jFOrd5K86SCWGmE0GNMXY1DVXPWUlOZPDKfZY0OxZ+ZiCLSUmTSGzmREMehxubz3qozBZfMe2jNz2PLMRI7P/gvV4SSyeyt6fP98QXOgoCa1SD8U5xWmU+1O/AoJeV1vPPnP3vz4xUb27kpEp1PQ6xXGPtyF5q0uZFsFBV8dGlKldv5SSqcQYjywHHeq53+llAeEEO8A26WUC4BnhBDDASeQCjxY2nnLk+Sthzn87XzyktKpO6IHje+/xWeKY/zizfzv3vfdHxYp0fub6T//XSK6NGfff2Z5yUGcl1To/u2zRVr9n1q1w6fujTDoCG5aG1NoENbk9AItG72/meZPDC9U+VNKybHpK7w2j11WOzGTl9Hti/GoDie7/z2dQ9/Mx5GVS2S3lnT9arxPFU0vuxSFWgM6F5oRdK0gFAVTtbLValf0OhrdP4Bj01Z6ZKnp/Ey0fHZ0qceXUrJi0Euc23m04O8laeMBFvd6htHRU7FEhtD25XtIXLHDM5XVbKT2kK5VstlKeXMqIYM/pu8i+mASgcEmbh3Vil43NeLZV/uSnWUjO8tGRFSAz32Aq4EysVpKuURK2VRK2UhK+V7+sTfzHT9SyleklK2klO2klP2klIfLYt7yIPqnRSy96QVipq8kcdlWtr74HYu6j/dy5NnxSfw15h0cGTk4MnNxZOWRdyaNFbf8H85ca6HNxYUQ2H1U1frCv3Z4QVHZxSg6HYENazBi5w+0eGokgY1qEt6lGT1+eIHOV0hF9dVvFCjoHLbuHx+z/9PfsadlIZ0uzq7fx5I+z5F1vPhaOxrFo+vnT1FrYBd0ZiOGYH90JgON7r2Z1i+UPqx0budR0vad8BS9kxLV5iD6x0UARHRtQd9fX8evVjiKyYBiMtDgrn70mV66JIKrkaQzWfxrwlJ2bo0nO8vG6YRMpv24lXmz9gAQEGiies2gq9bxwzUs71ASHNl5bHn+W4+URVeujcyYRI5OWUaLJ0cWHD82fYXPmLuqqsQt2Ej1Pm2Jnb/BK5/aGBKIJapomvyNHxzEvo9me2ryCIHOYqT2oBtQDHpu+PQJbvj0iSKNJ4Sgeu+2nFm71/PRXghq3NSB3FMpxP6x1usG4bLa2f/pb3T/pmTFcRpFQ28x0X/eO2THJ5F94gzBzeuUWf+GjOh4n+0tXVY7aXuPF3xfd3gP6gzrjjU53d1H4irQRSoPFv6+D7vN6fExsdtcLJ13kMEjW2GxFJ72fLVw9d62yoHkLYdQ9N73Q1eujZN/rAXcrfLiF28mIzrBZ+MQ6XRhS82i0wePYAiwXEgBFAKdn4luE58p8iZQQJ1Ibpr3L8wRwegDLOj9zAQ1rsXgvz4rcU5592+fxRDkVyAXoTMbMQb70/XLp8g4koDiQ9xLOl2c23m0RPNpFJ+AOpFU79O2xI4/J9vGoX1nOJN4obdBSOv6vhvbW4yEX6J3JYTAEhly3Tp+gKPRyag+CuF0OoWk01mVYFHZo638L8IY7O8l3FbwWrVA/h77HnHz1rurh/NsCEXxeX6Nfu0JblqHEbt+ZO+Hv5K0YT+BjWvR9uW7iezWslg21RrQmTGnfidt3wl0ZiPBzeqUKoOgWot6jD48hegfF3Nu11HCOjah2bih7g+7n9nnDU3odYS0u3LMX6NykVIyd+Zulv55CL1BweVUqdcwlOde7Udo20ZEdm9F0ob9BXsKQnHrUzV9eHAlW171iKoRxOkE78ZADqeLkNBro4+25vwvIqxTUyyR1cjKF4M7j87PhDEkgBOz//LI3kEIhF4p0KTX+5tpOLZ/gd5PYIMa9PzhhVLbpeh0RdpwLSqWqFDav3Gf13H/2hHUGd6d+IWbPLKIdCYDrV+sHNlnDcjOsjF76k62b4pFIOjauz533NcBP3/Pp7StG2JZvuAwDocLR34++vGYc3zx/l/4B5o4EtkJ/ZDW1Dq4ixono6k1oBNdP39S6/Llg2GjW3Nw72mPal6DUUf7zrUJqnZtOH+tk9clZBxNYPmACdjSshBCQbU76PD2Axz4cg55p70LtYROR1Tv1ujMRpo+civ1RvWq0rm9V8Jld1yQws6xlloKW6N0OJ0qrz69gJTkHFznFxl6heq1gvj350M9Kkrf/ucSTsSc8zmOEBfWM0aTjptvbc6Y+zuWu/1XM9s3xzH9h61kZ7v3ALv1bsADj92A0VS118xaG8dSIFWVpM2HsKdmEtmjFabQIKYHDfXZnUvoFMamL7hiEdTViFRVn42qr0VyEpM58PkfJG3YT3CzurR68Y4r9kmoCLZtjGXSVxuxWj1lgU1mPU9N6EO7TheUVP752DySz2YXaVyDUcdXk2/3enrQ8ERVJVmZViwWQ5V3+ufR2jiWAqEoRPVoRZ2h3QseiWv27+gzW6Jay3oV6viz45PISSi57lFxuF4cf+axU/zZ5pF8ZdLDHJuxikXdx5O4svJ7SMedSPNy/AAOu4uE2DSPY2071kSnK9pTp16vcOaUd0xbwxNFEQRXs1w1jr84XB+f7jKgyyePYwz2L8iSEQYden93M5eKIHXvMea2eoi5zR5gTtP7mdfmYdIOnCz0fKmq5J1NxelD3bQq48jJY9PTX/FL8DCmWgaxauQbZMeeLdc5t7/8I/bMnIIceOlSceXa2Pj4F1T2k3FUzUBMZm/HYzTpiKzuqRY5/I42+AeY0OmvfANwOlxVVnNGo2K4Jp1/6p5jnJy7jsxjZVeYFNSoJrcdnEzrf46hRv+OtHhiBCP3/FTs7J2S4MjKZWnfF8g4FFew4Zx+MJalNz6HI8c7FBXzy0pm1biD3xuMZWbYCDY9/ZXPLlFVjfNVqEcmLcGRlYtqc5CwaDMLb3gSe0bRwhkl4cxfu33q2+cmJmNLrdzVcZce9TCZ9B7CfkKAn7+Rhk3C+GPGbj54fQXTftiC1erkva+GUb9RGJfbdjIYdbTrXJtqIddeqLIo2O0uzpzKJC/Pd8Hj9cI19SxjS89m5eCXSdt/wt3oxO6kzrDu3DjjtRK1T7wUS1Qonf79UBlYWjxO/Pa3t/OWEpfdSeycdTS+/5aCw4nLt7Hx8c89CtWO/ncZ0qVeUcu/ojm7YT8735hM+oGTBDWtTcN7+pO6+5hHuqlUVZw5ecRMXUHLZ24rFzuM1QKwpfrI3RaiyCJ85YXJpOeO+zsw+dvNqC73DUpv0HH7vR144/nF2GxOnA6VI4eSWLfmOM++ciPxJ9IKVdE2GBS696nPfY+WvB/A1YqUksXzDrDgN7dQnupS6dWvEfeOuwG9/ppcB1+Wa8r5bxj3Ked2HfUoYY9ftJl9H8+i3atjK9Gy0pGbmOKzw5Irz0ZuYorHsd3/nu7VVMWVZyNmynK6fPwYhoCqsdo7tWYXq4a/VmCrNTmdlG2H8bVkdebaSNlxpNxsafncaLa//JPH+6aYDNQf3adEhU7WPAcnj6XiF2CkTr1qpcr+Sj6bzfQfthY4fgCHw8V/J27C5ZIFYSnVJbG7nEz9fkuh8wVVM/PZT7dhMJSNGN3Vxoa/j3s1Y9nwv+MYTDrGPtzlitcnxqez6e8TOF0qnbvVpXHz0snOVzbXjPN3Wu3EL9joqV2C2/Ed/m7BVe38w29ojj7A4pVtpLMYCe/awuNY1skzPscQOsVdsl/Bzj/3TCp7P5hJ4vJtWKJCaP3indQd3oNt//ze6yal2p0++xboLCZC2pZf5k2LJ0eQeSSBI5OWoJgMqDYH1W9sR4/vny/2WKuXRjNryg50OgXVJQmL8OfFN28iPLJkQnDrVsfgujQkJd0poL44l5yDrpBVbN36Idet4wdY+Pt+D8cPbsmGv1ccZcz9HdHnvzcnYs6xZtkRsrNsdO5Wl6696rFm2RF+m74Ll1NFVSWrl0bTq19D7n2kC0ejU7DmOmjSIgL/gKunKvqacf6q3YH01ZeUq78vaa1bOhPSuj6pe44VFF/pLEZC2zemRr/2HudGdGlG3IJNXrK8QqdUuCxvXlIa89s/ij0tG9XhJPNIAud2HqXd6/eSXthmtQRh0CPPh7mEQGc20PShQeVmp1AUun31NO3fuI/0g7H4140sUdOfI4eSmDVlR76DcTuZ06cy+eRfq/lg4vASPQGkp+UV5PcXBSEEg0e2ZOmfh7DbLiyEjCYdt93TrtjzX0tkpHvvj4H7qclqdRJg0BXcvB12F1LCgd2nWb7wEIlx6R43XLvNxbrVx9i2MQ6r1YnT4T6/WoiFh57qRvvORZdDryyumUCXMcif4GY+ukMqCrUGXfmRriojFIVBqz+l3Wv3Eti4FkFNatP+9fsYuOI/Xg6lwzsPob+k25TOz0SHfz902R685cGBz//Anp7jsV/hzLGy+53pmCOCfV5jrBZAw7v6oRj1oAiq923H0E0TK6QK1RxRjeo3titxt7eViw5jt3uuLKUqST2XS9yJtEKuujyt29f0me2jKAJfmbj1GoUy6q523PVgR0LC/NDrFeo3CuPFN/vTqOnVHaYoLQ2bhPk8HhBkwj/ASG6OnV8nu2/e59dONpuTxLh0PLop5eNwqGRl2gpuFOC+WX/90f/YtjG2nH6KsuOaWfkD9Jr0T5YNmIBqd6DanejMRvQBFjp/+Ghlm1Zq9BYT7V4de8XwVWibhgxZ9yU7Xp1EyrZo/GqE0e71e2lwZ9+KMfQiTq3c4alImo9qd1B3VC9iJi/3kMrW+5lp89JdtH3pbrp++RQpW6MxhQcRVIymMpVJZrrVl49AUQTZWd7N7YtCx651qPlnMImx6QU3FpNJT4eutdm6PpZLJ4w7nkZqSi79Bzej/+BmJZrzWmXMA51475Xl2O1Oj2rnsY90QQjBkUNJ6PUKjktu4Ozv1I4AACAASURBVE6nivBR41MYTofK7Kk76dKjXlmaX+ZcU84/omsLRu37mUPf/En6wVgie7ai2bihmMN8rzKvVcLaN+aWJR9Wthn414nwqQYqXSqpe47R9vWx7PvgV1SXCyEELZ8fTZsJY9j/2e/sfP2/KCYD0unCr3Y4A5d9TEC9KB+zVB063FCb40dTvFb/TqdKg8a+V51XQq9XePW9gfy9/Agb157AZNRz0+CmZGfZ2Lk53vtJQ0q2bDjJkJGtSvxzXKvUaxjKGx8NYt6sPZyMSSWyegAjxrSlRZvqAFgshsLrOopZ75F8NhtVlV4N3asSmryDRrlxdv0+lvR93mcOvc5s5PZjv2AKC8KalI45Ihidycjpv3axathr7kbi+QhFIahZHUbt/7lYcfOE2DTWrzmG1eqkU7e6tG5fo1x1l6x5Dt58YTGp53ILVo9Gk47R97Rn0IiyrQdZNv8gv0/f5bXxKwSMGNOWUXdd3/H9kqC6VJ57ZC4ZaZ57A0aTjmG3t2Hh7/sQikBKiZqfaeVy+fafQcFmvp5aOWKIRZV3uKZW/hoVT3bsWba+8C0Jy7ehMxlo8uAgOr77D/QWE1G92mCJDCHvjLcgnmLQY01Kx69GGP61L8SiD341z8PxgzvXPyfuLGn7jhfamP5SVi2JZvaUHTidLlQVNv7vBG071OTJCX3KbTVmthj412e38veyI2zfEk9QsJlbhjYvWFmWJW071eKPGbu9jp9XntQoPopOYcJb/fn47VXYbU4EAqdTZdTd7RgyshU3DWrKrq0JOJ0u2nWuzfZNcfl/Y543YINRYfidbSrppyg6mvPXKDG29GwW3vAk1nOZoLolEQ59t4Bzu2MYvPpTAOqN7k30j4uQDu/wRJCPDXprciHtL/U634VYPsjKtDJr8o4CWWMAm9XJ3l2n2LfzFO0617rM1aXDYjEweFQrBo8q37BLzdrBDLi1GauWRLs3HAGTUU/Pfg28QkzZWTbWLDvCwb2niaweyC1Dm1O7Xgin4jP4a8URMtKttOtUi6496xWkO16v1Kkfwpc/j+bwgbPk5jpo3jKKgCB3AkVAoIne/S8sPm4Z2pyGTcKYMWkbscfTUFWJxU/PyDFtuXlI1d9v0Zy/Rok5OnmZW17iooY2qtVO8pZD7kYxHZrQ7pV7ODHrL+yZOQU3AL2fiS4fj0Pvo2tY3ZE9ObcrxqOJOIDqcBLepWgfqAN7TqPTCxyX7DXbrE62bjxZrs6/IhnzQCc63FCHjX8fR1Ul3fs0oHlrz32R9LQ83nx+Ebk5dhwOlegDSWxae4IBtzZn5aLDOPPz1ndvS2DFwkO89v7Aa1LErDgoOoWWbYuW8dW4WQRv/WcIqiqx5jkwWwxVOs5/MddMqqdGxZOy7bBXoRa4Y/Rp+04A/9/eeYdHVaZ9+H6nppNCSKH3XkWkCyIgIKKirqtrWXXVVT/r6rK2ta0r6qprW8W2rO7asIGoVOm995JKSIMkpCdTzrzfHzOEDDNDemZC3vu6cjGZOXPOM4fJc97zlN8DIYltuXL3B/S5+wrCuiVgjonAYdfY8eQnbPvLB2hnVQP1uWsmoR1j0Qe7Lgyu8ZcjXr271uqpzkYmzz9AoRPnnWPr1bcdt/5xJLfdO4q+A+M9cho/fLmH0hILNpvzAu1wSKwWjcXf7sdq1apGFVoq7WQdL2L18qRm/wznAzqdICTU1GIcP6iVv6IBRA/sxrHv15+ZbHYaKYnodSbuHJLYlkF/uYHkT5dhLSoDKbEUFHPgze8oOpTBpO+eq9rWGB7CFdve4/C8H8lYtJHg+Cj63ncVcWMG1NquAUMT8VZzaTToGHeJZ87AatX4+bv9rF2Z7FxBX9yVmbMHEHQeDOnevT3TZ1LybKwWjc3r0pg8I3AH95SVWvl1yRF2b88kpm0oU2b2oVvP5m1ePF9Qzl9Rb3rdMZ29r3yJZrFVlcLpTAba9OlI7FmyEwff+QF7hcWtZE6rsJC5ZCvFSZlE9DgTijGGBTPg4WsZ8HD9qiXMZgMPPj6RN/72K7gmWDk0B7OuH+ThKKSUvPLMclKT8qsqdJb8cJA92zN59tXp6PQt++Y4OKRuF7DgZrzgOTQHG9aksnpZEg5NMvaSboyb1MOnyFppiYWnHvqxqrFKCNi++Ri3/nEkYyb4f/BOS0M5/3NgLS4ja9l2kJLEKcMxRSj98+oExUYyY90/WX/na5zYdACdXk/n2eMZ9c4DHuGHvK2HvA6H15mMFB5Id3P+jUHfgfG8+e9r2L09C0ulnf5D4gkOMeHQHG4O/fD+E6SnFLg19thsGieyS9i1PZNhI7x0jbcgpl7Rl0/nbXHTtNHpQK/XYbM73G6QzGYDl1zWq9ls+9dr69i9LROLS4biWFoBWzekc++j4zm0Lxe9Xke/QfFVobpffjhAcWFlVXWNlM67lU/f3xLQyeqiwgp2bM7A4ZAMGd6BmNjA8COtwvlrFivbH/+IIx8uxlZWSbuR/Rj59v3nHIqe9u1a1tz8d3R65xfKYdcYN//PdL3m4uYyu0UQ2a8LM9a55gXoRNX5OpvoQd3IWbXLQ3jPYbO7hYgaE3OQkRFjOrNtYzrPPfYLRYUVGI16Lp3em9k3DkGv15FyNA/7WZVIAJWVdlKO5LV45z/uku5kpJ5i5ZIjGI16NM1B+06R3HjbcN56eTUW15Qwze5g0vReDLmwecpEU5Py2bXtuNtFyWrROHzgBPffuqBKgE4iuX/OBPoPTmDn1uNeBe0kcPxYIV2616+RrilZvyqFT97dVDVD+fOPt3PdzUOZMrNvzW9uYlqF8199w984/suWKlG0Exv289P4B7lyz4eEd/Gswa7ILWDNTS+iVVip7hbW3vwScaP7E5KoYoxnozOe+6vU974rOfTeIjfnrw8y0m5MfyL7dKp6TtMcCCHOmTiTUnJoXy4pR/OIjA5h+KhOzoEnXji4N4f3X19f1Qlr0ewsW+zU4PndHRcSExvqcoruFyWTWR8wK7SGIITgxjsuZMbsAaSnFBAdE0LHLlEAvP7hbA7uzaGk2ELvfu2adbLX4f25bjLVp7G7EtPVnfw/X1zFGx/PJizcu2KmpjkCUk2z8FQFn7y7yUMu4qtPdzJwWCIJ7f2rPNCyA5q1oCQth+M/n3H8p3FYbBx44xuv70n9eg1etYWB1K9WN7aJrYKwTnFMX/06bUf0ASHQmY10/93kqmRvekoBzz32M7df81/+8Jv/8dHbG6n0MmnJatX4+5NLef1vv7Lgs13Mf28zD9/xDZkZ3vsDvvt8t4cEgtWisXrpUSyVNoaO6IjRrPcYI2Aw6Bk5rkujfPZAIDIqmMEXtK9y/OAM/QwYksio8V2bfaRjeESQT+lpDwRs35TB1Cv6YjK731nqdIKOXaKIjaufZHZTsmNzhlcv4tAcbF7nf+G38975Fx/OqJq7Wx2HzU7+Tk/dGQB7WYXXsYcOm73Fy0P7k5ihPZm56R1usSzh5vKfGTPvEYyhwRTklfHiE0tIPpKHlM7V38bVKc6E7VksWXiAlKP5WCrtOBwSS6Wd0lIr77661usxc3O8N4YJnaCosBKTSc+Tf7+Mzt2iMRh1GIw62ndqw+N/m0JwiGcfgqJxuGBkx1qXRTo0Zw39sBEdufzqARiNeoJDjJjMejp0iuSBOYEZitU0hzedP5c8RO1lupuK8z7sE9G7o/dEo9FAzDDvya2OM0ay67lP0ezuK0ad2UiHGRc1iZ2tibNHaq74+XDV7f5pbDYHyUfzOH6skA6dIqueX7sy2eM2Ggm5WSUU5JV5rGA7d42m8FSmR+WnAKJiQgCIT4zg2X/MoKiwAumQREaHNOwDKmokKNjIn5+bzD9fXEV5uRUhnKt4m1Wr6kmoQsDAYYmAU7fo0hm9SU3Kp01ksNudTKAx9MIOfPnvHR7PGwx6LhjZycs7mpfzfuUf3iWeDtMvQn9WN6k+yEj/B2d7fU/UgK70/sMMDKFBTqUsITCEBtHz1svOmST2J5rVRnFSJraScn+bUmeOpZ7ymsjT63XkZJ01QN1XybrwLrw4+8YhmEzuFxuTWc/M6wZ6TLVqExmsHH8z0rVHDK99eDVPvDiVOc9P4e351zJsZCe3+QUmszNBH594Zp5DaJiZAUMSA9rxA7RtF8bsGwdjNOnR6QRCgMmk59LL+9C5W7S/zWsdqp6axcqOpz7h8LwfsZdV0m5Uf0a+9X9ED/YtEialJGf1bpL/uwKkg+43Xkr8hCHnVIXUrDZ2v/AZhz9YjFZhof3UC7nwlbsI69S0UsT7//kNO5/+N9LhQGoOut04iVHvPNDsw1vqy7ef7+Knb/d7rPiMJj0vvH458e3P/OH/8OUeFi3Y56bbA5DYIYK/vz3L6/6Tj5zki3/vID2lgDaRQcy8diDjLunepAqfivohpWT3tkw2rE7FYNAxblL3JhHGayin/WZtvkNZGUVsWpeKQ5MMH9XJZ1WSlJKMtFMUFVbStUeMzwR3TdRW1bNVOP/mYvkVT5C1YmeVLo3Q6zBFhTP78HzMUeFNcszUr1ax7vZX3HIR+mAzPW6Zwuh3H2ySYzY2RYUVzLn3ByrKbVWrd6NJT//BCTz0xES3ba0WO39/cilZGUVUVtoxmw3oDTr+8sJkOnX1/2qqOXE4JClH8igvt9KjdywhoY2fo5BSUlRYSVCQ4bzoeG4olRU2Pv9kOxtWpWCzafQZEMfNd11EYoeGVe6cKijn1WdXcDKnFJ1eYLc5mHnNAGb9ZlCd96WcfzNTeDCdhcP/6CFIpg82M/SZWxj46G+a5LjfD/kDp/akeDyvDzJxQ/73GIIDrwTOGzlZxfz3o60c2JOD2WxgwtSeXHX9YK8Dxx0Oyd6dWaQcySOqbQgXjelcp+Ts5nVpLFqwj6LCCvr0j2P2jUPcwgotgezMIl55ZgVlpRaEEGh2B9fdMqxRpRl2b8vkk39torS4EimdU8Vuu29Us3YBBxovPr6E5KN5Z3JUAkJCjMx9ZxYRkU7tqWNppzi0L4eINkEMHdHRZxlydZ7500+kpxRUaS2Bs+nuj4+MZWgde02Unn8zU7AnBZ1Bz9ntQlqFhZObDzbZccuz8n2+Zi0qazHOPz4xgkeemlSrbXU6weAL2jP4grp3BX/+yTZW/HS4KsS0deMx9u7I4rnXZ9Auvmnuzhobh0PyyjMryM8rc8uBfPWfHXTpHk3PPu0afIz0lALefmW1WxPWji0ZlM+18ugzlzZ4/y2R9JQCUpPz3YsTJNisDn5depSZ1wxk3hvr2b7pGFJK9AYd89/bwpznJ58zxn8ip4TjxwrdHD845wcvWXSwzs6/tjRKwlcIcZkQ4rAQIkkIMcfL62YhxJeu1zcLIbo0xnEDiYjuiUiHZ9JSZzYS2a/pZnnGjuyLR5E6YAwPJrhdpJd3tE7Ky6z87fEl/PLDQbfcgnRILBY7ixbs86N1dSPlSB5lJRaP5LfVqrHipyONcoyfvtvvOcvW5uDwgROczC1tlGO0NLIzi7yWp9psGukpBWxck8qOzcewuiqWKivslJdZeePFX32Ph8QpVqf3oSFVUly/2c+1ocErfyGEHngHmAwcB7YKIRZKKQ9U2+x24JSUsocQ4npgLtA0cRA/EXNBLyL7dqZgT7J7F6vJQO+7Lm+y417wt9vJ+XWXUzTNtXLQh5gZ8do9CF3LKOayVNo4tN85PLt3v3b11miRUnJ4/wlO5JTQqWuUW2Ltgzc3kHz4pNf3ORySfbuyeO6xn8nMKKJtu1Bm3zCEYRcFjrSDpjlYvvgQvy49SnmpFZvdU5IC6Rxk0xjkZpd4rZ4yGHTk55UFZFNVfSgtsVB4qoJ2cWE1yn0ndoz0WJ2DMz/VpXsMq5YexWLx/H8pK7VyLPWUz9V/h86RXpvBDEYdFzThd7Axwj4jgCQpZQqAEOILYBZQ3fnPAp5xPV4AvC2EEDJQEw71QAjBlKUvs+Hu1zj2/XqkQxI9qBuj5z1MaPvYmndQT6IHdmPm5nfY8cx8Tm46SHjXeAY/+TvaT64x5BcQbFmfxgdvbnCufCTo9IIH/jKB3v3rViFVXFTJS08uJf9kGVI6NWG694rl4acuQdMc7KlB2vhUfjkFec4y2ePphfzrtbX1Uou0WOx8+e/trPs1BZtVo+/AOG6+8yK3iqX68Pbc1ezbne0Whjkbk1nP8FGNUz/eu187jqWdQjurBNduc9ChY8u/o7RaNT5+eyNbN6ZjMOiQDrjiNwO5/Grf0uGdukTRvVdbkg7lVVWbCeGcHzFhSk92bT3u9X1COC/evjAa9dx01wj+/S+nFISUzgtKmzZBTL2i6TSAGsP5twcyqv1+HDi7E6pqGymlXQhRBMQAedU3EkLcCdwJ0KmT/5sg6oo5MoyJXzyNZrXhsNlrPXykoUT268IlX/21WY7VmJzMLeGDf25wyS+ccWqvvbCSf358TZ2qSz55ZxM5WcVuDj7p8Em+/3I3k2f0OWdJnvDSI2C1aHw1fwejL+5ap5LQ159fSdLhk1WhpQN7cnj2sZ+Z++4sItoE1Xo/1UlPKWDfrmwPmYrqmMx64hMjGDOxdjOOa2LqrH6sWZFMhWatOjcms55LLutVNdawJfPpvM1s23QMu81RFcP/4cs9tI0NZeS4rj7f99CTl/DV/B2sXZmM3abRd2A8N905gog2QYyZ2I2M9FMeF2iDQU+XGur6x0zoRkL7CJb9eIiCvHIGXZDIxKm9mqSCq8quJttzPZBSzgPmgbPax8/m1Bu9ydhiauz9yfpVqWhebqORzuTi6Itrt+q22TSvQ0tsVo21y5O59ndDCY8wU5Dv2QBnNOpwOKTXu4LiokqsVq1W1RrgrPJIPprnnlOQTjtWLT3KFdfWb6h3ytE8n6+1iw+nXXwYw0d1YsyEbh4NbfUlOiaE516bzoLPdnFgTw6hYSYum9WXiyf3bJT9+xOLxc6G1akeXeVWi8aiBfvO6fzNZgM33TmCm+4c4fHaxZf2YMv6dFKTnPIjRqMOoRPc86dxtZoL0a1nW+56aGzdP1A9aQznnwlUD0x1cD3nbZvjQggD0AbwXaaiaBWUl1o8wgoAmkNSUX5GkkNKSdLhk2SkFdIuPox+gxLcEm8Oh/SZULPZNIQQ/P7ekbw1dzV2m3Nmrd4gMJsNPPfa5bzy7HJyszw1gMxBBq+lpr7Iyij0mRBMS67/1z0qOgSd3ktS36hnwuQezJhd+ylndSE2Lpw/PjKuSfbtTyrKrD7v5opOVdR7vwajnj8/N5m9O7PYvzubNpHBjJnYjcio5okA1JXGcP5bgZ5CiK44nfz1wA1nbbMQuAXYCFwDrDyf4v2K+jF4eAdWLUuq0pSvzoAhzgHalkobrzyzgmOpp3BIiV4niIwO4YkXp1TVVZvNBjp3iyY1yd3B6nSCoS59+kHD2vP03GksWXiQ7Kxi+vSPY8rMPrSJDOaq6wfz8Tsb3W7XTWY9M67uX6eZrIkd2nhPCBr1DWrnHzA0kaBgI5ZKu1t4Sq8XjJ3UOGGe1kREZDDBwUaPaiYhnDORG0JDypCbmwaXg0gp7cB9wBLgIPCVlHK/EOI5IcQVrs0+AmKEEEnAw4BHOaii9dFvUDz9BsW7hVVOT5OKS3AmSL/9327SkguwWOzYrBqVlXZO5pbw8bub3PZ1+32jCA4xYnSFPUxmAxGRQfzmlmFV23TsEsUd94/mqZcu49qbhtLGdfEYNb4rN9w2nLBwMwaDjqBgI5fPHsDldVxRd+oaTbeebTEYz/xZCQFGk46JU84dLqkot7JmeRKLFuzl0P5ctzsZg0HHEy9OpXO3aIxGPSaTnti4MB599tKqz9BYnMwt5evPdvLea2tZszwJq8XzwtzS0ekEN9w+3E0eWqcTmIMMXPO7oX60rHlRHb4Kv+LQHGzblMHG1SkYjHrGX9qDAUMSqm7L773pK0pLPGud9XrB+1/81i0sU1JcyZrlSWRlFNGtV1vGTOhWp6SxwyGpKLcSHGys9+xeS6Wz/X/9qhTsNgd9+sdx010jztn+n5qUz9ynl+HQJDabHaPJQM8+sTz05CUe82xPFZRjtzlo2y600bWJ9u/O5o0Xf0XTJJrdgTnIQHRMCE+/PK1JE4/NQUWFjSU/HGDL+nRMQQYund6b6JgQFn2zj5M5pfTsE8us3wyqVad3eZmVvJNlxLYLDUjZbyXvoDgvuPuGL9zi/6fR6QTvf359jbXZ/kRKWaODLimq5LF7vqe8zP0zmsx6rr/1AiZN692UJlbhcEgevP0bj5i3wahj+lX9mX3DEK/vy80uZumPh8jOLKZ3v3ZMuqx3o1UDORyyTmE3X1itGn99eDEnc0urSjTNZj0jx3XltvtG1d4ezcF/P9rG6mVJ6A06NM3BxCk9+e1twxvFzsZCyTsozguGjejIxrWpbiP/hHBWRgSy44eaFR/zT5bx1EM/ejh+cE0bW5bUbM4/N7uYSi8XWbvNwZZ16V6d/6F9ufzj+RXY7Q4cmuTI/lyWLT7Ec/+Y0aDJYIf35/LpB1vISCskKNjIpTN6c/VvB/vsgq2JzWvTyM8rc1OCtVg0NqxOZcbsAcQlnFvWw253sGrJERZ+vZfiIqfO0el9rVp2lIjIIGZeU79KLn/SMlpAFa2W624ZRmRUcJXGu8msJyTUxO3/V/sVW6Dy1X92UF5mPccWzXdXbjIZvCarATd9/dNIKfno7Q1YLVrVhdlmc1BWYuWb/+2qtx3H0k7x6nMryEhzjuWsrLCxdOFB5r+3ud773L87y2tRgU4vSPLR9X0aKSWvv7CSL/+zg6LCSq/9IL/80HTaXU1JYC+dFK2eyKhgXnpnFpvXppFyNI/EDm0YM7FbQA7srit7dmR5lVAAZ5J43KTmGxwUExtK+05tSE89hax2ETCZ9VwyzXPiXUlRZVVHdHUcDqcef22orLCRllJAeISZ9q6u4R8X7PWowrFaNTasSuG6m4bVK6QU3TbUGaY5q6xYCGoswzxy4ARHD508Z2d12Tkv4IGLcv6KgMdsNjD+0h6MGNOZdSuTmffGemJiQ5k0vXeV02iJmIMMPlf+3Xq2rbFCqLG577GLeenJpZSWWpDS6chHjO7MeC8XIZPZ4PO+JCik5iT70h8P8fV/dlTFzuMSInj4qUvISCv0rilk1HPyRGm9nP+EKT1ZtvgQWrXFvxAQEmqi74Bzy4gcOXjCc2zoWXTuGtgTxXyhnL+iRVBWauWZPy2m8FQFVouGTidYuyKZPz4yLqAE2OrCpGm9WPjVXjfZBp1O0LNvLH95YUqTTBo7nn6K9NRTtIsPo0fvWLdjxMaF8cr7V3FoXw6n8ivo0adtVcnt2QQFGxk8rD17dmS6jeA0mfVMnt4bu93Bwb05lJVa6DMg3m2FfXBvDl9/usP5uV2fPfNYIa89v5LO3aLJzip2u/sAZ+6hXXz9xOTaxYdz/5wJvP/GOmeYyiGJT4zg/jkX11jV1SYqGKNJ7zVsdPrz3njHhfWyy98o569oESxZeICC/PKqlnyHQ2K1anz41gbeGn5tvZOB/mT6Vf05lnqKnVuOYzDo0BwOOnaO4oG/TGx0x2+3abw5dzUH9+Sg0wkk0C4ujD8/P5nwiDOaQzqdoN+ghFrt8477R/GP51aSkX4KvV6H3aYxYnRneveP48HbFlQlRTW7g8tnD+DK6wcDsGTRQY8wisMhyc0u5uobBrN9c4Zbf4HJrGfcpO4NCvUNHJrImx9fQ9bxIkxmQ61nN1w4ujP/+8iz6lAIZ5Pi1b8dHBDzeOuDcv6KFsG2jcc8tFjAqZaYmVFEpwAf5u0NvV7HvY+OJze7hIz0U8S2C2syR7Lom30c2JPjFsLIOl7ER29v5MHHJ57jnb4JDTPz9MvTOJZ2ivwTpXTqGk1UdDAP3vGthw794u/207t/HH0HxlNc6F12Wq/XERpqYs7zk/nsw62kJ+cTHGpi6hV9ufyq/vWysTo6vY4Onev2PQkONvLn5ybz9surKSlyfqawcBP3PnYx3Xu1bbBN/kQ5f0WLwFczjaZJv40VTE3KJz21gLj4cHr3j6t3rXdcQniN5YYNZdWSox6xa02T7NmehdVib1DZbKcuUVUX3yMHTmCp9F66uvKXI/QdGM/g4e1JS873ENPT7A46d4smKNjIX1+eVm97GpuuPWJ49f2ryD5ejESS2KFNk4Tkmhvl/BUtgsmX9+ZYWoFbuECnE7Tv2KbZB4tYLXZee2ElyUecaps6IYiKCeHxv53RGwo0qte4uyPPqTVfVywWu0/HWF7uTG5npBd6OH6hg2tvHhqwQ+KFECR2bNiQ9kCj5QVKFa2Si8Z2YeKUXhiNTu0dc5CB2Pgw7p8zodlt+eGrPSQdysNq0bBanHpDJ3JK+Ojtjc1uS20ZMryD1zuTxI5tGlWioGefWK9KrWazgZFju5KWnM/ubZ5DTwwGPZ26tMzYeUtFrfwVLQIhnGJc067qR/KRPCIjg+neu61fbr/XrEj2WElrmmTvTufAlcbS1G9Mrrt5KPt3Z1NebsVq0TAadegNOu74v9GNepygYCM33zWC/7y/Bbtdw+FwlrR26hrFqPFdWLr4EJrds5bTZtXYvyebPjWUXioaD+X8FS2KqOgQho90n/JWVmph68ZjVJbbGDA0kQ6dalf7n3W8iIN7cwgLNzP0wg61jnvbfYRQJBKH5gAax/nb7Q62bzrGjs0ZhEWYmTC5Jx3rmdiOjA7hpXeuYO3KFJIOnySxfQQTpvQkMjqkUWytzrhJPejcPYbVS49QUmzlgpEduWBkJwwGHWFhZgxGnUeoyWjSEx7eNI17UkpWLT3Kwq/2UlRYQUKHNtxw23D6D65dVdP5ihJ2U7Ro9u3K4p9/X4VAoGkOdDrBuEnduenOET7vCqSUzH9vM+t+TQGcCqE6nY7Hnr2Urj1ivL6nOvP+uZ6Na9z1hhDOxOdvf38B0TGhDZ7Za7dpzH16SGuo/wAAHbFJREFUOempBVgq7eh0ztDIzXeNaNbO38amvMzKQ3d8Q2WFe928yaznH+9f1SQ5k5+/3893n+/BUr181KTnkacnnZd3GrUVdlMxf0WLxWrVeGvuGqwWDYvFjt3uwGrVWLcyhX27sn2+b9vGY2xYlYrNqjlnBFTYKS+z8vrffvWpb1Od624eRpvIM3pDBqMOvV6QlVHEmy+t5qmHfuSFOb94laKuLRvXpJGeUlDVXORwOD/vf+ZtobLCs5qmpRASauKRpycRHmEmKNhAULCRkFATDz4+sUkcv6Y5+OGrvW6OH5zncsFnOxv9eC0JFfZRtFgO7cvx+rzFYmftimQGDk30+vrqZUkezgCcWvypSXl07xV7zuNGRgUz950r2LA6lZSjeVgq7ezcchyrVavqdk1Jyuf919fxyNOT6vipnGxel+bVRr1ex5GDJxg0zHNSlKXSxv7dOUgp6T84IWArZ3r1bcebn1xD8tE8pAO69WrrMbfgXDgckv27s0k6dJLI6GBGjOlCaJj3pHVpicVrfwg4w36tGeX8FS0Wh0OCj3zvqYIyykotXrtCfZc9Cp+O4mzMQUYmTu3FxKm9eOqhH90kGsBZs35gbw6lxZZ66dEE+9DHkVJSWWFjwWc7OZFbSt8BcYy+uCsH9+Xy7qtrXaEuicMhufOBMVw4unOdj90c6PQ6evap+8hEq1Xj5b8u41jqKSyVdkxmPV/O38Gfn5vsNWQXGmZGrxfYvNwsNXVvRaCjnL+ixWG3aWxam8amtWlYfWiupCUX8MDvv2HWdQOZea271vroi7uScjTPQ2JACOrVtVlW6l2cTacTlJdbPZz/gT3ZfDl/J9mZRcTEhjL7xiEeSeyJU3uya9txDxv1eh0fvrkRTXNgtzvYteU4ixbso7io0qOJ6/031tO9dyzRMY2f1PUXyxYfIj25oOpi6zw/Gu+8soZX3rvSI89jMOiYdlV/Fn+7z+1cGk26Oo/pPN9QMX9Fi8Ju03jxiaXMf38ze3dmVcXoz65ht1o0bDaNhQv2snu7u8TwmInd6dE79kzM3qDDZNJz98NjMRjrXqkzcGgiOr3nLUhQkJG2se5DTfbvzub1F34lLTkfS6WdrIwi3n99Het/TXbbrt+gBGZc1R+DUVcVGw8NN2Ew6KryG+AMcZ3KL/daW4+UbFmfVufPE8isX5nscZcFUFRYwYmcEq/vmXXdQK7+7WDCXNVEQoCU8O4/1vLea+u8htdaA2rlr2hRbFqbxvH0Qo8VsUSi0wv3ChycF4Gliw4y+IIzMXKDQcejf53Enp1Z7NuZRXibIMZO7E5MbP2mT115/SC2bz5GRbkNu82B0AmMBh2/v2ekh2rkl/N3eDgvq0Xjy//sZPSEbm4r1yuvH8yEKT05uC+XkFATcQnhPPXgjx7H95WkttsdWCrOL8fms69Dgq8YoBCCy2b1Q2/Q8fnH23A4qArvbdt4DE1zcO+j45vG4ABGOX9Fi2LrhmNeV2omox4pwap5rgq9Vd3o9DqGDO/AkOEdGmxTVHQIL755BcsWH+LAnhzaxYVx2ax+XkXasn0kGUtcYZuzew0io0MYNb4r4FzdOnyVZjtD/W4YTXoGXeCZGA5UysuslJVaiWkb4lNqeeS4Lnz7xW6Pi3x02xCfks9SSua94SzPPfv02WwaO7dk1Ds305JRzl/RoggNN1Xdtrvh7TnAaNQ3i95/RJsgZt8whNk3+N5GSklImAlrQYXHa0HBBow1dAa3iQyma/cYko/kea72JW7nxWw2cNG4LrXqW/A3lkobH761kR1bMtDpBCaTgetuGUplhZ39u7KJjQtl0vQ+hEeYWbnkiIfWvznIwL2PXezzrmD39ky2b87wOTVNb9BRWFihnL9CEchcclkvtm5I9wj7BAWbuOaGwXz64VZsVg0pnSvfqOhgJs/o4ydr3fni39spKfKUMzaZ9Vw+e0CtpCrueXQ8f39yKcWFFVWDSU4jpTP3MXREByZO7cWAIS2jg/Vfr61j386sqlCM1aLx8dubMBh02O3Oxr01y5MZMDSRYi9zdIOCDOfs6t64OtXnMBZwnrfa6vufTyjnr2hR9OgdyzU3DuHrT3diMOqRUmI2G3j0r5Po2CWK9p2jWPbjIU4VlDNkeHsmTOnZqMJl9SX/ZBkrfjrsoWYJMGxER6bXUq8+OiaEue/MYuOaVD56a4PH60IniI0L89njUB2b1c6iBftIPppPp66RXHHNwGY/V4UF5ezbmYXNS4nt6aT26cE9O7d4X71XlNs4mVvic+rYuQb9GAw6rvrt4IDUY2pqlPOvJWWlFpYvPszu7ZlExYRw2ay+9apTVjScqVf0Y+wl3Tl84AQhISZ69Y2tihF379WW7g+P9bOFnhzal+u00YuT0+tFnQTqdDpBaJgJk9lARbl7Abtmd3As9VSN+8jJKubx+xdVVQnt25nFL98f5OlXptG1e/OFik4VVGAw6r06/7PxFbax2R2Yg3w3tI2Z2I1tGz1zRULAH+4fzUhXTqW1oZx/LSgttvDUwz86k3I2BwjYsyOTm+64kPGTm3fItsJJaJiZYSNazuze07kKDwSEtwny8sK5SezQxm127mkMBl2t4vyvPLvcozzU4ZC8/NQy/vW/6+tsT31JaB/R4HkCAtxmBJ9Nv0HxTJjak5W/HEFKiV6nQyK5f86EWt0hna8o518Lfl54gOLCyjN/bNIZl/zvR9sYeXG3VnnLqKgbA4Ykeg8/SOpVjtkuPpxBQxPZszPrTHOXcOY5Lq0hx2G1auTllnl9rbzcRnZmEQntm2dwSVCwkSuuHcjCr/d65HGq4zXJ78JcgxqrEIIbbhvOhCk92bsji6BgA8NHdWrQTODzAeX8a8HubZleV1kIQeaxwhZRUaFoXAryyliy6CBJh06S2DGSaVf2I7GDb4dpMOgYMCSBzevSPV5btyqF624ZRkho3eLtdz00ho/e3sSubcex2xz0GdCOG++4sMaO3pqUfHdtzWw25w8w85qBtIsPZ/E3+ygqqqTvgHiEkGzdcAy9wZnXiYkNJaJNEEcOnHBLcuv1gtETahe2SezQ5pz/R60N5fxrQXgb7ysETXP4FJRSnL/kZBbzzKM/YbVqaHYHKUfz2bQ2lUeeOrdEcGaG9xp/g0FHdmZRjYJy1UlNyucfz63AZtPQ6QR6vWDk2C6071jzLAOz2dkx7Esd1B8y7xeN7cJFY7tU/W6ptDFlZl/yT5YRFRNKt54xnCqo4IU//0JZmQWbVcNo1BMbH8a1Nw1tdnvPB5TzrwWXzexH0qGTHvNjO3aJapUlYq2dL/69ncoKW1UYwuGQWC0an/xrE3PfmeXzffGJERw/VujRjGW3aUS3rX13sc2m8cozyz00hT79YCtde7at1cCXm+++kHmve1YLGQyCQcP8Fwe3WuzMf28zm9alIYQgOMTITXeOoHuvtkTHhPDye1eya9txTmSX0LFLFP0HJ3gdT9nc5J8s4+SJUhI7tCGiHjkcf6Ccfy0YPLw9V14/mO8/343e4JxClNihDQ/8ZYK/TVP4gYP7cr3Gn0/klFBRYSPYh5Ty9Kv6s2dHprvAmFHPgKEJRNVhotb+XdleS0btdo3Vy5P43R0X1riPMRd3Z+/2LDavS68KoxiNgvGTe9Ghc/2mhTUG8/65gV1bM6pq/m1WjQ/eWE9kZDC9+rXDYNB5iOD5E4vFzr9eXcu+XdkYjDrsNo3xk3vwuztGBMRF6Vwo519LZlzVn0um9iQtuYA2kcEkdlSxw9ZKSIj3kIlOJzCeQxiue6+23PPIOOa/t5nSEgsSuHB0J27940V1Or6zvNPT+Tsc+BQ388ZdD41l9IRubFiVihDOksjGGG1YUW5l09o0sjOL6do9huGjO53zvJymuKiSndUc/2msVo1FC/bWezZCU/LpvC3s25WNzaZVSYWvXZFMfEIEU2b29bN150Y5/zoQHGKi78B4f5uh8DOXXt6H77/YfdYKXsdF47rWOJRk6IiODLmwA0WFlQSHGGusVPFGn4Fx3gsQcKqG5mYX+2x4qo4QgkHD2nsdDFNfsjOLeGHOL1itGlaLhjnIwLef7+KvL0+vUT7hVH45BoPe60yFEzmljWZjY2G3aWxck+p5sbJo/LLwYMA7/wZJOgshooUQy4QQR13/er1fFEJoQohdrp+FDTmmQuFvpl3Rl1Hju2I06gkOMWI06ek7MJ6b76w53AJOpxsZFVwvxw9OIbmpPhyLZnew+Nv99dpvbZBSsmF1Cs/P+YWnHvqRxd/uc2ue+uDNDZSVWqsujJZKO/l55Xz92Y4a9x2fGI7DS82/Tifo1bf2yfDmwmbTPHSGTlNe5n3GQyDR0JX/HGCFlPIlIcQc1+9/9rJdhZRySAOPpVAEBDq9jtvuHcXVNwwhK6OQ2LgwYuOaN/E/7KKOLFt8yFPaWkLK0bwmO+4n72xi09ozIyYz0k7x8/cHePKly4iKDiY1Kd8jH6LZHWzdcIzf3zPqnPs2Bxm5/JoB/PjNmcErQoDJbPAYyBMIBAUbiYkN9bgrEQL69A/8wfANHeYyC5jvejwfuLKB+1MoWgyRUcH0G5RQK8dvsdhZvyqFn77bz9FDJxpcTtm2XZjXVacQkFiLcs/6kJNVzIY1qW4rfSmhpNjCkw8sIiOt0GcnlrdhN9644tqB/P6ekXToFEl4hJkLRnbimVenBWRVnRCC398zEpNZj3Ald/V6QVCwkd/cOszP1tVMQ1f+cVLKbNfjHMDX5S5ICLENsAMvSSm/b+BxFYoWQ0baKf7+5FLsdgd2m4bBqKdX33Y8+MTEOg0ur05kVDDDLurIji3H3cY3Gk36JhtPePTgSZ8VLDabg1efW+FDVlvHmAndanUMIQSjL+7G6Itrt72/6TcogafnTuPn7/eTdbyYHn1imTarX70HAzUnNTp/IcRywFuW84nqv0gppRDC13Kms5QyUwjRDVgphNgrpUw+eyMhxJ3AnQCdOgVOOZdCUV+klLw1d7VbTb6m2Tm8P5eVPx9uUFLwDw+M4YtPtrNmeRJ2u4N2CeHcevdFdKpFnX99iIgM8q5P5OJskTlwrvg7do3m6t8ObhKbAoGOXaK488HAExOsiRqdv5TyUl+vCSFyhRAJUspsIUQCcMLHPjJd/6YIIVYBQwEP5y+lnAfMAxg+fHjztxkqFI3MiZwSTuWXezx/unxx8uV96qToWR2jUc9Nd47gxtuHY7c7PKaAnUZKiabJet9lnGbAkATMQQYq66BFpNfreHruZfX+jIqmo6Ex/4XALa7HtwA/nL2BECJKCGF2PW4LjAEONPC4CkWLQDrwNVqW4mILP33X8MocnV7n1fFrmoMFn+3k7hu+4PZr/8uc+35g/+5sL3uoHXq9jr+8MIXQOmgQaXaHcvwBSkOd/0vAZCHEUeBS1+8IIYYLIT50bdMX2CaE2A38ijPmr5y/olUQlxjuu91fwk/fNd2fwqfztrBk0UHnSl1C9vFi3vjbr6Qm5dd7nwnt2/DGJ7PpPzgeg0FXVeoaFu7lgiA4p9aRwr8If4g41Ybhw4fLbdu2+dsMhR85mVvKprWpWCvtDL6wA917tW2Rq8iUo3k8++jPPl//5NvfNboUQFmplQd+/7XnkBQBQy/swIOPT2zwMU7mlpB1vJiE9hHY7Q6ee+xn7DYNm82B0ajDYNTz9MvTlJJmMyOE2C6lHF7TdqrDVxGQbFidwsfvbEI6JJrm4JdFBxk5tgu33TeqxV0AuvVsS/sOEWQeL/Z4LT4xvEk0YAryytAbvEzIkpDlQ120rsTGhbuVuc59dxa//nKEtJQCunSLZuJlvWgT6XvIisK/KOevCDjKSq18/M4mtxJGq0Vj8/p0LhrXhQFDWt70pd/dOYLXX/gVa7XPZDLrueG22nUF15W2cWFeJ2QJAZ26RTfJMdtEBnPl9edvVc/5RkNj/gpFo7NvVxZ6L01Blko7m9akNb9BjUC/QQk8+uyl9B0YT0SbIHr3a8cjT01i8PDG09WpTnCwkUun98ZkdhdUM5r0zArAbtmGcDK3hEUL9vL1ZztJOnTSL/MIWiJq5a8IOJzjDj2dvxCgb2C5oj/p1bcdc56f3GzHu+7mYbSJCuaX7w9QWmKhS/cYbrj9glrp/dfEydxSNM1BXEK4X8Nw61el8Mm7m3A4JA7NwdJFB7loTBdu/7+WFx5sbpTzVwQcA4Yk4HB4hiyMJn2tO0UVTkG0abP6MW1Wv0bbZ05mMW/OXc2JnBKEgLBwM398ZBy9+rZrtGPUlrJSK5+86xke3LIhnZHjW2Z4sDlpucsoxXlLULCRex8dj8msx2TWYzDqMJr0TJ7Rh179mt/JKJzYbRovPrGErIxCbC7J5oK8cl59dgVFhRXNbs/+3dmuu0R3WnJ4sDlRK39FQDJkeAde/2A22zYfw1ppZ9Cw9sS3r1mjXtF07NmRhcVi99DvcWiSdSuTmXF102gK+cJXlZQQtReSa80o568IWMIizEyY3NPfZjQaxYUVFJ6qIC4xot5a/v7kVEG51/GRNptGfp6nhEVTM2BIgtfkrgSOpxdyeH8uvVuAtLK/UGEfhaIJ0DRHlWOyWOy8NXc1D/3hW/72+BLuu/krfvxmX7PYUVlh48jBE+Rme/YY1JUevWO9CruZgwx+0a8PCjZy75/GYzTp3KvDJCQfyePVZ1eweV1as9vVUmh5yw+FIoA5cuAE/3l/M8ePFWIyGZgwtSeFBRXs3paJ3eaoGvn3w1d7iI0L46KxXZrMll8WHuCbz3ahN+jQ7A46doniwccnEFHPxqvO3aIZODSRvTuzqoatGI064hLCGXZRx8Y0vdbExocRFGyktNji8ZrVqvHZB1u5cHTngB+m7g/Uyl+haCSOHyvklWeXk5FeiJTOFf/KX46wZX1a1XDv01gtGoubcPW/d2cW3/x3F1arRkW5DatVIy05nzdfWt2g/d776Hiuv9VZLprQIYKZ1wzkyb9PbbBiaH2QUvLPF1dRUmzxNUOGigobhQXNH5JqCaiVv0LRSPz07T4POYXqZYhnU1hY2WS2/Pz9fo8Rj5omSUsp4GRuKbFxYfXar16vY9K03kya1rsxzGwQ2ZnFFOSXOYP8PpBSElIHFdLWhFr5KxSNREZaoc+B3mcjdKJJ4+RFPi4ser2O0hLPEElLxGbV0J2jkcto1DNiTGeCgo3NaFXLQTl/haKR6NIjxmtsWa8XGE1n/tR0OkGQ2cDsG5tOB2fwBe0xGD3/vKWUtO/UNDN+m5uOnSMxGPVeX9PpBIMvbM+tfxzZzFa1HJTzVygaiRlX98docndGJrOe8ZN68KenL2XgsETiEyMYe0l3nn9jBnEJTde3MO3KfoSFm90uACaznt/+/gJMJu8Os6Wh0+u4++GxzkZAV87BZNaT0D6Cl9+7kv977OIWWVLbXCg9f4WiEUlPKeC/H20j+fBJQkJNTJnZhxlX9UfnpRO1qSkttvDLooPs3ZFJVEwIl83q55eSzKYm70Qpa5YncSq/nP5DEhg+qrNfEtCBQm31/JXzVygUivOI2jr/1nt5VChaEZZKG4f25ZKeUqAkjxWAKvVUKM57Vi87ymcfbkWv1+FwSCKjgnnk6UnEJYTX/GbFeYta+SsU5zEpR/P47IOtWC3OZi9LpZ0TOSW88sxydQfQylHOX6E4j1nx02GP7mIpobiokuQjeX6yShEIKOevUJzHFBVWepU+0OnEedPspagfyvkrFOcxQ0d08JjjC2C3OejRO9YPFikCBeX8FYrzmLGXdCe2XZhbY5fJrGfWbwYRFm72o2UKf6OqfRSK8xiz2cBfX5nGqmVJbNt4jNAwE5Nn9KH/4AR/m6bwM8r5KxTnOeYgI1Nn9mXqzL7+NkURQKiwj0KhULRClPNXKBSKVogK+ygUimbBYrGz4qfDbF6XhjnIwKRpvRkxpjPiHJr8iqZDOX+FQtHk2Gwaz//5F3Kyiqumm6UlFXD4wAluvnOEn61rnaiwj0KhaHK2rEvnRE6J21hLi8XOmmVJnMwt8aNlrRfl/BUKRZOzd2cmlkq7x/M6veDIwZN+sEihnL9CoWhyomJC0Os9Y/tCQESbID9YpFDOX6FQNDkTpvREf9Y0MyEgKNhI/0HxfrKqddMg5y+EuFYIsV8I4RBC+JwcI4S4TAhxWAiRJISY05BjKhSKlkdcQgT3/GkcIaEmgoINmMx64hIj+MvzU/wy4lLR8GqffcDVwPu+NhBC6IF3gMnAcWCrEGKhlPJAA4+tUChaEENHdOSt+deSkXYKs9lAQocIVebpRxrk/KWUB4Ga/gNHAElSyhTXtl8AswDl/BWKVobBoKNrjxh/m6GgeWL+7YGMar8fdz2nUCgUCj9R48pfCLEc8JaReUJK+UNjGiOEuBO4E6BTp06NuWuFQqFQVKNG5y+lvLSBx8gEOlb7vYPrOW/HmgfMAxg+fLgaMKpQKBRNRHOEfbYCPYUQXYUQJuB6YGEzHFehUCgUPmhoqedVQojjwChgsRBiiev5RCHETwBSSjtwH7AEOAh8JaXc3zCzFQqFQtEQGlrt8x3wnZfns4Dp1X7/CfipIcdSKBQKReMhpAzM0LoQ4iSQXu2ptkCen8ypC8rOxkXZ2bgoOxuXQLSzs5QytqaNAtb5n40QYpuU0mcXcaCg7GxclJ2Ni7KzcWkpdnpD9VUrFApFK0Q5f4VCoWiFtCTnP8/fBtQSZWfjouxsXJSdjUtLsdODFhPzVygUCkXj0ZJW/gqFQqFoJJTzVygUilZIwDr/OgyKSRNC7BVC7BJCbGtOG13HbxEDbYQQ0UKIZUKIo65/o3xsp7nO5S4hRLPJcNR0foQQZiHEl67XNwshujSXbWfZUZOdtwohTlY7h3f4wcaPhRAnhBD7fLwuhBBvuj7DHiHEsOa20WVHTXZOEEIUVTuXTze3jS47OgohfhVCHHD9rT/gZZuAOKd1QkoZkD9AX6A3sAoYfo7t0oC2gWwnoAeSgW6ACdgN9GtmO18G5rgezwHm+tiu1A/nsMbzA9wDvOd6fD3wZYDaeSvwdnPbdpYN44FhwD4fr08HfgYEMBLYHKB2TgB+9Oe5dNmRAAxzPQ4Hjnj5fw+Ic1qXn4Bd+UspD0opD/vbjpqopZ1VA22klFbg9ECb5mQWMN/1eD5wZTMf/1zU5vxUt38BMEk0/xioQPh/rBEp5Rqg4BybzAL+I51sAiKFEAnNY90ZamFnQCClzJZS7nA9LsGpUXb2TJKAOKd1IWCdfx2QwFIhxHbXPIBAJBAG2sRJKbNdj3OAOB/bBQkhtgkhNgkhmusCUZvzU7WNdIoFFgHNPRKqtv+Ps123/guEEB29vO5vAuH7WFtGCSF2CyF+FkL097cxrnDjUGDzWS+1pHMKNHyGb4NopEExY6WUmUKIdsAyIcQh14qi0WjOgTYN4Vx2Vv9FSimFEL5qfDu7zmc3YKUQYq+UMrmxbT2PWQR8LqW0CCHuwnm3comfbWqp7MD5fSwVQkwHvgd6+ssYIUQY8A3woJSy2F92NBZ+df6y4YNikFJmuv49IYT4DueteaM6/0aws9YDbRrCuewUQuQKIRKklNmu29ETPvZx+nymCCFW4VzlNLXzr835Ob3NcSGEAWgD5DexXWdTo51Syuo2fYgz1xJoNMv3saFUd7BSyp+EEO8KIdpKKZtdSE0IYcTp+P8rpfzWyyYt4pxWp0WHfYQQoUKI8NOPgSmA18oBPxMIA20WAre4Ht8CeNyxCCGihBBm1+O2wBjgQDPYVpvzU93+a4CV0pVpa0ZqtPOsOO8VOOPDgcZC4GZXhcpIoKhaSDBgEELEn87rCCFG4PRXzX3Bx2XDR8BBKeVrPjZrEefUDX9nnH39AFfhjJtZgFxgiev5ROAn1+NuOCsudgP7cYZhAs5OeaYa4AjOVbQ/7IwBVgBHgeVAtOv54cCHrsejgb2u87kXuL0Z7fM4P8BzwBWux0HA10ASsAXo5qfvZU12/t31XdwN/Ar08YONnwPZgM313bwduBu42/W6AN5xfYa9nKOazs923lftXG4CRvvJzrE4c4t7gF2un+mBeE7r8qPkHRQKhaIV0qLDPgqFQqGoH8r5KxQKRStEOX+FQqFohSjnr1AoFK0Q5fwVCoWiFaKcv0KhULRClPNXKBSKVsj/A5TziHMqXS7iAAAAAElFTkSuQmCC\n",
- "text/plain": [
- "<Figure size 432x288 with 1 Axes>"
- ]
- },
- "metadata": {
- "needs_background": "light"
- },
- "output_type": "display_data"
- }
- ],
- "source": [
- "# plot data\n",
- "y_pred = np.argmax(nn.z2, axis=1)\n",
- "\n",
- "plt.scatter(X[:, 0], X[:, 1], c=nn.y, cmap=plt.cm.Spectral)\n",
- "plt.title(\"ground truth\")\n",
- "plt.show()\n",
- "\n",
- "plt.scatter(X[:, 0], X[:, 1], c=y_pred, cmap=plt.cm.Spectral)\n",
- "plt.title(\"predicted\")\n",
- "plt.show()\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## 8. How to encapsulate a multi-layer neural network using class methods?"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {},
- "outputs": [],
- "source": [
- "import numpy as np\n",
- "from sklearn import datasets, linear_model\n",
- "from sklearn.metrics import accuracy_score\n",
- "import matplotlib.pyplot as plt\n",
- "\n",
- "\n",
- "# define sigmod\n",
- "def sigmod(X):\n",
- " return 1.0/(1+np.exp(-X))\n",
- "\n",
- "\n",
- "# generate the NN model\n",
- "class NN_Model:\n",
- " def __init__(self, nodes=None):\n",
- " self.epsilon = 0.01 # learning rate\n",
- " self.n_epoch = 1000 # iterative number\n",
- " \n",
- " if not nodes:\n",
- " self.nodes = [2, 6, 2] # default nodes size (from input -> output)\n",
- " else:\n",
- " self.nodes = nodes\n",
- " \n",
- " def init_weight(self):\n",
- " W = []\n",
- " B = []\n",
- " \n",
- " n_layer = len(self.nodes)\n",
- " for i in range(n_layer-1):\n",
- " w = np.random.randn(self.nodes[i], self.nodes[i+1]) / np.sqrt(self.nodes[i])\n",
- " b = np.random.randn(1, self.nodes[i+1])\n",
- " \n",
- " W.append(w)\n",
- " B.append(b)\n",
- " \n",
- " self.W = W\n",
- " self.B = B\n",
- " \n",
- " def forward(self, X):\n",
- " Z = []\n",
- " x0 = X\n",
- " for i in range(len(self.nodes)-1):\n",
- " z = sigmod(np.dot(x0, self.W[i]) + self.B[i])\n",
- " x0 = z\n",
- " \n",
- " Z.append(z)\n",
- " \n",
- " self.Z = Z\n",
- " return Z[-1]\n",
- " \n",
- " # back-propagation\n",
- " def backpropagation(self, X, y, n_epoch=None, epsilon=None):\n",
- " if not n_epoch: n_epoch = self.n_epoch\n",
- " if not epsilon: epsilon = self.epsilon\n",
- " \n",
- " self.X = X\n",
- " self.Y = y\n",
- " \n",
- " for i in range(n_epoch):\n",
- " # forward to calculate each node's output\n",
- " self.forward(X)\n",
- "\n",
- " self.evaluate()\n",
- " \n",
- " # calc weights update\n",
- " W = self.W\n",
- " B = self.B\n",
- " Z = self.Z\n",
- " \n",
- " D = []\n",
- " d0 = y\n",
- " n_layer = len(self.nodes)\n",
- " for j in range(n_layer-1, 0, -1):\n",
- " jj = j - 1\n",
- " z = self.Z[jj]\n",
- " \n",
- " if j == n_layer - 1:\n",
- " d = z*(1-z)*(d0 - z)\n",
- " else:\n",
- " d = z*(1-z)*np.dot(d0, W[j].T)\n",
- " \n",
- " d0 = d\n",
- " D.insert(0, d)\n",
- " \n",
- " # update weights\n",
- " for j in range(n_layer-1, 0, -1):\n",
- " jj = j - 1\n",
- " \n",
- " if jj != 0:\n",
- " W[jj] += epsilon * np.dot(Z[jj-1].T, D[jj])\n",
- " else:\n",
- " W[jj] += epsilon * np.dot(X.T, D[jj])\n",
- " \n",
- " B[jj] += epsilon * np.sum(D[jj], axis=0)\n",
- " \n",
- " def evaluate(self):\n",
- " z = self.Z[-1]\n",
- " \n",
- " # print loss, accuracy\n",
- " L = np.sum((z - self.Y)**2)\n",
- " \n",
- " y_pred = np.argmax(z, axis=1)\n",
- " y_true = np.argmax(self.Y, axis=1)\n",
- " acc = accuracy_score(y_true, y_pred)\n",
- " \n",
- " print(\"L = %f, acc = %f\" % (L, acc))\n",
- " "
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD8CAYAAACfF6SlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzsnXV4FFcXh9+ZWY87Ftzd3WmxYi1taUtdqFGqfPWv7kpdv7ZQ2kKLFbfS4l4kARICIYbEPWsz8/2xEFh2A/EEmPd5+jxldvbek2T3zL3nnvM7gqqqaGhoaGhcWYg1bYCGhoaGRvWjOX8NDQ2NKxDN+WtoaGhcgWjOX0NDQ+MKRHP+GhoaGlcgmvPX0NDQuALRnL+GhobGFYjm/DU0NDSuQDTnr6GhoXEFoqtpA0oiNDRUbdy4cU2boaGhoXFJsWvXrnRVVcMudl+tdf6NGzdm586dNW2GhoaGxiWFIAgJpblPC/toaGhoXIFozl9DQ0PjCkRz/hoaGhpXIJrz19DQ0LgC0Zy/hoaGxhWI5vw1KoSjoAjZZq9pMzQ0NMpIrU311KjdZO49wsZ73ydz7xEEQaDB6F70+/ZJTKEBNW2ahoZGKdBW/hplpig1i2WDHiNjVyyqU0ZxOEleto0Vw56ktrQFVWQZVVFq2gwNjVqL5vw1ykzs98tQ7E63a4rDSV78SVI3RdWQVS5yYpJYNugxfjKOYKZ5FH9PfgNbVl6N2qShURvRnL9Gmck+kIBs9R7nzzt6opqtOYs1I4clfadyamMUKCqKw0nCvPWsGPZUrdmRaGjUFjTnr1Fmwnq1QbKYPK6rikJQhybYsvNRZLna7Tr8wwrXQ+kcR6/YneTGpZC6Obra7dHQqM1ozl+jzDS/fTiGAAuCTiq+JpkM+Daqw8oRT/NbnYn8EjyBPa/Nqta4e1ZUPHKRlx2JqpIbm1xtdmhoXApozl+jzBj8fRi340ua3DQEfYAPpogg6o/qSX7CSWzpOSh2J468Qva98yt73/wFAFVVSV6xnQ33vMvmBz8ideuBSrcrtGtLdF52JACB7RtX+nwaGpcyQm2NhXbv3l3VVD0vHea3u4ucg4ke1/X+Fm5OX8DGu94lceEmnAVWEAUkk4EO/7mJLv+9vdJssOfkM6/VHVjTc+H0jkMy6gnp0YrR/3yMIAiVNpeGRm1FEIRdqqp2v9h92spfo1IoSErzel0usnFi9a6zjh9AUZELbex/+1fyjp2sNBsMAb6M3f4FDcf3RTIbMQT40HLKGIYvf1tz/Boa56EVeWlUCoHtGpG+7ZDHdUOQH8mrduIstHm+SRRIWbmD1vePrTQ7fBtGMGzeK5U2nobG5Yq28teoFHq8PQXJbHS7JlmMdH/7Pgx+FgTJ86MmiGKJMXoNDY2qRXP+GpVCnUGdGL78bcJ6t0HvZyGwXWMGznyWFneOpNmtVyHqJc83qSoNx/etfmM1NDS0sI9G5VFnYEfGbP7M43pAy0h6fzqNrVM/QdBLCAioisLQea9g8PepAUs1NDQ0569RLbS8exSNJvQjZfUuJIOeesO7ofcx17RZGhpXLJrz16g2jMH+NJ00pKbN8EBxOFFVFcmgr2lTNDSqDc35X8Y48gpJ2xGDMdiP4E7NtHTH8yg8kcGmKR+QsnInqCoRAzrQ79un8G9Wr6ZN09CocjTnXwnYc/KJ/ngex+atx+DvQ5tHrqXJjYNr1Nke+GwBO5/+FtGgQ3XK+DQI4+rlb+PXuE6N2VSbUJwyS/s/SkFSKqrTpUN0cv0+lvSdyg1HZqP3rfqQlGx3cPSXtSTM34gxxJ/WD4wlrFebKp9XQwM0519hHAVFLO75EAVJacVKl5l7j5C29QC9Pnq4Rmw6uWEfO5/5FrnIhlzkyq/PPZzCqpFPc93BH7UdAJC8fBu29Oxixw8UF5/F//YXLe+9pkrnl212lg16nOzoY67iN0Eg/ve/6f7WfbR95NoqnVtDA7RUzwoTN3M1BSkZbhLHzgIrMV8voSDFe9VrVXPw0wUeAmeqolCYkk7mnrgasam2kRd3HNnm9LjuLLCSXQ0icEd/+eus4wdQXQ+enU9/gy07v8rn19DQnH8FOb5yB3Kh1eO6aNCRtvVgDVgERanZbrLGZxAkCVum1tgEIKhDE0SD58ZX52smpHPzKp//2Lz1Zx3/OYgGHakb91f5/BoamvOvIJbIMK/Vq6qqYq4TXAMWQcNxfT2qbcGV1RLao1UNWFT7qDu0C/4t6iMaz2b4CHoJU2gAjScOqPL5jSH+4C38pqroA7TaB42qR3P+FaTNQ+PdHAi4ZAvM4UGE921XIza1mjIG34bhbg8AncVEt7fuqZKiKmt6DlEf/cHmhz4mbuYqEhdvYc/rPxM3azVOL7uiyqDoVCY7n/2Wxb0f5u9bXid9Z0yZ3i+IIqPWfUjLe0djCPJF72+h2S1XMWbrZ+TGHSdjT5xHQ5q8+BOsmfAiM31GMztkAtunf4WzhI5mF6PV/WORzAaP6zo/S419bjSuLDRJ50og8c/NbLj7XRS7E1VWCGgdybD5r+LbKKLGbHLkFxHzzRISF23CFB5I20euo87AjpU+T8aeOJYPfhzFIbsOl0UBVEBwPXAkk4FrNswgoFVkpc1ZkJzGoq5TcOQWodgdxRLRA2c+S+Pryr9qz4qKZ+2EFyk6lQWCgM5sZNCvL1BvaBesGTnMb30n9qz84gY1kslAxMCOjFjxTrnmi/r4D3Y/970r/KSCztfEiJXvEtS+Sbl/Bg2N0ko6a86/klCcMtnRx9D7mfFreuXkiS/oeC/ZUfEl3yAIhHRpzridX1XanJumfMDhH1e6Z+oAprBAJh2fiyh50RG6CLLNzpzIm7Cl57hd11mMTIydSdys1ex5dVZx9tQZJLORsds+L7fDtmXmcmpjFIYAH8L7ty+X7Roa51Ja56+lelYSok4iuFOzmjajWrGmZV+8PaKqkhV1DGtaNqawwEqZN2XlDg/HD+AsKKIg4VS5Hr5JS7ai2Bwe1xVZ4fDMVWTsjPVw/OD6u2dFxZfb+RuD/Wk4ThO306h+tJi/RrkR9DpcMZ6LU5k7TGNIgNfriqxgCPS94HudRTZObYoiK/qYm03W1GwULw8UxeagMCWdoI5NEU2eMXpVUfBv2aCMP4GGRs2jOX+NcmMM9CWsTzuv2U7FCAKB7RpjDg+qtHnbP3kDOh/3PgCiQUe9q7piDPYv8X2Hf1rJrxETWX3Nsyzp9TALO9xT3EksYkAHr+/R+ZqpN6wrraaMQTovNVQ06Ajq0JTQri0r+BNpaFQ/mvO/RHDkFZK+M4bCExk1bYobA2c+g0+DMHS+ZvCSuSjqJQbNfq5S52x6yzDaTrsOyWRAH+CDZDYS3qcdA2eVPE/6zhi2PDQDZ34RjtxCnIVWcg4lsXL4dFRVJah9Expd19/toSIa9QS2bkjkmD5Y6gQzesMMwvq0BVFANOhoctMQhq94u1J/Ng2N6kI78K3lqKrKnldnsv/dOYh6CcXmoP7Ingz8+dlaI4msyDL73vqVvW/87BE3F80Gxmz8hJAuLSp9XltmLln747E0CLuoGNuGu94hbtZqUNw/7zpfMyPXvE9Yz9aoikLMt0vY+cx3OHILXVk4gkCXl26n49M3F79HccoIooAgamsnjdpHtTZwFwThf4IgpAqCEFXC64IgCJ8IghAnCMI+QRC6Vsa8VwJHZ68h6r25yEU2HLmFyDYHKSu3s/n+j2ratGJEScKZX+T1wBRZ5eQ/+6pkXmOwP3UGdSqVCmfhiUwPxw8giALW0xk+giiSvHSbS6pDVVFsDhSrnb2v/cyx+Ruw5+Sz/ckvmdvoZuY2voVdL/6A08shsIbGpUBlLV1+BEZe4PVRQIvT/00BvqykeS979r37m0ehlGx1cGzeehz5ReUeV1UUEhZt4q8bX+Hvm193ZdBUYBdoighE8nIgKhp0mEJLjsNXhMKTmfx1w8v8ZBrBT6YRrJv0KkWnMr3eGzmmN5LFs+pZtjkI69UacBWrpaze5fEQcxZa2ffObyzpN42DXyyi6EQGhclpRH8wtzhspKFxqVEpzl9V1fWA92+di/HATNXFViBQEIS6lTH35Y41NcfrdUEUsOeUTwBMVVX+mfwm6299k4Q/1hM/Zx1/Xf8y2x71bMFYWprdMsxrGESURBpe27/c45aEbHewpM9UEhdtRrE7UexOEhZsZEnfR1AcnoJtLe4aiW9kuFtVrc7HRKfnb8V0OnvIlpGLqPOeZ19w7AQFialuDwbZaidz7xFObdC0eDQuPaoraFkfSDrn38mnr2lchDqDO3l1qoYAHyx1Q8o1ZuqmKJKWbHETFnMWWIn9fhnZBxPKNaY5Iphhf76OMTQAvZ8Zna8ZS70QRqx+r0rOJhIXbcaWkeuW7686ZazpOSQu3uJxv97HzNjtX9Dl5TsJ69WGBqN7MeT3l+j8wq3F9/g1q4fopZuXoJMw1w3B6WWnpdidpZaWyE88xaYHPuSPlrezbMgTJC/fVqr3aWhUBbWqyEsQhCm4wkI0bNiwhq2pHXR7/W5SVu7AWWB1OTpBQDIb6P3ptHIfOCYv3+5Vc0dVVFJW7iSwTaNyjVtvaBduOvE7GbsPFxe9VdWhaM7BBJwFns7YWWAl52Ci1/fo/Sx0mD6JDtMneX1d1En0/mQqm+7/ELnQFcsX9Tr0fhaaTBpMXtxxj9+baNTjW4oGOfmJp1jUZQqOvCJUp0xeXAp/bT9Il1fvosOTN170/RoalU11Of8U4Fxxlwanr7mhquo3wDfgyvapHtNqN/7N6zNhz7fse/tXTm3Yh1/z+nR8+ibC+5Rf/Esf4IOo17t0cc5B1Eno/S0VsleUJMJ6tK7QGKUhoE0jdD5mj9W4zsdEQJvyLxyaTb4Kn4bhRL03h/yEVOoO7UyH6ZPQ+ZiIen8uFAnFctmCKGLwsxA5pvdFx9375i/Fjv8McpGdndO/5uTfexk461mMFylQ09CoTCot1VMQhMbAElVV23t57RpgKjAa6AV8oqpqzwuNp6V6Vh35SanMb32nh1yBzsfEDUdnIxp06P19anXHL9nuYH7rOyhITi92qIJOwicynImHfkTUV/66Jiv6GOtvf5vsaJeWUWiP1gyc9WypWmPOa3U7uYc91jsACDodEf3bMeqvDyvVXo0rk2rV9hEE4VdgMBAqCEIy8BKgB1BV9StgGS7HHwcUAndVxrwa5cM3MpyBM59hw53vnK3OVSFiYEfmNroZVZax1A+j75ePUX9Ej5o1tgQkg54xWz5j67TPSFy0CQSBhuP70fuTqRd0/I6CIhIXbcaenU+9q7oS0LL0aqNB7RozftdXWDNyECSpTCt1S/3QEp2/6nSStu0QuUeOa83jNaoNrcjrCsZRUMTJv/ci6iRivltK8rJtbu0fJYuR0es/rrXyBac2R3Psj38QdBLNbh560UKyU5ujWT36GVRVRXUqgErLe6+h18cPV/kuJ2XlDtZOfKn4LOF89AE+XLXwNeoM6lSldmhc/lRrkZdG7ST7wDEOfLaQI7+sxeHlcFTvYybymt4Ed27mKm46r++vXGRn/9u/Aq4c+IRFmzi5fl+xnn1NsvXRz1g1/D8cmDGf6A//YGn/R9n7xs8l3q84nKwd/4JL2iGv6HRzezuH/7ec5OXbq9ze+iN60PP9B7y2jgSXgFxQB03HX6P6qFXZPpc7qqKQf+wkej9Lpckbe51HVdk05QOO/vIXqCqCXmLLwzMYsfJdwnp6HsbmJ6QiGvVuTehPD0Tiki2sHP4fTm7Yh2TUu9oM+vswYvV7BLaumYys9J0xxH6/7OwqWlWRi2zsfWM2TW8Zhl8TzxKSU5uivOb/n0lxjRzdq6rNpvUD46g/qheLOt+HI6+wuOJY52OizcPjLyhKp6FR2Wgr/2oiefk25jSYxIKO9zKn4U2suHo61rRswKWLHzdzFUdmr8GWVfEG6wkLNhL/2zrX6tZqx5lXhCOngDXjnvdoTQjg37KBd2kGQLE6OL7GVfXqyC3EkVdE4fEMVo18usYqWxMWbvJ8UJ0maan33Hlvjv8M2QcTWNj5Pv7s8SAx3yzx+jvyNl5p7jsfv0YRTNj3HS3uHIGlXihBHZvS5/NH6fbWfWUeS0OjImgr/2og+8Ax/rrhFbd478l/9rJq1DO0fmg8W6d+gqATAQFVVhjw09M0uX7QRceV7Q7sWXkYQwPcOkDFfrfUrYCr+P4iO+nbD3mkiRoDfWk9dQIxX/xZup67qootM4/07YcI69Xm4vdXMpJJjyCJqIq78xVE0bU78UJEv/aospdwlSiQf/QEit31cNh2MIGUVTsZ+sfLXsfJiU1i0/0fkrohCkESaDihP32+eLS4Srg0+EaG0/+76Re8R7Y7kK129H6WWp11pXHpoq38q4HoTxZ4rKxVp0z2wUS2PPyxa3Web8WZ74pFb7jjneJdgTcUWWbH09/wS/B4fm8ymV8jJhLz7ZKzr9tLWOUKoDi8r1Z7vDOFbu/cV+pwlCCK2HMLSnVvZdNk0hCvMgyqotBoQj+v79FZTAz46Rkks7E47i6aDAiC4Pb7kgttpKzYTvruWI8xbFl5LOn7CKfW70dVFBSHTOLCTSwf8kSl7YKchVY23vs+swPH8UvotcxrdQfH//q3UsbW0DgXzflXA3lHjntddaqKcjrr5DwEODZ/Q4nj7X7+ew5+vhBnoSusY8/MY9vjX3Bs3noAmt16lUezE9e4AmG9va/UBUGg7cMTGLrgVZc2/0VQHE7C+7QjdesBlvafxkzf0fzebDIx3y2t8nBQQIsG9PzwISSTAZ2PCZ2vGclsZMDMZy748Gp83QCuO/ADnZ6/lbaPXkeD0T29/l0UWSF1U7TH9biZq4oVP4vvdTjJP3aKk//srZSf7e+bX+foL2uRrfbiSuC1454n60J9kjU0yoHm/KuBekO7uAmKnUF1yl4zZ1RFLTGmrTicHPxskUfKoFxoY8+rMwFoduvVhPdrj87X9QAQjXoki5FBs59H8qJdcy7hfdpijggqUZZBEEUki5FeHz9ETmwSK656itTN0ciFNvLjT7L9sS/YdzpDqCppff9YboifTe9PHqHPZ9OYlDynVKEy30YRdH7xNnp99DDBHZsh6D13EKJBh7lOsMf1rKh4r6maqqJcvJdxKchPPMXx1bs8/vayzcH+9+dUeHwNjXPRYv7VQKsHxnLgswVYnTmop8MuOouJyLG9SVy8xcOhCEDkmD5ex7LnFJR40FiQlAa4ZBqGL3uL46t3kbJ6J8bQAJrfejU+DcIuaqsgCIxc8z5rxr9AblyK6yxBFGh6yzAKk9IwhQfS+oGxhHZvxeoxz3mkhzoLrex76xfaPX49Oi8Sz5WJOSKYFnddSEm8ZI7NW8++t38t/nuci2TQEznW8/cf2q0V8b+t8zhPEQShwmma2QcTOPzTSq8tMVVZIfuAd70iDY3yojn/asAY5Mf43V+z5/WfSVq8BUOgL+0enUjzO0ew7dHPOPzDCpyFNhBAMhnoMH1SiZWexmA/9H4WbDZPqefgzs2K/18QReqP6FGuCl3fRhFM2PMtOYeTceQWEtyxqdeq2cw9cW4hkGJUlaLj6fg1rZ3VqrbMXNbf/jaKl92VT8Nwrl76ltcHV7Nbr2LPazNdIZnT4SLRqCeoY1PCerctly2KLLP+9rdIXLgZBLzuLAS9jvASwnUaGuVFc/7VhDkimD6fTqPPp9PcrveaMZUmk4YQP2edq1L1lmGEdm9V4jiCKNLj3SlsmfqJm6OQLEa6V3K6YECLBhd83b9FAwqPe/YUVhUFU0TlNWyvLGxZeZxYt4fUTVEIoreGwwJNJg0mqF1jr+/X+7pkobc/+RVJS7Yg6XU0u3043d68p9wZObHfLSNp0RYPnaViBAGd2UCbh8dz6OvFpKzaiW/DcFo/MI6AVqWXptDQOB/N+ZeSvGMn2TH9K1JW7kRnMdJqyhg6vXDrRWPoF0MQBCL6tSein4cengdOq53EBRspSEyl7bTrSF6+ncKkVII7N6fbm/d6LeCqSjq/dLsr9HPeQ6jVfdfUmv7CZ4j5dgnbHv0c0aBDsTu9n6moeD+APwef+mEM+e3FCtvjyCtk3zu/EfXenBJrEHS+ZuoO6UynF29jzfgXKUxJx1lgRdBJxHyzlCFzXiwxPKihcTE0518KrBk5LO75IPbMfFRFwZlfRNQHv5O59whXLXq9WmzIT0plaZ+p2PMKceYXuZql1A3hupifinPM85NS2f3C/0hZsQO9v4U2j1xL26kTqkxTv+7gzgz6+Tm2Pf4FhclpSBYjbR+5li6v3Fkl85WXrKh4tj32BbLVXuJBOoBkNtD4+oFVbo/icLK0/zRyDyeX7PgtJob88TKh3Vpw8LOFFCSeQra60oVVp4zslNlw17vcdPIPtxoPDY3Sojn/UhD7zVKcBTa3zBy5yMbxNbvJPpRYLTIHm+77gKJTWcWxZmdeEfnWk+yY/jUNx/cj+0ACUe/NwZFXiCorWNOy2fXcd2RHxdPvmyerzK5GE/rTcHw/5CIbkslQZQ+aihD7v+UevQu8YQzyI6TrhcXhKoOEhZvIiz9Z7My94Syy8dd1/0WVFUSDzuu9ss1BdvQxgjs28zKChsaFqX3f1FpI2raDXmOyol4ia3/V518rTpkTa3d75KQrDidxP61kw+1vs/u/P2DPzne7Ry60cWTWagpS0qrUPkEQ0FlMtdLxA9hz8r1X956HLTOP6I/mVbk9qVuivbaEBM7+DlUVudCGYnPgzPdeda3KMnq/ijXf0bhyqZ3f1lpGYLvGiF5kA1RZwb95yRktBclpbLjnXX6rfwPz299N7PfLyl8AVdKBouqKH1OCcxNNBjL3HCnfnJcJja8dUFzzcCHkIhux/1tW5fb4Nq6DZDZ6XBd0kveDci+fGUEUCWgV6VXETkOjNGjOvxS0fnAc0nlSvKJBT1CHpiVqyBelZrGo6/0cmbmaohOZ5BxIYNtjn7P9iS/KPL+ok6g3rKvXHPCLoTicpeoxeznTYHQv6gzs6L3q+TzObbNYVTSbPMxTnkIUMIUGYAjy8/oeQa9zdVjzs6DzM+PbOIJhC16rcls1Ll80518KfBqEMXLdh4R0bYEgiYgGHY0mDmD48rdKfM+BTxYUx9/P4CywEvP1EopSs8psQ79vn8RcNxidnxlEweXILpJdKBp0hHRuXmLq4pWCIIoMW/Q6A358msY3DqbFXSPxaRjucZ9k1NP0lquq3B5TSAAj//oA/1YNkEwGRKOekC4tGL1hBvWGdfFedayTGL/nW/p9+yRXL3mTibEz8W0UUeW2aly+aJ28yoizyIaoky7aI3bpgEdJ3RTlcV0f4MPQ31+i3lXdyjy3bHeQuHATObHJBHVowo6nvyYv1rM1oCCJCJJIg1G96P/DfzAG+nLyeC7xhzMICfOhRZuwy0op0pFfxLF56yk6mUlE/w6E92130Z8v49/DLB/6JIrDiVxoQ+drxq9pXa7Z+An6UmgbVQaqqlKQnIao12E5LSdRkJLGwk734cgpKF446HxMdHx+Mp2euaVa7KouUk/mkZlRSGSjQHx8PcNgGuWjWnv4XknovMRqveHfvD5pWw94HtLanV5XnaVBMuhpcuPg4n/7NAhjxbDTDqzIjs7XjE/DcIYtfBVLnRD0vmYUWeHLDzawa2sSkk5AVSEoxMKzr11NYPClf1iYsSeOFUOfRHHKyFY7klFPxIAOXLXo9Qs+oEO6tOCGo7M5+sta8hNOEd6nHZFj+3hVC60qBEHAN9L9s+BTP8xVDf7qTI6v+RdznSA6TJ9E44lVn4JaXRQW2Pnkrb+Ji01HpxNxOhRGjGvN9bd2uawWJbUdbeVfRWTuO8KSvo+4FUCJBh1hvdow+p+PK20ea0YOR35eQ97RE0T0a0+ja/u7Ob1VSw7x+6zd2G1nY9miKNCybTjPvj680uyoCVRV5dc612M7T/5ashjp8e4U2jw0oYYs07gQH7+5jv27j+M8p6DOYNRx54O96De4aQ1adnmgrfxrmOCOzRgy9yU2T/kAW5arOKz+iB4M+PHpSp3HFBJAu0cnlvj62uUxbo4fQFFU4g6lkZdrxc//4oegtZWo9+d6OH5wpbjGfrdcc/61kIJ8m4fjB7DbnCxfeOCSdP4Oh8yqxQdZv+YIqqrSb3BTRk5oi9FYu91r7bbuEidydC9uTJpDQXIaBn8LhgDfarfBbvVeQSqIgsdD4VIj6sPfS3zNkV/E9ulfIRn0NL1lWI0ceucnnCLnUCL+LRtoKZmnKSxwIEoCePlY5ueVoG9Ui1FVlfdfWcvR2HTsdtf3afG8KP7dkcx/3xmJWI4MvepCc/5VjLe4bmlQVZUTa3dz5Je1CIJAs9uups6gTmWOiXbr05B1K2I9VloBgWaCQy+dmL9sd7gyrU5LGShOGWtqyd3OChJPEf3h7wiiSPTHf9D1jXto/9j11Wbr+tveImnxFkSjHsXmoN7w7gz+7cUql7k+gy0zF8XhxBzh2ZegJgkJ88Fk0nssPERRoEPn2vmAVFUVh0NBrxc9vn8xB1KJj8sodvwADrvM8eQc9v17nM7dLyyOWJPU3sfSJYZss3Psj3848Ml80rYfqnA3q80PfsTaa/9L3I8rOfzjStaMfb5cNQLjb+xAQJAZw+ktqE4nYjTqmPJo30vicC0r+hhL+j3CLMtoZllG8/ctr2PLzkfUSZjCSu6bq9idLqE2WUEusrP7ue+rvNL5DP++9CNJS7YiW+04cgqQrXaOr9rJzqe/qfK5C5LTWDb4cX6rdwNzG9/C/HZ3kb7LsyVlTSGKAnc82AuDUSquW9TpRCw+eibc1KlmjfPClvXxPH7PPKZM+pWHb5vLsoXRbt/to7HpOL30hLBZnRyJSa9OU8uMduBbCeTEJrFs4GM4i2wodieiTipVxklJpO+KZdmgxzy03SWzkbHbvyhzCMNa5GDT30c5uP8kEXX9GDKiJaHh1R+CKitFqVnMa3UHjtzC4ipX0aAjqEMTxm7/kkNf/cnO6d+4NZ0XJNGrlINkMdLro4dpdd81VW737ODx2LPzPa7rLEZuzVtaZQ9dRZaZ1+J2CpJS3X4Hej8LEw/PxBzL9NqTAAAgAElEQVRee2S24+MyWL7wAGmn8mjdvg4jxrUhMKh2KcHu3pbElx9scFvVG4w6JkzqwDXXuVR4t/wTzw9fbsV2XnjVYJS45e7uDBnRslpthtIf+Gor/0pg3Y2vYk3LwZlX5NJiKbBycv0+Dny6oFzjJS/b5lXIS3XKJC/bVubxTGY9w0a1Yup/BnHDbV0vCccPEPv9Mlfj+3N75tqd5BxKIm3bQVo/MI7u79yHMTQARAFznWDqDe8OXuKsgiggeimeqgrO7/RVfL3I7r35TSVxYs1urBk5XjWgDv+0ssrmLQ9Nmofw0FMDeOm90Uy6o2utc/wA82bvcXP84DqYXjIvCuX077hb70j0esmj4FKSRHr1b1xNlpYPzflXkPykVFf/1vO+1HKhjdjvl5drTJ2PyaujEvRStRUg1Qay9sd7l2AWBHIPpyAIAm0ensDNp+Zxe8Eyxh3+ma3BLZG9lD6rskrDcX2rwWoI79fO6/XQnq2rVPwuP+GU112PbLVXSo/hK420VM/dG4DNKmM9vdI3GHU8/+YIGjQMRK+X0Bsk6tT359nXh2PxqZ7znfKiHfhWENUplyi6pjicxfHBsmz1m9w4mN0v/uBlMmg0cUC57KztqKqK7FTQnfPQC+3eisQ/N3u2NlQUt565giAgGQ3Mn7WDhCID1tZdaXpwNwigIiAJMPDn5zAG+1fLz9JrxlSW9X8U2WZHsTsR9Doko54+n0+7+JsrQGgP7x3gdL5mIvp3qNK5L0fq1g/g2BHPTnVmix6T+azQY73IAN6YMZbM9AJU1XWofSmgOf8yUngyk+yoeHwb18G/eX18G9fBUjeYvKMn3O4TjXoESeQn4wgAGo7vS5/PppUq+8KnQRgDfvgPG+5617UDOH1wOeiX52tV3LYyUBSVpfOjWLYgmqJCB8GhPtxydze692lEi7tHsf+d31whsNO9FCSTgbDebQnp3NxjrC3r43E6FVKatSOtXmNCTiWjiiJZ9RsxeXTvavuZgjs0ZULU9xyYMY/0HTEEd25Ou8cmVnm6Z0iXFtQZ2JGT/+wrliAXDTrMEUE0mTSkSue+HLnx9i58/Ma682L+Etff2hnRSxvQ4NBLw+mfQTvwLSWqorDl4Rkc/nElksmAYncS3rcdw+a/QvahRFZeNd0lMVBkQ/IxodqdqIpSvA0XdBI+keFMPPRjqQ+B7bkFHF+9CwSB+sO7V0rIJycmibyjxwnq2BSf+mEVHq+izP91D8sXHnBL/TMYJKY9O5gOXeqRn3iK7U9+ScryHYgmPS3uGknXV+/yKrPx8G1zveaKi5LAV7/cVOuLbkqDI6+Q2O+XkbRkK+Z6IbSdeq1b+07Z7iD6g9+J+W4pss1B44kD6fLS7dW267nciNpznDk/7eZEci5BIWauvbkTfQfV7kK00h74as6/lETPmMfu5//nllkiGvU0um4Ag2c/75JZmL2WgsRTqCrEfrvUo2GHzs/MwJ+eodGE/mWeP/fIcbY99hnH1+xGMhlocedIur15T6m1huy5Bawd/yJp2w+5+tjaHDS9eSh9v3mixtoAOh0yD9021yNTAqBpy1BeendUmcb76att/LMmDvmcmgZBgJZtwnnuzREVtremsecW8Gf3BylMSXet7EUByWSgz2fTaHHnyJo2T6OWoGX7VDIHZsx3c/wAis1BwvwNOK12l8zCtOvo+f6D6H3NXjs1yYU2cg4mlnlua3oOi3s9RPLy7Sg2B46cAmK+Xsya8S+UeozND3xE6tYDyEW24tzzo3PWcWDG/DLbU1nk59tRFO+Lj9QTuWUe7/pbuxBRxw+TybXCN5p0+PmbuHda9Rz0VpSi1Cx2Pvcdf3Z/gLUTX+LU5mi31w9+vpDC5LSzXeUUV7evrdM+w+ml05yGxoW49PfBpUBV1QrnVttzCry/oKjIhVa3ys2gdo3ReXkASBYjgeWQGYj9dqnr0PMcRylb7aRujiZz/1GCO1x4G+q02kmYv9Gjj61caOPAp/Np/8QNZbapMvDzN6LTiTjsnkUy9RsGlnk8H18Dr88Yw54dySQeyyI8wo8efRsWF7jVZgpPZrKo833YswtQ7A4y/o0jZeUO+n71OM1vvRqAhAUbvWY/CaJAxr9xRPT1nmVUEkWpWZxY+y86HxP1hnevtupjjdpB7f9WlBPZZmfXc98T880SnIU2Qru3pPdn0wjr0frib/ZCvWFdSJi/0a2JO4BPw3CP7ksNJ/TD9PQ3FFjtxZ2hzmi2Nxjdq8xzp++K9fqlFyXJ1cD7Is5fLrKVmF/uyC30uKYqCsfX7CZ52VaMIQE0u+1q/KqgG5gkiYyf1JH5v+zxiPlfP7lLucfs1rsh3Xo3rCwzq4V9b87GnpWP4jgdAjvdw3fbtE9pOmkIol6HKcR7RbPqVDAGla12I+qDuex+8QcEvYQgCAiCwNXL3iK8T9keIBpnkWWFNUsP8dfKw9htTrr3acj4Gzvi61c7exVUSthHEISRgiDECIIQJwjCM15ev1MQhDRBEPac/u/eypj3Qqy/7S0OffWnq+BGVUnfEcOKoU+SG+fZ/KQ0dH/7PvQBFkSDK8VLkER0FhN9v37CY1chGfSM2foZjScORDIZkMwGGt84iGs2fVouvfigjk1L7CEc0Cryou83BPp6beUoiCL1rnYPDSpOmTXjnuev61/iwCcL2PvGzyxodzfH5m+46DyqqnJw/0kW/7GfjX8dwVrkWah2PiPHteHWe3sSGu6DTi/SqGkwT7w4lJZty9fzoKo5vnY3i3s+xCz/MSzsdC+JizdXyrgpK3ecdfznoMgKOadz9Ns+eh06i7sKqyCJ+DWrS2CbRqWeK237IXb/90dkqx1nXhGO3ELsOQWsvuY5ZJuXugqNUvHVhxv5Y/YeTqbkkpleyF/LY3n5qWXYbN7FFWuaCh/4CoIgAbHA1UAysAO4WVXVA+fccyfQXVXVqaUdtyIHvvlJqcxvdYfHalnQSbS8ZzR9v3ysXOMWnsgg+uN5pG6OJqBVJO2fvKFMX7rykp9wkj+a3+ZRwBPStQXjdn5VqjFOrt/H6tHPItsdqE4Z0ahH52Ni3I4v3VIQj/yyls33f+hRparzNXPzqXklHjA7HTLvv7qWo4czcNhl9AYJSRJ59vWradikdomLlZeUVTtZe+1/z8bccYXy+n8/naYVTKUsqfObaNRzw9HZWOqGALD3zdnsff1nRIMOVVbwaRDG8JXv4Nuw9C0dNz3wIbHfLXMLIwLo/S0M+uUFIsuxO72S2LklkaXzo8jJttKuYx3GT+qI3Sbz3yeXeoQwjUYdt9zbncFXe+/1XRVUp55/TyBOVdWjpyf+DRgPHLjgu6qQvLgURKPew/mrTpnMvXHlHtdSN4Qe70ypqHllJm7magSd5O78BdeqT5Flcg+nYAjwKXYQ3qgzsCPjdn9F9MfzyDmUSHi/DrSdOt6j7uDI7DVe5QkEUeDUxv3Uv9r7Z2rNshiOxKYXh2/OZPB8/t563v58/CUhIncxdvznazfHD65zkx3Tv66w82//5A2s3xPn9rsXDToi+ndw+7t2em4yrR8YS9r2Q5jCAl19pcv4u3XkFXk4fgDUkqUpNFwsmR/Fojn7ij/nG9cdZefWJCZM6uA1999mc3Jo/8lqdf6lpTKcf30g6Zx/JwPelg4TBUEYiGuX8Liqqkle7qkU/Fs2QPF2MKaXCOla+/4IF+Pw/5a7NG7ORXX1of01YiKKzYHilAnr1YYhc14ssZAsoGUkfb+48K5H8hJeOjOfZCjhNWD92jiv/QEyMwpJPZlPRF0/L++6tMiJ8f6RLUxJR3E4yyXid4ZGE/rT8bnJ7H11JoqiojpljCH+9Hjvfo97jcH+NBjZs9xzNZ44kKQ/N3s4esXhxCcy3JVptH4fxtAAOkyfRIu7Rl4WD++KYrM63Bw/uIoUbVYHh6JPeREVAZ1eJLyWfvarK9VzMdBYVdWOwGrgJ283CYIwRRCEnYIg7ExLK7/8rk/9MBpNHIh0XohCMhpo/+SN5R63plBk701XVKeCPTMPZ4EVxeYgdXM0q0Y/W6G5Wt4zGp2PZ3cv0aAjvF/7kt94wehh7awlKSs+9UO9XjcE+SJUQu/fiL7tQBRRZRlUFWt6LssHP072gWMVHvtcGo7vS8TAjmf/zqKIZDHS4embWDXyPyQu3IQtI5fcmCS2PfoZu//rRWrkCuR4ci6SF9FAWVY5eTwX/0CTx+pfksRaueqHynH+KcC5p44NTl8rRlXVDFVVz+yXvwO6eRtIVdVvVFXtrqpq97CwilWfDvjhP7R7/HoMQX4IOomI/h0Yvf7jau+o5MgrJH1XLEWnMsv1fmeRDb9m9TxUA72hOmVyY5LJ3Hfkovdm7j1C/Ny/yYqKd7veYHQvWtw9CslsQDIb0fmZ0ftbuOrP1y94WD1gaDMMBs/XA4MshNepnSufstL5pTuQLO4LCp3FRKfnJlfKynjzgx+5wkqnQzKqw4kjr4gd//m6wmOfiyhJXPXn6wya/TzNbruaNg+N45oNMyhMScdZ6J4Z5iywEv3B79hzS0h1voIIDDZ71e4HCAv349k3RtC8dRg6nYjeIBEW4ctTLw2rtbIPlRH22QG0EAShCS6nfxNwy7k3CIJQV1XVM+I344CDlTDvBRH1Orq9fjfdXr+7qqfyiqqq/PvKT0S9O8dVUWt30mB0LwbOfMYjY6MkFIeTZQMfc638zlk8C6dXH94UHAW9ROHxDII7NvM6pqOgiNVjniN9R0yx9n14n3Zcteg1dBYTgiDQe8ZU2kydwIk1uzEE+hI5rg96nwtLS1w1pjW7dySTcDQTm9WJweg68H14+oDLJmTQ/LarceYXsfu/P+DIK0QyG+n4zM20e7ziHcIcBUXkHvaSiaaqnFy/v8Ljuw2pKKBCw3F93ZROUzdHF6cmn4to0JF7OIXQbtWvTV+bCAq20KZDHQ7sP4nTcW7zeYnR17UjOMTC82+OIDfHisMuExxqqdWf/Qo7f1VVnYIgTAVWAhLwP1VVowVBeBXYqarqn8A0QRDG4ercmQncWdF5awuy3UHa1oOIBh2hPVoVSyXE/bSK6Pd/R7baiw+ek5dtY8tDM0rdxD1h4SZyYhKRi87LWhJFWtw7mrgfV3i8ptgcFzzX2P7kV6RtPeh2hpC6KYqdz31H74/PJmMFtGhAQIvSt6DT6yWefX04B/adIC4mncAgM736N8JsubwKh1o/OI5W94/BnluI3s9cadIYktGAqNchy55nVYaAylk52nML2DbtM47OWYficBLepx19v3q8uDmQf4v6ZB9M9KgJUexOLCWEvK40HnpqAN98vJl9/6YgSSI6ncjke3rQut3ZbCv/gNIt7moaTdvHC2nbD3Hoi0UUpWbTcHxfmt8+3GuKY9LSrfxz65uuL4uqovMxMWzR64T1aM38dnd5lXIQjXomZyws1ep/0/0fEvvtUo/rksVItzfuIer9uVjTsl0tC3H1AWj94Dh6vOt5SAiu3cgs39EeDwwAvZ+ZW3OWoDic7HltFgc/X4Qjr5Dw3m3p9clUryqaGpXLpgc+5MjM1W5ZapLFSJeX76TDUxU7q1JVlaX9HiFj9+HizwuCgN7fwsSYnzCHB5G27SDLhz7pnspqMtBgdC+G/vFyhea/FDmenMMfs/4l5kAqfgFGrrm2Hf2HNkMQBPLzbOTn2QiL8PV6DlCTaNo+5STm2yUsH/oEcbNWk7JiO9uf/JIlfaZ66PrkJ6WybtKrOHIKcOQW4sgrouhkFquG/wdnobXE5uKCIGD3UlXrDZ8GocVFZeciShJ+TesyfvfXtHl4An7N6hHaoxV9v36C7hdJRZXPzxo6c/1057ANd79L1Ae/Y8/KQ3XKnNq4n2UDHyPv6PFS2axRfnp99DD1R/RAMhnQB/ggGfU0u/Uq2j9R8bBSxu7DZO2PP+v4AVQVxeYg5pslAIT1asPgX1/AUj8U0ahHNOppctMQBs6qWBLBpUjqyTxemb6c3duTyM+zcSI5l5nfbGfBb3sB8PUzUqeef61z/GXhspV3KA+O/CK2Pf6FW/MQudBGblwKh39cQZuHJhRfPzJrldeYu6IoJP65mToDO5KwaJNHPrUhyA9zROk0+ZvfOZL978xx1+QRBCSzgQYjeyLqdfT84EF6fvBgqcYTBIE6Azpycv0+9629IFB3aBcKj6eT8Md6jweEbLUT9cFc+nxevuI4jdKhMxsZtuBV8pNSyY8/SUDryErr35ATkwRe8tBlq52sfUeL/91wXF8ix/bBmpaN3s9SatXYy43Fv+/HbnO6fU3sNpnlCw4wakI7zOaS054vFS7dx1YVkLbtIKLO83koF9o49sd6wNUqL2npVnJikj1z73Fl3Ngy8+j21r3ofc1nUwAFAclipPdn00p9COQbGc7QBa9gCgtA52tGZzHh37w+o9Z9WO6c8j5fPIre31IsFyGZDBgCfOg142FyYpMRvYh7qU6ZjN2HyzWfRtnxjQynzsCO5Xb8tqw8Tvy9h5zYs3UJQe0be29sbzYQep7elSAImMODrljHD3A4Js2r4qwkiaSeyKsBiyofbeV/DoYAHw/htuLXAv34e/IbJC7Y6KoeLrIhiKLX++sO6UxAy0jG//sN+97+ldRNUfg1r0/HZ24mvHfbMtlU/+ruTDr+O1n745FMBgJaRVYogyCwTSMmHvqRmG+WkvHvYUK6tqDVlDGuL7vF5PWBJugkgjppMf/ajqqq7H7pB6Lf/x3RqEexOwnp0pxhi14juGMzwvu0I3VTVPGZgiC69Kla3lO2vglXAhF1/TmR7Ckr7nDKBAVfHn20Ned/DiHdWmIODyTvtBjcGSSLEUOQL/Fz1rll7yAICDoR9XTzEJ2PiaaThxXr/fg1qUu/r5+osF2iJFXqgas5IpjOL97mcd2nQRiR4/qQtHiL26GwZNTT/smakX3WAFtmLjue/oaEP9aDKND0piF0e/NeDAHuSp7xc//mwEfz3D6j6TtjWDP+RUwh/mTsinVVcAugKir1h3en10cPaV2+vDB2YnsO7DvhVs2rN0h07t4A/8DLw/lr2T7nkXM4mZVXT8eWlYcgiCh2B11evoPoGfMoOuFZqCVIEhED2iOZDLS89xoaXdu/Vuf2XgzZ7jgrhV1grbAUtkbFUBxOFrS/m/xjp4pVP0WDjoBWrp2lIJ6N3C7u9RDpO2K8DyQIxQsancVEm6nj6f529etUXUrs3JrIrK+3k5/vOgPsPaAJd9zfs9b3h9DaOFYAVVFI3XoQe2Yu4X3bYQz2Z5b/GK/duQRJZHL2nxctgroUURXFzblczmRmFLLyzwPEHkylbv0ARo1vS2TjyjlsrQjH/viHDfe8hzPvvJagvmaGzHmRBqPOymj93mwy+fEnSzWuZDJw04nfPXYPGu4oikperhWzWV/rnf4ZtFTPCiCIIhF92xE5pk/xlrjesK5esyUC2zaqVsefn5RKQXL5dY/KwpXi+E+dyOP5aX+yemkMR2Mz2PJPPK8+vZyoPTWf3pq576iH4wdXlk7mOVk6AA1G9ULQl67oTDTqi/sEaJSMKAoEBJovGcdfFq6Mb3cl0OP9BzAE+BRnyQh6CZ2Pq5lLdZC57wjz293F/FZ3MK/l7SzocA9Z0cdKvF9VFIpOZeL0om5am7FZHcz8ehv33/wb99wwm4/fXEd6an6Vzjl35m6KCh3Fjd8VRcVuk/nxy23U9M7Yv3l9dL6eiwud2YB/8/pu1zo9PxljkB+C4eKOSrE58ImsnQ1zNKqHy9L5Z+49wrH5G8g9UnkrN/9m9bjuwA+0f2oSdYd1pc2D45mw99syZ++UB0deIcsHP0HOwcTiw7zsAwksH/QYjgLPVWHcz6v5re4N/N5kMr+EjGfLI5947RJV21BVlfdeXss/a+KwFjlwOhT27Ezh5enLKCyouofYwf0nvXa5zMoopCCvZh+eja8f6KoGP/ccSRQwBPoS2rM1u178geVDn2DL1Bk48ou4dv/3hHZt6XWXegbJZKDBNb2w1Lk8muyUFbtd5uTxXIpK0Wnucuay2svYsvNZPeoZsqLiXY1O7E4ix/Zh0Ozny9U+8XzMEcF0e+2uSrC0bMTP/dvTeasqst1JwrwNNL99ePHllJU72PzAR26Faof/twJVVi6q5V/dxB5MZf7sPSQn5VCnrh99BjUh8ViWm2iWqqjYrE42/nWE4WPbVIkdFh8DBflenLzgEu2qSXQWE93eupfN939YLLomGfV0feNeFnWZUiznfWpjFHE/rmLowlfJ3HvEe7MWwaUh1PSWYfT+9JFq/klqHlVVWbogmj/nuoTyFFmh/5Bm3DqlJzrdZbkOviCXlfPfNOUDMv497FbCnrRkK/vf/Y1Oz02uQcsqRmFKutcOS3KRjcKUdLdre16b5eb4z9wX9+NKerx7P3ovIYSa4MC+E3z0+jrsp9ve5eVYORqX4VW52m6TOXakfJLYpWHkuDbMmbnbPa1PL9K9T6NyxXod+UVk7IrFEORLUIemFcr+yjt2kq2PfOKmtilbHWy6931Up1xcZ6I6ZZxOmS0PfoxQwqrfFB7Ejcd+QTJeXmJ7pWXT30c9mrFs+ucoeqPE5Ht6XPT9KUnZbPk7Hqes0L13Q5q3rpjsfE1z2Th/p9VO0p+b3bVLcDm+Q1/+eUk7/9CerdH5mj2yjSSzgdBe7qvhvGPesz0ESXSV7Fez88/OKmLJvCj2707BP9DMqAlt6dozkl9/2FXs+M9wJuZ+PgaDRGTjwCqzceioVpxIyeWf1YfR6SWcToXW7SK488Gy97I99NWfbH/qK0SdDlWW8WkYzvBlb+PbqPQ9ds/l8A8rPGWWVdVd8uMc8hNPIZYQ8w/u1OyKdfwAi3+P8ug2Z7fJ/L3qMJNu74ru9GF5fFwGf62IJT/PRvfeDenVvxF/rYhl7qx/kZ0KiqKydnkM/Yc05dZ7e3A4Jh1roYMWbcLw8b10qqIvG+ev2B2o3ra6XPp9SesP705Q+8Zk7j1SXHwlmQ0Ed25O3SGd3e4N69GKxD+3eMjyCpJY7bK8udlFvPjYEgry7ciywsnjeRw7ksH4GzuSkuhd+A5AkgRk2WW/ILiKawYMq7oKY1EUuG1KT8ZP6sjxpBxCwiyERZS9Ac2pTVFsf+or5EIbMq7dV25MMqtGPs21B34o1w6g8HiGx4IGcDX38RbZEUTaP3ED0R/+4fa5lyxGur5yZ5nnv5zIyfY8HwNQZBWr1YmvXmLt8hh++3EXDruMqkL0nhOsXHyQlMRsnOcsTuw2mQ1rj7BjcyJWqxOnw3V/YJCZux7uTefupZdDrykum0CXwd+HgFaRni+IIvVHXnxLV5sRRJGRaz+g0/O34te8Pv4tGtD5hdsYseo9D4fS5dW70J3XbUqyGOny2l0X7MFbFaz48yCFBS7Hfwa7TWbRnH34laB5bvHR03tAY3Q6EUGA1u0j+O87o/D1q/oVlX+AidbtI8rl+AEOfDLfQy5bVRQKktPI3BNXrjHrD+/uNdtHEEWvrSODuzany8t30v3dKVgahCIadIR0b8nwZW8T1qtqzkwuFZq2CPF63dffiI+vgcICu2tHapOL1042m/P0QsXzSetwKOTl2oofFODa6X76zj/s2JxQRT9F5XHZrPwB+n/3FCuuno5id6DYnUgmAzpfM93fvq+mTaswOrORTs9Nvmj4KrhDU0ZvmMGu574jfUcMlrohdHrhVprcOLh6DD2H6L0n3FZLZ3A6Fbr3jmT92qPYbWdXtQajxDUT2zPmuvZMvrcHRw9n4OdvJKLepdEG0pqa7bHjAlcVuC3DUyemNDSa0I+o9+eQFX2s+CxH52Miclxfjs392+P+rD1HKEhKpc2D42nz4PhyzXm5MumObrzx7Ers9rNqnQajxOR7eyAIArEHU9HpRBznhSOdTqXEcxRvOB0Kc37aTY++jSrT/ErnsnL+Yb3acO3+7zn4+UKyDyQQ3q8draaMwRQSUNOmVSshnZszfNnbNW0GwSE+Xg9qFUUlIT6LcTd0YMm8/SiyiiAIjBjXmtET2rF80QHmzd6DTieiKCpBIRamvzSM0PDaXY0aObYPadsPuTVDAVdIMrRHq3KNKep1jPrnY2K/WcKR2WvQWUy0emAstsw8Ehdt8jjcVxWV+Ln/VLj5y+VIo6bBvPjOSBb8tpdjcZmE1/Fl/KSOtOlQBwCzWV9yXUcZ6z3STuWjKKpHQ/faxGXl/AF8G0WU2MlKo3oZNaEt/+5I8vq9ORaXwdTpAxk1vg25OVb8Akzo9RIH959k/i97cNjl4hXYqRN5fPDaX7z5ydgyxc2TE7LY+NcRrFYn3Xo3pH3nulWqu9Rqyhhivl5MQXLa2bMZi5Gur91VIRkFnclA22nX0XbadcXXoj78vVhQ8FwUp4zTS+2HhovIxkFMe2aw19datA7DaNJjLXI/YzEYJcZe34HFv+9HEAVUVUWRVVRVLT6bOh//AFOtdvxwGTp/jeolPTWfX/63k/3/Hkevl+g/tBnXT+6MwaijZdtw/ANM5GR7HrhLOoncHCuBwRaCQ8/2qF215JBHRoaqqGSkFZCUkE3DUurtrFkWw5wfd+F0yigKbP4nno5d6vHQ9IFV9qXU+5oZt/MrDn29mMSFmzCFBdJ22rXUHdKl0udqMLoXu1/8weO6ZNITOaZPpc93JSBKItNfGsa7L6/BbnMiIOB0Klx7cydGT2jH0JEt+Xd7Mk6nTKfuDdi5JfH0Z8z9Iaw3iIy7sUMN/RSlR3P+GuWmIN/Oy9OXkZ9rQ1Vdh7l/LY8hMT6TZ15zFZ716NuQdSsPe66QVJU69T3Dcbk53jOzRFGgIM/m9bXzycu18tsPu3A4zj5EbFYn+/49zv7dx+nUvf4F3l0x9H4WOjw1iQ5PTaqyOQACWzekzdQJHPx8YfEuQ2cx0uy2qwnt1tLtXltmLoe+Wszxtbvxb1aPtm060MIAACAASURBVNOuI6h9E7IPJhDz7VKKTmYSOboXjW8cXO1JAbWNyMZBzPh+IoeiT1FY6KB12wh8/V3JBr5+RgYMa1Z87/AxrWnaIoTZ3+0g4WgWiqJituiYMKkjV40uX5ivOtGcv0a52bA2DluRe6s7h0PhSGw6CUczadQ0mDHXd2DrhgSKCu3FDwCDUeLGO7piMHhmq3TvFUnC0UyPQzdZVkrM1jif6L0nkHQCjvNS4W1WJ9s3H6tS51+d9HhnCg3H9eXIz6tRZYWmNw+lzmD31N/Ck5n82fV+7Nn5yFY7p9bv48gva2nzyLUc/GQBisOJ6pRJWryF6BnzGb3+4yu6gxe4dgBtO9Yt1b3NW4Xx0nujURQVa5EDk1lf68M9Z7hsUj01qp/4uAyPQi1wtQFMSsgCICjYwuszxjB0VCvCInzw9TMgyyrzftnD3Fm7cTrc3z94ZEtCQn3Qn3kwnJZYuOnObhhNpVuV6vWS643n2yUKl506Y0S/9vT98nH6ffMkdYd08TjT2PvaTKwZOcXNXVRZQS60EfXub8hFtuICMmeBleyDCcT+b3m1/wyXA6IoYPExXDKOH7SVv0YFaNAoEP02yWOVDlCn3tnuUEHBFsZMbM+mdUcoKnSgqlCQZ2fV4kOcSMrl0ecGF99rNut55YPR/L3qMP/uSMY/0MTV17SmZZvSK1C271IPb3nZep3IgKHNPK7b7TLLF0Sz4a8jKIpKn0FNGDuxPabLoEl30tJtqA7Pv4+3AjG50Eb8b+to+/CEqjesnBTk21m3Mpa9u1IICfVh+NjWNG1RvcWLlwua89coN4OubsGyBdGu2PppZ6LTidSt70+zlu5fyDXLYrCfUwwD4LDL7N9znFMncomoe/ZhYTLrGTm+LSPHl08x1WjU8dhzQ/j4jXWuloWqS8Rr/E0dPRyFS0l0DfFxGcUPsZWLDrJvVwqvvD8aUbq0N8eGAB8KynC/3t9SZbacjyIrbF4fzz+r41Bklf5DmzJgWPMSRdby82y8+PiS4sIqQYBd2xK588He9BvctNrsvlzQnP8FsOcWcHz1LlBV6g3vjsHf5+JvuoLwDzDxwtsj+eHzrcTFpCFKIt37NOT2+3t5hB/iD6e7qXWeQacTSUnKcXP+lUGbDnX45Mfr2bvrODark3ad62C2GFBkxc2hx0SnepwxOBwyqSfy2LMrha49vVSNX0K0fex6tj3yKc7Ccw7SdSKSTodsc7jlr+t8TLR+YGy12fblhxvZuzMF2+lCv8RjmezYnMDD0wdyKOoUkiTStmOd4lDdikUHyM22FmfXnEkymPX1dnr1a1SszVPbyMkuYve2JBRFpXP3BoSE1Q4/ckU4f9lmZ9dz3xP73VIcBVbCe7el92fTLtgU/dj8Day//S1EyfWBUpwyA356mibXD6ousy8J6kcG8sLbI3E6FUSBElfKkU2COBh1ykO8TXYqbiGiysRo0tOzXyN2bkng1f+sICe7CL1e4qrRrZg4uTOSJHL0cLrHuQOA1erkaGz6Je/8W9w5gqy9Rzj09WIkowHVKf+/vfMOj6rM/vjnnZpOEggphBZ6b5GOggiIDQv2tbvq6q513WXtfUVdu65iW1b3Z8MGFor03nsnBUIKhPQ65c77+2OGkDAzpM9MyPt5njyZmXvnvmduJue+97znfA+R/Toz/I37WDr9GexllUgk0qbR+95pPksTTTuUx7ZNR2uk9VotGvv3HOf+W+e41m1AIrl/xnj6DYpn68ajHivGJXD0SCFdutUtIcCXrF6Wymfvr6tqofzlp5u55uYhzSZPXh9ahfNffsOLHJ2/oSol7via3fx67oNcvuNjwrvEue1fcSyfFTe9hFZhpbpbWHnzy8SO7kdIgooxnk5teuiTLurN0t8O1HD+RqOOHn1iSEg8lfKpaQ6EEGdcOJNSsm/XMVIPniAyOoTkUZ0we1nI3bszhw/fWF21MG3R7Cz6ZR9Wq8Yf7jyHtjGhGI16NM29sCdQZmiNQQjBiDfvY8CM68nfepCQxBiiBzhDJNcc+YrspVuxnCgmdtwAQhN9J1G8f/cxHB4KpE7eHVZ38m+9tIw3P73Kq76TpjkCUk2zsKCCz95f57Ym9s3nWxkwNIF4D6nOvqRlBzTrQEl6Dkd/2+AmuOWw2Njz5nce35P27Qo8ZYsApH2zvKlNbBW0jQnlsZemkNSjrVOp06hj9PgkHvjHeAAOp+bz3N9+447p/+OP1/4fn7y7lkoPnZasVo1/PrGQN15cypwvtjH7g/U8fOd3ZGZ4Vgn94cvtbhlJVovG8oUHsVTaGDK8I0azntMLfw0GPSPHdWmKjx4QhMRFkzh1RJXjB9AZ9HSYlEzS9ef71PEDhEcEoa9rAxUBm9dlMOWyPm7NdXQ6QccuUcTEBp70x5b1GR69iENzsH6V/4XfznrnX7w/o6rvbnUcNjt5Ww96fI+9rMJj20OHzd7i5aH9SeekaJ5+9SI+mXMjH31zA7ffNwpzkJH8E2W89PgCUg6cQErn7G/t8lTngu1pLJi7h9SDeVgq7ThcXb5KS628/9pKj2Meyynx+LrQCYoKKzGZ9DzxzwvpnBSNwajDYNTRoVMbHntxMsEhrVf7vrkZNrJjndMiHZozh37o8I5ccmV/jEY9wSFGTGY9iZ0ieWBGYIZiNc3hKanKJQ/huXeFLznrwz4RvTrisLjPIHVGA22H9vTwDuh48Ui2Pfc52mlNNHRmI4kX17/Bh6Im+tPWBRb/tt9tMdhmc5By8ARHjxSS2OlUI5eVS1LcU0slHMsqIf9EWQ2pCIDOXaMpLMh0S20UQFRbZ2ZLXEIEz/7rYooKK5AOSWS07zJeWitBwUb+/twk3nppGeXlVoRwzuJtVg3b6YkBAgYMTQBg2rUDueDiXqQdyqNNZDAd6yj34Q+GnJPI1//Z4va6waBn2MhOfrCoJmf9zD+8SxyJF41AH1RzFqcPMtLvwas8vieqf1d6/fFiDKGuxtlCYAgNosetF55xkdifaFYbxYcysZWU+9uUenMkrcDjQp5eryMn6zQpZG/iisKz8OJVNw52qyQ2mfVces2AqkXFk7SJDFaO34d07d6W1z++ksdfmsKM5yfz7uyrGTqyE+agU3NSk9m5QF89KSA0zEz/wQkB7fgB2rUP46obB2E06dHpBEI4u9JdcElvOidF+9s8hFcJUz+TnJwsN23a1CTH0ixWtjz5Gftn/Yy9rJL2o/ox8p2/ED3IveDnJFJKcpZvJ+V/i0E66HbjBcSNH3xGVUjNamP7C1+w/6Nf0CosdJhyDue8ejdhnRrWwq+u7H7rO7Y+9R+kw+Es879xIqPee6DF6LR8/+U2fv1+t9uMz2jS88IblxDX4dQ//k9f72DenF01dHsAEhIj+Oe7nvXrUw7k8tV/tnA4NZ82kUFcevUAxp3frVkVPhUNQ0rJ9k2ZrFmehsGgY9zEblWSy4HESb9Zl+9QVkYR61al4dAkyaM6ec1KklKSkV5AUWElXbu3bXADIyHEZillcq37tQbn7yt+v+xxshZvrdJzF3odpqhwrto/G3NU8zQkSftmGavueLVmy75gM91vmczo9x9sljGbmqLCCmbc91NV9S84HX+/QfE89PiEGvtaLXb++cRCsjKKqKy0YzYb0Bt0/OOFSXTq6v/ZlC+RDge56/diLSqj/ai+jZKN9jqGlFQcK8AYFuzz/s+BSGWFjS8/28yaZanYbBq9+8dy890jamSsNYSC/HJee3YxuTml6PQCu83BpdP7M+3agfU+lnL+PqZw72HmJv/JrZGHPtjMkGduYcCjzaPy+OPgP1KwI9XtdX2QiRvyfmwxIl05WcX875ON7NmRg9lsYPyUHlxx3SC30Aw4m8Hs3JpF6oETRLULYcSYzvVanF2/Kp15c3ZRVFhB736xXHXj4GarNWguivZnsODCv2PJL0YIgcOmkTzzj/T98xVNNkbGr+tZc/frWPKKkA7odPloxn70V4zhrTc09tJjC0ipXrAoICTEyMz3phER6bw4HkkvYN+uHCLaBDFkeEevacjVeeavv3I4NR9HtT7kZrOBPz0yliH1rDWpq/NvkgVfIcSFwFuAHvhYSvnyadvNwH+BYUAecK2UMr0pxg4U8nekojPoOb1cSKuwkLt+b7ONW56V53WbtaisxTj/uIQIHnlyYp321ekEg4Z1YNCw+qtzfvnZJhb/ur8qxLRx7RF2bsniuTcupn1cy2gXKR0OFkz5G2UZuTUWOjbN+Ii2Q3sSO7pfo8fI23qQpdc8W6NT2JGf1rCk8FmmzJ/Z6OO3RA6n5pOWklczOUGCzepg6cKDXDp9ALPeXM3mdUeQUqI36Jj9wQZmPD/pjDH+4zklHD1SWMPxg7N/8IJ5e+vt/OtKoxd8hRB64D1gKtAXuF4Icbooyx1AgZSyO/AGcNZ9eyK6JSAd7ouWOrORyL7N18szZmQf3JLUAWN4MMHtIz28o3VSXmblxccWMP+nvTXWFqRDYrHYmTdnlx+tqx+56/diKShxW+HWKqzse/+nJhlj52vfVCmBnsRhsXFsxQ5K0nOaZIyWRnZmkcf0VJtN43BqPmtXpLFl/RGsroylygo75WVW3nxpqff2kDjF6k7PgDtJSXHdelg0hKaY+Q8HDkkpUwGEEF8B04A91faZBjzjejwHeFcIIWSgxpwaQNthPYns05n8HSk4rKdqBPQmA73uvqTZxh324h3kLN2GvcICrpmDPsTM8NfvRehaRjKXpdLGvt3O5tm9+rZvsEaLlJL9u49zPKeETl2jaiysffT2GlL253p8n8Mh2bUti+f+9huZGUW0ax/KVTcMZuiIwJF2cNg19r77A/tn/eLU5veQvoyUVJ4oapLxSg5mVn2fqqMzGyk7ctxjZXxLpLTEQmFBBe1jw2qV+07oGOk2Owfn+lSXbm1ZtvAgFou7VEhZqZUjaQVeZ/+JnSM9FoMZjDqGNeN3sCmcfwcgo9rzo8DpyfBV+0gp7UKIIqAtcKIJxg8IhBBMXvgKa+55nSM/rkY6JNEDkxg962FCOzRf9WT0gCQuXf8eW56ZTe66vYR3jWPQE3+gw6RaQ34BwYbV6Xz09hrnzEeCTi944B/j6dWvfhlSxUWVvPzEQvJyy5DSqQnTrWcMDz95PprmYMfmTK/9VgEK8srJP+FMkz16uJB/v76yQWqRFoudr/+zmVVLU7FZNfoMiOXmu0bUyFhqCEuvfobMRZvdGrZXxxASRJcrxzVqnJPEjhvgNpEB5+w/sl/z3cn6CqtV49N317Jx7WEMBh3SAZddO4BLruzv9T2dukTRrWc7Du07UZVt5qxW1zN+cg+2bTzq8X1COAu+vGE06rnp7uH8599OKQgpnReUNm2CmHJZ82kABVSRlxDiLuAugE6d/F8EUV/MkWFM+OopNKsNh82OMdQ32RGRfbtw/jdP+2SspiT3WAkfvbXGJb9wasb0+gtLeOvT6fXS0//svXXkZBXXcPCH9ufy49fbmXRx7zOm5AkPNQJWi8Y3s7cw+ryu9UoJfeP5JRzan1sVWtqzI4dn//YbM9+fRkSboDofpzp5Ww/W6vj1IWYienag282TGzTG6fR7eDoH/zMfq70cXOFMfYiZ3n+6jKC2/tWkaQo+n7WeTeuOYLc5qmL4P329g3YxoYwc19Xr+x564ny+mb2FlUtSsNs0+gyI46a7hhPRJogxE5LIOFzg1oPaYNDTpZa8/jHjk4jvEMGin/eRf6KcgcMSmDClJyGhzVdl3hTOPxOofm+S6HrN0z5HhRAGoA3Ohd8aSClnAbPAme3TBLb5Bb3J2GJy7P3J6mVpaB5uo5GwZUMGo8+r26zbZtPY7mFmb7NqrPw9hav/MITwCDP5ee4FcEajDodDerwrKC6qxGrV6pStAc4sj5SDJ2quKUinHcsWHuSyqxvW1Dt3wz6vxW3h3TsQ3jWOzleOo/vNkzEENY2zCO0Qw2WbPmDzE5+QvXgrpqhw+j98NT3vvKhJju9PLBY7a5anuVWVWy0a8+bsOqPzN5sN3HTXcG66a7jbtvMu6M6G1YdJO+SUHzEadQid4N6/jqtTX4ikHu24+6Gx9f9ADaQpnP9GoIcQoitOJ38dcMNp+8wFbgHWAtOBJWdTvF/RMMpLLW4SzwCaQ1JRfiqmLaXk0P5cMtILaR8XRt+B8TUW3hwO6XVBzWbTEEJw230jeWfmcuw2Bw6HRG8QmM0Gnnv9El599neOZblrAJmDDB5TTb2RlVHodUEwPcV7VlZthHZo5zGTTB9kouedUxn4t+sbfOwzEd41nvH/e6JZju1PKsqsXu/migoqGnxcg1HP35+bxM6tWezenk2byGDGTEgiMiow6yMa7fxdMfw/Awtwpnp+KqXcLYR4DtgkpZwLfAJ8LoQ4BOTjvEAoWjmDkhNZtugQlkp3Eb3+g50NtC2VNl59ZjFH0gpwSIleJ4iMDuHxlyZX5VWbzQY6J0WTdqimg9XpBEPOSQRg4NAOPDVzKgvm7iU7q5je/WKZfGlv2kQGc8V1g/j0vbU1btdNZj0XX9mvXj1ZExLbeF4QNOobVc7fYco5GMODsZVV1FiEFQY9PW6Z0uDjtlYiIoMJDja6aUQJQb3ahXqiMWnIvqZJ0kGklL9KKXtKKbtJKV90vfaUy/EjpayUUl4tpewupRx+MjNI0brpOzCOvgPjaoRVzGYD51/Ys6qz1/f/t530lHwsFjs2q0ZlpZ3cYyV8+v66Gse648+jCA4xVjV+N5kNREQGce0tQ6v26dglijvvH82TL1/I1TcNoY3r4jHq3K7ccHsyYeFmDAYdQcFGLrmqP5dc5X3xzxOdukaT1KMdBuOpfyshwGjSMWFyjzO+t6LcyorfDzFvzk727T5W405GZzRw0Yo3aTukB/ogE/pgM2FJ8UxZ+ArBsU1b1VySnsPmxz9h+R9e5MCnvzmzyM4ydDrBDXck15CH1ukE5iAD0/8wxI+W+RZV4avwKw7NwaZ1GaxdnorBqOfcC7rTf3B81W35fTd9Q2mJuwPS6wUffnV9jbBMSXElK34/RFZGEUk92zFmfFK9Fo0dDklFuZXgYGODe/daKp3l/6uXpWK3OejdL5ab7h5+xvL/tEN5zHxqEQ5NYrPZMZoM9Ogdw0NPnO/WJKc86wSa1U5Y59gm1ybKWryFxdOexGG347DaMYQGEZoYwyXr3m0W6QhfUlFhY8FPe9iw+jCmIAMXXNSL6LYhzPtuF7k5pfToHcO0awfWqdK7vMzKidwyYtqHBqTst5J3UJwV3HPDVzXi/yfR6QQffnldrbnZ/kRKWauDrjhRyJsXvYLhSCbl4W3I7NoHS0gYJrOe624dxsSpvXxjq8PB1x2vpSI7v8brOrORAY9ey9DnbvP4vmPZxSz8eR/ZmcX06tueiRf2IiyiaarKHQ5Zr7CbN6xWjacf/oXcY6VVKZpms56R47py+5/r3rbSoTn43yebWL7oEHqDDk1zMGFyD66/PblJ7GwqfCrvoFA0F0OHd2TtyrQaLf+EcGZGBLLjh9oVH0uPHOPHofcQU1iG3qHhyM0iIX0/O0ZNpji6PcsXHfKZ8y8+mImt2D0bymGxkfbNMo/Of9+uY/zr+cXY7Q4cmuTA7mMs+mUfz/3rYre+CvVh/+5jfP7RBjLSCwkKNnLBxb248vpBXqtga2P9ynTyTpTVUIK1WDTWLE/j4qv6Ext/ZlkPu93BsgUHmPvtToqLKp0ZXK5jLVt0kIjIIC6d3rBMLn/SMkpAFa2Wa24ZSmRUcJXGu8msJyTUxB1/8U2j8eZk0z8+wlZUit7hdCQ66cCg2em5fY1rD9/dletDzEgvhUiGUPf6BCkln7y7BqtFq7ow22wOykqsfPd/2xpsx5H0Al57bjEZ6c62nJUVNhbO3cvsD9Y3+Ji7t2d5TCrQ6QWHvFR9n0RKyRsvLOHr/26hqLDSYz3I/J+aT7urOQnsqZOi1RMZFczL701j/cp0Ug+eICGxDWMmJAVkw+76kjl/I3hwuCGlxQTrNMZN9F3joLCO7Yns15n8rSk1NKoMIUH0/pN7n4SSosqqiujqOBxOPf66UFlhIz01n/AIMx06OnWofp6z0y0Lx2rVWLMslWtuGtqgkFJ0u1BnmOa0tGIhqDUN88Ce4xzcl+tWuFWdsjKr122BjHL+ioDHbDZw7gXdGT6mM6uWpDDrzdW0jQll4kW9qpxGS8QQGoy1oNR9g4AuvdrXmiHU1Ez49hnmT3gYS36xUyLDrtHl6nPpefuFbvuazAav9yVBIbUvsi/8eR/f/ndLVew8Nj6Ch588n4z0Qo8d2QxGPbnHSxvk/MdP7sGiX/ahVZv8CwEhoSb69D+zjMiBvcfd24aeRueugd1RzBvK+StaBGWlVp756y8UFlRgtWjodIKVi1P40yPjAkqArT70+dNlbHvxi5qyDQY97cYP4/aXpjZLp7Gjhws4nFZA+7gwuveKqTFGeJc4pqd8Qfay7ZRnnqD9qL5EdPecrx4UbGTQ0A7s2JJZowWnyaxn0kW9sNsd7N2ZQ1mphd7942rMsPfuzOHbz7c4ZT1cjjXzSCGvP7+EzknRZGcVI0+rl7DbHLSPa1jGUfu4cO6fMZ4P31zlDFM5JHEJEdw/47xas7raRAVjNOk9ho1Oft4b7zynQXb5G+X8FS2CBXP3kJ9XXlWS73BIrFaNj99ZwzvJVzd4MdCf9H/0WvK2p5Axdw06kwFpdxA1oCuTvnm8yR2/3abx9szl7N2Rg04nkED72DD+/vwkwiNOxfSFTkfC+XXLdb/z/lH867klZBwuQK/XYbdpDB/dmV79Ynnw9jlVi6Ka3cElV/Xn8usGAbBg3l63MIrDITmWXcyVNwxi8/oMrJZTztZk1jNuYrdGhfoGDEng7U+nk3W0CJPZUOfeDeeM7sz/feKedSiEs0jxyusHBUQ/3oagnL+iRbBp7RE3LRZwqiVmZhTRKcCbeXtCZ9Az4asnKU7JomBHKmFd42g7uHni/PO+28WeHTk1QhhZR4v45N21PPjYhDO80zuhYWaeemUqR9ILyDteSqeu0URFB/Pgnd+76dD/8sNuevWLpc+AOIoLKz0eT6/XERpqYsbzk/ji440cTskjONTElMv6cMkVjW9Qo9PrSOxcv+9JcLCRvz83iXdfWU5JkfMzhYWbuO9v59GtZ7tG2+RPlPNXtAi8FdNomiS4HoVcTUnaoTwOp+UTGxdOr36xDc71juiWQES3hCa2ribLFhx0i11rmmTH5iysFnuj0mY7dYmquvge2HMcS6V7XYbVorFk/gH6DIhjUHIH0lPy3MT0NLuDzknRBAUbefqVqQ22p6np2r0tr314BdlHi5FIEhLbNEtIztco569oEUy6pBdH0vNrhAt0OkGHjm2IifVt9anVYuf1F5aQcsDZjkInBFFtQ3jsxVN6Q4FG9Rz3msgzas3XF4vF7tUxlpc7s2IyDhe6OX6hg6tvHlKvimxfIoQgoWPLl7KuTssLlCpaJSPGdmHC5J4YjU7tHXOQgZi4MO6fMd7ntvz0zQ4O7TuB1aJhtTj1ho7nlPDJu2t9bktdGZyc6PHOJKFjmyaVKOjRO8ajUqvZbGDk2K6kp+SxfZN70xODQU+nLi0zdt5SUTN/RYtACKcY19Qr+pJy4ASRkcF069XOL7ffKxanuM2kNU2yc2s2VquGydSwNpTNyTU3D2H39mzKy61YLRpGow69QcedfxndpOMEBRu5+e7h/PfDDdjtGg6HUxq7U9coRp3bhYW/7EOzu+dy2qwau3dk07uW1EtF06Gcv6JFERUdQvLIml3eykotbFx7hMpyG/2HJJDYqW65/1lHi9i7M4ewcDNDzkmsc9zb7iWEIpE4NAdOZfPGY7c72LzuCFvWZxAWYWb8pB50bODCdmR0CC+/dxkrl6RyaH8uCR0iGD+5B5HRIU1ia3XGTexO525tWb7wACXFVoaN7MiwkZ0wGHSEhZkxGHVuoSajSU94ePMU7kkpWbbwIHO/2UlRYQXxiW244fZk+g2Kb5bxWgpK2E3Rotm1LYu3/rkMgUDTHOh0gnETu3HTXcO93hVIKZn9wXpWLXUqi+v1Ap1Ox9+evYCu3dt6fE91Zr21mrUrauoNIZwLn9ffNozotqGN7tlrt2nMfOp3DqflY6m0o9M5QyM33z3cp5W/TU15mZWH7vyOyoqaefMms55/fXhFs6yZ/Pbjbn74cgeW6umjJj2PPDXxrLzTqKuwm4r5K1osVqvGOzNXYLVoWCx27HYHVqvGqiWp7NqW7fV9m9YeYc2yNGxWzdkjoMJOeZmVN15c6rEZy+lcc/NQ2kSe0hsyGHXo9YKsjCLefnk5Tz70My/MmO9RirqurF2RzuHU/KriIofD+Xn/O2sDlRXu2TQthZBQE488NZHwCDNBwQaCgo2EhJp48LEJzeL4Nc3BT9/srOH4wXku53yxtcnHa0mosI+ixbJvV47H1y0WOysXpzBgiOf0yeWLDrk5A3Bq8acdOkG3njFnHDcyKpiZ713GmuVppB48gaXSztYNR7Fatapq19RDeXz4xioeeWpiPT+Vk/Wr0j3aqNfrOLD3OAOHulfeWipt7N6eg5SSfoPiAzZzpmef9rz92XRSDp5AOiCpZzu3vgVnwuGQ7N6ezaF9uURGBzN8TBdCwzwvWpeWWDzWh4Az7NeaUc5f0WJxOCR4We8tyC+jrNTisSrUe9qj8OooTsccZGTClJ5MmNKTJx/62SlVUA3N7mDPzhxKiy0N0qMJ9qKPI6WkssLGnC+2cvxYKX36xzL6vK7s3XWM919b6Qp1SRwOyV0PjOGc0Z3rPbYv0Ol19Ohd/5aJVqvGK08v4khaAZZKOyaznq9nb+Hvz03yGLILDTOj1wtsHm6WapNyPttRzl/R4rDbNNatTGfdynSsXjRX0lPyeeC275h2zQAuvbqm1vro87qSevCEI6E9uAAAG21JREFUm8SAEDSoarOs1LOqo04nKC+3ujn/PTuy+Xr2VrIzi2gbE8pVNw52W8SeMKUH2zYddbNRr9fx8dtr0TQHdruDbRuOMm/OLoqLKt2KuD58czXdesUQ3bbpF3X9xaJf9nE4Jb/qYus8PxrvvbqCVz+43G2dx2DQMfWKfvzy/a4a59Jo0tW7TefZhor5K1oUdpvGS48vZPaH69m5NasqRn96DrvVomGzacyds5Ptm2tKDI+Z0I3uvWJOxewNOkwmPfc8PBaDsf6ZOgOGJKDTu9+CBAUZaRdTs6nJ7u3ZvPHCUtJT8rBU2snKKOLDN1axemlKjf36Dozn4iv6YTDqqmLjoeEmDAZd1foGOENcBXnlHnPrkZINq9Pr/XkCmdVLUtzusgCKCis4nlPi8T3TrhnAldcPIsyVTSQESAnv/2slH7y+ymN4rTWgZv6KFsW6lekcPVzoNiOWSHR6UTMDB+dFYOG8vQwadipGbjDoePTpiezYmsWurVmEtwli7IRutI1pWPepy68byOb1R6got2G3ORA6gdGg47Z7R7qpRn49e4ub87JaNL7+71ZGj0+qMXO9/LpBjJ/cg727jhESaiI2PpwnH/zZbXxvi9R2uwNLxdnl2LzWdUjwFgMUQnDhtL7oDTq+/HQTDgdV4b1Na4+gaQ7ue/Tc5jE4gFHOX9Gi2LjmiMeZmsmoR0qwau6zQk9ZNzq9jsHJiQxOTmy0TVHRIbz09mUs+mUfe3bk0D42jAun9fWo9pjtZZGxxBW2Ob3WIDI6hFHndgWcs1uHt9RsZ6i/BkaTnoHDPEsyByLlZVbKSq20bRfiVWp55LgufP/VdreLfHS7EK+Sz1JKZr3pTM89/fTZbBpbN2Q0eG2mJaOcv6JFERpuqrptr4Gn1wCjUe8Tvf+INkFcdcNgrrrB+z5SSkLCTFjzK9y2BQUbMNZSGdwmMpiu3dqScuCE+2xfUuO8mM0GRozrUqe6BX9jqbTx8Ttr2bIhA51OYDIZuOaWIVRW2Nm9LZuY2FAmXtSb8AgzSxYccNP6NwcZuO9v53m9K9i+OZPN6zM8fj8A9AYdhYUVyvkrFIHM+Rf2ZOOaw25hn6BgE9NvGMTnH2/EZtWQ0jnzjYoOZtLFvf1kbU2++s9mSorc5YxNZj2XXNW/TlIV9z56Lv98YiHFhRVVjUlOIqVz7WPI8EQmTOlJ/8Eto4L136+vYtfWrKpQjNWi8em76zAYdNjtzsK9Fb+n0H9IAsUe+ugGBRnOWNW9dnma12Ys4DxvddX3P5tQzl/RoujeK4bpNw7m28+3YjDqkVJiNht49OmJdOwSRYfOUSz6eR8F+eUMTu7A+Mk9mlS4rKHk5Zax+Nf9bmqWAEOHd+SiOurVR7cNYeZ701i7Io1P3lnjtl3oBDGxYV5rHKpjs9qZN2cXKQfz6NQ1ksumD/D5uSrML2fX1ixsHlJsTy5qn2zcs3WD59l7RbmN3GMlxMZ7rqo+U6Mfg0HHFdcPCkg9puZGOf86YikoYe+7P3L0t/WEdIih30PTiR3d+AYTivoz5bK+jD2/G/v3HCckxETPPjFVMeJuPdvR7eGxfrbQnX27jjlt9ODk9HpRL4E6nU4QGmbCZDZQUV4zgV2zOziSVlDrMXKyinns/nlVWUK7tmYx/8e9PPXqVLp2812oqCC/AoNR79H5n463sI3N7sAc5L2gbcyEJDatdV8rEgL+eP9oRrrWVFobyvnXgcq8IuYOvZvK3CK0SiuIfWT+tp4Rb/+FnrcHTtOJ1kRomJmhw1tO796TaxVuCAhvE+Rhw5lJSGxTo3fuSQwGXZ3i/K8++7tbeqjDIXnlyUX8+/+uq7c9DSW+Q0Sj+wkIqNEj+HT6Doxj/JQeLJl/ACklep0OieT+GePrdId0tqKcfx3Y/focKo4X4rC4ZllSYi+3sP7B90i6YSKGIP+HFRSBTf/BCZ7DD5IGpWO2jwtn4JAEdmzNOlXcJZzrHBfUssZhtWqcOFbmcVt5uY3szCLiO/imcUlQsJHLrh7A3G93uq3jVMfjIr8Lcy1qrEIIbrg9mfGTe7BzSxZBwQaSR3VqVE/gswHl/OtAxi/rTjn+agidoHBXGu2Se/nBKoU/yT9RxoJ5ezm0L5eEjpFMvbwvCYneHabBoKP/4HjWrzrstm3VslSuuWUoIaH1m0Tc/dAYPnl3Hds2HcVuc9C7f3tuvPOcWit6a1Py3bYx02fOH+DS6QNoHxfOL9/toqiokj794xBCsnHNEfQG57pO25hQItoEcWDP8RqL3Hq9YPT4uoVtEhLbnPFv1NpQzr8OBMV4ziRw2DTM0a0vS6C1k5NZzDOP/orVqqHZHaQezGPdyjQeefLMEsGZGZ5z/A0GHdmZRbUKylUn7VAe/3puMTabhk4n0OsFI8d2oUPH2nsZmM3OimFv6qD+kHkfMbYLI8Z2qXpuqbQx+dI+5OWWEdU2lKQebSnIr+CFv8+nrMyCzaphNOqJiQvj6puG+NzeswHl/OtAv4emk7t2N/byU8VCwqAnamAS4UmtN2bYWvnqP5uprLBVhSEcDonVovHZv9cx871pXt8XlxDB0SOFbsVYdptGdLu6VxfbbBqvPvO7m6bQ5x9tpGuPdnVq+HLzPecw6w33bCGDQTBwqP++01aLndkfrGfdqnSEEASHGLnpruF069mO6LYhvPLB5WzbdJTj2SV07BJFv0HxHttT+pq83DJyj5eSkNiGiAas4fgD5fzrQMeLRjD46VvY+sxsdCYDDpudyD6dmfjDc/42TeEH9u465jH+fDynhIoKG8FepJQvuqIfO7Zk1hQYM+rpPySeqHp01Nq9LdtjyqjdrrH890P84c5zaj3GmPO6sXNzFutXHa4KoxiNgnMn9SSxc8O6hTUFs95aw7aNGVU5/zarxkdvriYyMpiefdtjMOjcRPD8icVi59+vrWTXtmwMRh12m8a5k7rzhzuHB8RF6Uwo519HBjx6Lb3uvoS8LQcJjo0isk9gSuUqmp+QEM8hE51OYDyDMFy3nu2495FxzP5gPaUlFiRwzuhO3PqnEfUa35ne6e78HQ68ipt54u6HxjJ6fBJrlqUhhDMlsilaG1aUW1m3Mp3szGK6dmtL8uhOZzwvJykuqmRrNcd/EqtVY96cnQ3ujdCcfD5rA7u2ZWOzaVVS4SsXpxAXH8HkS/v42bozo5x/PTBFhBI/frC/zVD4mQsu6c2PX20/bQavY8S4rrU2JRkyvCODz0mkqLCS4BBjrZkqnug9INZjmic4VUOPZRd7LXiqjhCCgUM7eGwM01CyM4t4YcZ8rFYNq0XDHGTg+y+38fQrF9Uqn1CQV47BoPfYU+F4TmmT2dhU2G0aa1ekuV+sLBrz5+4NeOffKElnIUS0EGKREOKg67fH+0UhhCaE2Ob6mduYMRUKfzP1sj6MOrcrRqOe4BAjRpOePgPiuPmu2sMt4HS6kVHBDXL84BSSm+LFsWh2B798v7tBx60LUkrWLE/l+RnzefKhn/nl+101iqc+ensNZaXWqgujpdJO3olyvv1iS63HjksIx+Eh51+nE/TsU/fFcF9hs2luOkMnKS/z3OMhkGjszH8GsFhK+bIQYobr+d897FchpVRTZsVZgU6v4/b7RnHlDYPJyigkJjaMmFjfZn0NHdGRRb/sc5e2lpB68ESzjfvZe+tYt/JUi8mM9AJ++3EPT7x8IVHRwaQdynNbD9HsDjauOcJt944647HNQUYumd6fn7871XhFCDCZDW4NeQKBoGAjbWNC3e5KhIDe/QK/MXxjm7lMA2a7Hs8GLm/k8RSKFkNkVDB9B8bXyfFbLHZWL0vl1x92c3Df8UanU7ZrH+Zx1ikEJNQh3bMh5GQVs2ZFWo2ZvpRQUmzhiQfmkZFe6LUSy1OzG09cdvUAbrt3JImdIgmPMDNsZCeeeW1qQAqvCSG47d6RmMx6hGtxV68XBAUbufbWoX62rnYaO/OPlVJmux7nAN4ud0FCiE2AHXhZSvljI8dVKFoMGekF/POJhdjtDuw2DYNRT88+7Xnw8Qn1alxencioYIaO6MiWDUdrtG80mvTN1p7w4N5crxksNpuD155b7EVWW8eY8Ul1GkMIwejzkhh9Xt329zd9B8bz1Myp/PbjbrKOFtO9dwxTp/VtcGMgX1Kr8xdC/A7Eedj0ePUnUkophPA2nekspcwUQiQBS4QQO6WUKafvJIS4C7gLoFOnwEnnUigaipSSd2Yur5GTr2l29u8+xpLf9jdqUfCPD4zhq882s+L3Q9jtDtrHh3PrPSPoVIc8/4YQERnkWZ/Ixekic+Cc8XfsGs2V1w9qFpsCgY5dorjrwcATE6yNWp2/lPICb9uEEMeEEPFSymwhRDxw3MsxMl2/U4UQy4AhgJvzl1LOAmYBJCcn+77MUKFoYo7nlFCQV+72+sn0xUmX9K6Xomd1jEY9N901nBvvSMZud7h1ATuJlBJNkw2+yzhJ/8HxmIMMVNZDi0iv1/HUzAsb/BkVzUdjY/5zgVtcj28Bfjp9ByFElBDC7HrcDhgD7GnkuApFi0A68NZaluJiC7/+0PjMHJ1e59Hxa5qDOV9s5Z4bvuKOq//HjD//xO7t2R6OUDf0eh3/eGEyofXQINLsDuX4A5TGOv+XgUlCiIPABa7nCCGShRAfu/bpA2wSQmwHluKM+Svnr2gVxCaEey/3l/DrD833r/D5rA0smLfXOVOXkH20mDdfXEraobwGHzO+Qxve/Owq+g2Kw2DQVaW6hoV7uCAIzqh1pPAvwh8iTnUhOTlZbtq0yd9mKPxI7rFS1q1Mw1ppZ9A5iXTr2a5FziJTD57g2Ud/87r9s+//0ORSAGWlVh647Vv3JikChpyTyIOPTWj0GLnHSsg6Wkx8hwjsdgfP/e037DYNm82B0ajDYNTz1CtTlZKmjxFCbJZSJte2n6rwVQQka5an8ul765AOiaY5mD9vLyPHduH2P49qcReApB7t6JAYQebRYrdtcQnhzaIBk3+iDL3BQ4csCVle1EXrS0xseI0015nvT2Pp/AOkp+bTJSmaCRf2pE2k9yYrCv+inL8i4CgrtfLpe+tqpDBaLRrrVx9mxLgu9B/c8pRU/3DXcN54YSnWap/JZNZzw+11qwquL+1iwzx2yBICOiVFN8uYbSKDufy6szer52yjsTF/haLJ2bUtC72HoiBLpZ11K9J9b1AT0HdgPI8+ewF9BsQR0SaIXn3b88iTExmU3HS6OtUJDjZywUW9MJlrCqoZTXqmBWC1bGPIPVbCvDk7+faLrRzal+uXfgQtETXzVwQcznaH7s5fCNA3Ml3Rn/Ts054Zz0/y2XjX3DyUNlHBzP9xD6UlFrp0a8sNdwyrk95/beQeK0XTHMTGh/s1DLd6WSqfvb8Oh0Pi0BwsnLeXEWO6cMdfWl540Nco568IOPoPjsfhcA9ZGE36OleKKpyCaFOn9WXqtL5NdsyczGLenrmc4zklCAFh4Wb+9Mg4evZp32Rj1JWyUiufve8eHtyw5jAjz22Z4UFf0nKnUYqzlqBgI/c9ei4msx6TWY/BqMNo0jPp4t707Ot7J6NwYrdpvPT4ArIyCrG5JJvzT5Tz2rOLKSqs8Lk9u7dnu+4Sa9KSw4O+RM38FQHJ4ORE3vjoKjatP4K10s7AoR2I61C7Rr2i+dixJQuLxe6m3+PQJKuWpHDxlc2jKeQNb1lSQtRdSK41o5y/ImAJizAzflIPf5vRZBQXVlBYUEFsQkSDtfz9SUF+ucf2kTabRt4JdwmL5qb/4HiPi7sSOHq4kP27j9GrBUgr+wsV9lEomgFNc1Q5JovFzjszl/PQH7/nxccW8Oebv+Hn73b5xI7KChsH9h7nWLZ7jUF96d4rxqOwmznI4Bf9+qBgI/f99VyMJl3N7DAJKQdO8Nqzi1m/Kt3ndrUUWt70Q6EIYA7sOc5/P1zP0SOFmEwGxk/pQWF+Bds3ZWK3Oapa/v30zQ5iYsMYMbZLs9kyf+4evvtiG3qDDs3uoGOXKB58bDwRDSy86pwUzYAhCezcmlXVbMVo1BEbH87QER2b0vQ6ExMXRlCwkdJii9s2q1Xji482cs7ozgHfTN0fqJm/QtFEHD1SyKvP/k7G4UKkdM74l8w/wIbV6VXNvU9itWj80oyz/51bs/juf9uwWjUqym1YrRrpKXm8/fLyRh33vkfP5bpbnemi8YkRXDp9AE/8c0qjFUMbgpSSt15aRkmxxVsPGSoqbBTm+z4k1RJQM3+Foon49ftdbnIK1dMQT6ewsLLZbPntx91uLR41TZKemk/usVJiYsMadFy9XsfEqb2YOLVXU5jZKLIzi8nPK3MG+b0gpSSkHiqkrQk181comoiM9EKvDb1PR+hEs8bJi7xcWPR6HaUl7iGSlojNqqE7QyGX0ahn+JjOBAUbfWhVy0E5f4WiiejSva3H2LJeLzCaTv2r6XSCILOBq25sPh2cQcM6YDC6/3tLKenQqXl6/Pqajp0jMRj1HrfpdIJB53Tg1j+N9LFVLQfl/BWKJuLiK/thNNV0RiaznnMnduevT13AgKEJxCVEMPb8bjz/5sXExjdf3cLUy/sSFm6ucQEwmfVcf9swTCbPDrOlodPruOfhsc5CQNeag8msJ75DBK98cDl/+dt5LTKl1lcoPX+Fogk5nJrP/z7ZRMr+XEJCTUy+tDcXX9EPnYdK1OamtNjC/Hl72bklk6i2IVw4ra9fUjKbmxPHS1nx+yEK8srpNzie5FGd/bIAHSjUVc9fOX+FQqE4i6ir82+9l0eFohVhqbSxb9cxDqfmK8ljBaBSPRWKs57liw7yxccb0et1OBySyKhgHnlqIrHx4bW/WXHWomb+CsVZTOrBE3zx0UasFmexl6XSzvGcEl595nd1B9DKUc5foTiLWfzrfrfqYimhuKiSlAMn/GSVIhBQzl+hOIspKqz0KH2g04mzpthL0TCU81cozmKGDE906+MLYLc56N4rxg8WKQIF5fwVirOYsed3I6Z9WI3CLpNZz7RrBxIWbvajZQp/o7J9FIqzGLPZwNOvTmXZokNsWnuE0DATky7uTb9B8f42TeFnlPNXKM5yzEFGplzahymX9vG3KYoAQoV9FAqFohWinL9CoVC0QlTYR6FQ+ASLxc7iX/ezflU65iADE6f2YviYzogzaPIrmg/l/BUKRbNjs2k8//f55GQVV3U3Sz+Uz/49x7n5ruF+tq51osI+CoWi2dmw6jDHc0pqtLW0WOysWHSI3GMlfrSs9aKcv0KhaHZ2bs3EUml3e12nFxzYm+sHixTK+SsUimYnqm0Ier17bF8IiGgT5AeLFMr5KxSKZmf85B7oT+tmJgQEBRvpNzDOT1a1bhrl/IUQVwshdgshHEIIr51jhBAXCiH2CyEOCSFmNGZMhULR8oiNj+Dev44jJNREULABk1lPbEIE/3h+sl9aXCoan+2zC7gS+NDbDkIIPfAeMAk4CmwUQsyVUu5p5NgKhaIFMWR4R96ZfTUZ6QWYzQbiEyNUmqcfaZTzl1LuBWr7Aw4HDkkpU137fgVMA5TzVyhaGQaDjq7d2/rbDAW+ifl3ADKqPT/qek2hUCgUfqLWmb8Q4nfA04rM41LKn5rSGCHEXcBdAJ06dWrKQysUCoWiGrU6fynlBY0cIxPoWO15ous1T2PNAmYBJCcnqwajCoVC0Uz4IuyzEeghhOgqhDAB1wFzfTCuQqFQKLzQ2FTPK4QQR4FRwC9CiAWu1xOEEL8CSCntwJ+BBcBe4Bsp5e7Gma1QKBSKxtDYbJ8fgB88vJ4FXFTt+a/Ar40ZS6FQKBRNh5AyMEPrQohc4HC1l9oBJ/xkTn1QdjYtys6mRdnZtASinZ2llDG17RSwzv90hBCbpJReq4gDBWVn06LsbFqUnU1LS7HTE6quWqFQKFohyvkrFApFK6QlOf9Z/jagjig7mxZlZ9Oi7GxaWoqdbrSYmL9CoVAomo6WNPNXKBQKRRMRsM6/Hr0C0oUQO4UQ24QQm3xpo2v8FtHTQAgRLYRYJIQ46Pod5WU/zXUutwkhfFaJXdv5EUKYhRBfu7avF0J08ZVtp9lRm523CiFyq53DO/1g46dCiONCiF1etgshxNuuz7BDCDHU1za67KjNzvFCiKJq5/IpX9vosqOjEGKpEGKP63/9AQ/7BMQ5rRdSyoD8AfoAvYBlQPIZ9ksH2gWynYAeSAGSABOwHejrYztfAWa4Hs8AZnrZr9QP57DW8wPcC3zgenwd8HWA2nkr8K6vbTvNhnOBocAuL9svAn4DBDASWB+gdo4HfvbnuXTZEQ8MdT0OBw54+LsHxDmtz0/AzvyllHullPv9bUdt1NHOqp4GUkorcLKngS+ZBsx2PZ4NXO7j8c9EXc5PdfvnABOF7zuBBMLfsVaklCuA/DPsMg34r3SyDogUQsT7xrpT1MHOgEBKmS2l3OJ6XIJTpuZ0WfqAOKf1IWCdfz2QwEIhxGaXJHQgEgg9DWKllNmuxzlArJf9goQQm4QQ64QQvrpA1OX8VO0jnXpRRYCvu4LU9e94levWf44QoqOH7f4mEL6PdWWUEGK7EOI3IUQ/fxvjCjcOAdaftqklnVOg8W0cG0UT9QoYK6XMFEK0BxYJIfa5ZhRNhi97GjSGM9lZ/YmUUgohvKV5dXadzyRgiRBip5QypaltPYuZB3wppbQIIe7Gebdyvp9taqlswfl9LBVCXAT8CPTwlzFCiDDgO+BBKWWxv+xoKvzq/GXjewUgpcx0/T4uhPgB5615kzr/JrCzzj0NGsOZ7BRCHBNCxEsps123o8e9HOPk+UwVQizDOctpbudfl/Nzcp+jQggD0AbIa2a7TqdWO6WU1W36GOdaS6Dhk+9jY6nuYKWUvwoh3hdCtJNS+lxLRwhhxOn4/yel/N7DLi3inFanRYd9hBChQojwk4+ByTibygcagdDTYC5wi+vxLYDbHYsQIkoIYXY9bgeMwTe9lutyfqrbPx1YIl0rbT6kVjtPi/NehjM+HGjMBW52ZaiMBIqqhQQDBiFE3Ml1HSHEcJz+ytcXfFw2fALslVK+7mW3FnFOa+DvFWdvP8AVOONmFuAYsMD1egLwq+txEs6Mi+3AbpxhmICzU57KBjiAcxbtDzvbAouBg8DvQLTr9WTgY9fj0cBO1/ncCdzhQ/vczg/wHHCZ63EQ8C1wCNgAJPnpe1mbnf90fRe3A0uB3n6w8UsgG7C5vpt3APcA97i2C+A912fYyRmy6fxs55+rnct1wGg/2TkW59riDmCb6+eiQDyn9flRFb4KhULRCmnRYR+FQqFQNAzl/BUKhaIVopy/QqFQtEKU81coFIpWiHL+CoVC0QpRzl+hUChaIcr5KxQKRStEOX+FQqFohfw/oaLbTj3zR4oAAAAASUVORK5CYII=\n",
- "text/plain": [
- "<Figure size 432x288 with 1 Axes>"
- ]
- },
- "metadata": {
- "needs_background": "light"
- },
- "output_type": "display_data"
- }
- ],
- "source": [
- "# generate sample data\n",
- "np.random.seed(0)\n",
- "X, y = datasets.make_moons(200, noise=0.20)\n",
- "\n",
- "# generate nn output target\n",
- "t = np.zeros((X.shape[0], 2))\n",
- "t[np.where(y==0), 0] = 1\n",
- "t[np.where(y==1), 1] = 1\n",
- "\n",
- "# plot data\n",
- "plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Spectral)\n",
- "plt.show()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "L = 121.621107, acc = 0.500000\n",
- "L = 115.928422, acc = 0.500000\n",
- "L = 111.304997, acc = 0.500000\n",
- "L = 107.789222, acc = 0.500000\n",
- "L = 105.265297, acc = 0.500000\n",
- "L = 103.533617, acc = 0.500000\n",
- "L = 102.380546, acc = 0.500000\n",
- "L = 101.622557, acc = 0.500000\n",
- "L = 101.121698, acc = 0.500000\n",
- "L = 100.782803, acc = 0.510000\n",
- "L = 100.543751, acc = 0.530000\n",
- "L = 100.365372, acc = 0.540000\n",
- "L = 100.223492, acc = 0.520000\n",
- "L = 100.103371, acc = 0.475000\n",
- "L = 99.996073, acc = 0.460000\n",
- "L = 99.896185, acc = 0.465000\n",
- "L = 99.800411, acc = 0.465000\n",
- "L = 99.706725, acc = 0.495000\n",
- "L = 99.613854, acc = 0.515000\n",
- "L = 99.520981, acc = 0.560000\n",
- "L = 99.427551, acc = 0.585000\n",
- "L = 99.333171, acc = 0.630000\n",
- "L = 99.237541, acc = 0.660000\n",
- "L = 99.140415, acc = 0.690000\n",
- "L = 99.041582, acc = 0.705000\n",
- "L = 98.940844, acc = 0.710000\n",
- "L = 98.838015, acc = 0.720000\n",
- "L = 98.732913, acc = 0.740000\n",
- "L = 98.625357, acc = 0.745000\n",
- "L = 98.515164, acc = 0.755000\n",
- "L = 98.402148, acc = 0.785000\n",
- "L = 98.286120, acc = 0.790000\n",
- "L = 98.166887, acc = 0.800000\n",
- "L = 98.044250, acc = 0.800000\n",
- "L = 97.918005, acc = 0.805000\n",
- "L = 97.787942, acc = 0.815000\n",
- "L = 97.653845, acc = 0.830000\n",
- "L = 97.515489, acc = 0.830000\n",
- "L = 97.372644, acc = 0.830000\n",
- "L = 97.225071, acc = 0.830000\n",
- "L = 97.072523, acc = 0.830000\n",
- "L = 96.914745, acc = 0.835000\n",
- "L = 96.751472, acc = 0.835000\n",
- "L = 96.582430, acc = 0.835000\n",
- "L = 96.407335, acc = 0.835000\n",
- "L = 96.225894, acc = 0.835000\n",
- "L = 96.037800, acc = 0.835000\n",
- "L = 95.842740, acc = 0.835000\n",
- "L = 95.640384, acc = 0.835000\n",
- "L = 95.430396, acc = 0.835000\n",
- "L = 95.212423, acc = 0.835000\n",
- "L = 94.986104, acc = 0.830000\n",
- "L = 94.751064, acc = 0.830000\n",
- "L = 94.506915, acc = 0.830000\n",
- "L = 94.253259, acc = 0.830000\n",
- "L = 93.989683, acc = 0.830000\n",
- "L = 93.715765, acc = 0.830000\n",
- "L = 93.431069, acc = 0.830000\n",
- "L = 93.135151, acc = 0.830000\n",
- "L = 92.827554, acc = 0.830000\n",
- "L = 92.507814, acc = 0.830000\n",
- "L = 92.175457, acc = 0.830000\n",
- "L = 91.830004, acc = 0.835000\n",
- "L = 91.470973, acc = 0.835000\n",
- "L = 91.097875, acc = 0.835000\n",
- "L = 90.710225, acc = 0.840000\n",
- "L = 90.307539, acc = 0.845000\n",
- "L = 89.889339, acc = 0.845000\n",
- "L = 89.455160, acc = 0.845000\n",
- "L = 89.004546, acc = 0.840000\n",
- "L = 88.537066, acc = 0.840000\n",
- "L = 88.052308, acc = 0.840000\n",
- "L = 87.549895, acc = 0.840000\n",
- "L = 87.029483, acc = 0.845000\n",
- "L = 86.490773, acc = 0.845000\n",
- "L = 85.933518, acc = 0.845000\n",
- "L = 85.357526, acc = 0.845000\n",
- "L = 84.762674, acc = 0.845000\n",
- "L = 84.148911, acc = 0.845000\n",
- "L = 83.516272, acc = 0.845000\n",
- "L = 82.864878, acc = 0.845000\n",
- "L = 82.194952, acc = 0.845000\n",
- "L = 81.506820, acc = 0.840000\n",
- "L = 80.800921, acc = 0.840000\n",
- "L = 80.077810, acc = 0.840000\n",
- "L = 79.338167, acc = 0.840000\n",
- "L = 78.582791, acc = 0.840000\n",
- "L = 77.812612, acc = 0.840000\n",
- "L = 77.028680, acc = 0.840000\n",
- "L = 76.232171, acc = 0.840000\n",
- "L = 75.424374, acc = 0.840000\n",
- "L = 74.606691, acc = 0.840000\n",
- "L = 73.780620, acc = 0.840000\n",
- "L = 72.947751, acc = 0.840000\n",
- "L = 72.109745, acc = 0.840000\n",
- "L = 71.268324, acc = 0.840000\n",
- "L = 70.425252, acc = 0.840000\n",
- "L = 69.582316, acc = 0.840000\n",
- "L = 68.741307, acc = 0.840000\n",
- "L = 67.904004, acc = 0.840000\n",
- "L = 67.072151, acc = 0.840000\n",
- "L = 66.247442, acc = 0.840000\n",
- "L = 65.431502, acc = 0.840000\n",
- "L = 64.625872, acc = 0.840000\n",
- "L = 63.831996, acc = 0.840000\n",
- "L = 63.051206, acc = 0.840000\n",
- "L = 62.284717, acc = 0.840000\n",
- "L = 61.533617, acc = 0.840000\n",
- "L = 60.798864, acc = 0.840000\n",
- "L = 60.081280, acc = 0.840000\n",
- "L = 59.381556, acc = 0.840000\n",
- "L = 58.700250, acc = 0.840000\n",
- "L = 58.037794, acc = 0.840000\n",
- "L = 57.394496, acc = 0.840000\n",
- "L = 56.770551, acc = 0.840000\n",
- "L = 56.166043, acc = 0.840000\n",
- "L = 55.580959, acc = 0.840000\n",
- "L = 55.015197, acc = 0.840000\n",
- "L = 54.468573, acc = 0.840000\n",
- "L = 53.940833, acc = 0.840000\n",
- "L = 53.431659, acc = 0.840000\n",
- "L = 52.940684, acc = 0.840000\n",
- "L = 52.467494, acc = 0.840000\n",
- "L = 52.011639, acc = 0.840000\n",
- "L = 51.572642, acc = 0.840000\n",
- "L = 51.150004, acc = 0.840000\n",
- "L = 50.743209, acc = 0.840000\n",
- "L = 50.351731, acc = 0.840000\n",
- "L = 49.975042, acc = 0.840000\n",
- "L = 49.612610, acc = 0.835000\n",
- "L = 49.263906, acc = 0.835000\n",
- "L = 48.928410, acc = 0.840000\n",
- "L = 48.605606, acc = 0.840000\n",
- "L = 48.294993, acc = 0.840000\n",
- "L = 47.996079, acc = 0.840000\n",
- "L = 47.708390, acc = 0.840000\n",
- "L = 47.431462, acc = 0.840000\n",
- "L = 47.164849, acc = 0.840000\n",
- "L = 46.908123, acc = 0.840000\n",
- "L = 46.660868, acc = 0.840000\n",
- "L = 46.422687, acc = 0.840000\n",
- "L = 46.193200, acc = 0.840000\n",
- "L = 45.972040, acc = 0.840000\n",
- "L = 45.758860, acc = 0.840000\n",
- "L = 45.553325, acc = 0.840000\n",
- "L = 45.355116, acc = 0.840000\n",
- "L = 45.163929, acc = 0.835000\n",
- "L = 44.979474, acc = 0.835000\n",
- "L = 44.801473, acc = 0.835000\n",
- "L = 44.629662, acc = 0.835000\n",
- "L = 44.463789, acc = 0.835000\n",
- "L = 44.303614, acc = 0.835000\n",
- "L = 44.148907, acc = 0.835000\n",
- "L = 43.999451, acc = 0.835000\n",
- "L = 43.855036, acc = 0.835000\n",
- "L = 43.715465, acc = 0.835000\n",
- "L = 43.580546, acc = 0.835000\n",
- "L = 43.450099, acc = 0.835000\n",
- "L = 43.323950, acc = 0.835000\n",
- "L = 43.201935, acc = 0.835000\n",
- "L = 43.083894, acc = 0.835000\n",
- "L = 42.969678, acc = 0.835000\n",
- "L = 42.859141, acc = 0.835000\n",
- "L = 42.752145, acc = 0.835000\n",
- "L = 42.648557, acc = 0.835000\n",
- "L = 42.548251, acc = 0.835000\n",
- "L = 42.451106, acc = 0.835000\n",
- "L = 42.357004, acc = 0.835000\n",
- "L = 42.265834, acc = 0.835000\n",
- "L = 42.177489, acc = 0.835000\n",
- "L = 42.091866, acc = 0.845000\n",
- "L = 42.008866, acc = 0.845000\n",
- "L = 41.928395, acc = 0.845000\n",
- "L = 41.850363, acc = 0.845000\n",
- "L = 41.774680, acc = 0.845000\n",
- "L = 41.701264, acc = 0.845000\n",
- "L = 41.630034, acc = 0.845000\n",
- "L = 41.560912, acc = 0.845000\n",
- "L = 41.493823, acc = 0.845000\n",
- "L = 41.428697, acc = 0.845000\n",
- "L = 41.365463, acc = 0.845000\n",
- "L = 41.304056, acc = 0.850000\n",
- "L = 41.244412, acc = 0.850000\n",
- "L = 41.186469, acc = 0.850000\n",
- "L = 41.130168, acc = 0.850000\n",
- "L = 41.075452, acc = 0.850000\n",
- "L = 41.022266, acc = 0.850000\n",
- "L = 40.970558, acc = 0.850000\n",
- "L = 40.920276, acc = 0.850000\n",
- "L = 40.871372, acc = 0.850000\n",
- "L = 40.823798, acc = 0.850000\n",
- "L = 40.777509, acc = 0.850000\n",
- "L = 40.732461, acc = 0.855000\n",
- "L = 40.688613, acc = 0.855000\n",
- "L = 40.645922, acc = 0.855000\n",
- "L = 40.604351, acc = 0.855000\n",
- "L = 40.563861, acc = 0.855000\n",
- "L = 40.524415, acc = 0.855000\n",
- "L = 40.485980, acc = 0.855000\n",
- "L = 40.448521, acc = 0.855000\n",
- "L = 40.412004, acc = 0.855000\n",
- "L = 40.376400, acc = 0.855000\n",
- "L = 40.341678, acc = 0.855000\n",
- "L = 40.307807, acc = 0.855000\n",
- "L = 40.274761, acc = 0.855000\n",
- "L = 40.242511, acc = 0.855000\n",
- "L = 40.211032, acc = 0.855000\n",
- "L = 40.180297, acc = 0.855000\n",
- "L = 40.150284, acc = 0.855000\n",
- "L = 40.120967, acc = 0.855000\n",
- "L = 40.092325, acc = 0.855000\n",
- "L = 40.064334, acc = 0.855000\n",
- "L = 40.036975, acc = 0.855000\n",
- "L = 40.010226, acc = 0.855000\n",
- "L = 39.984068, acc = 0.855000\n",
- "L = 39.958481, acc = 0.855000\n",
- "L = 39.933446, acc = 0.855000\n",
- "L = 39.908947, acc = 0.855000\n",
- "L = 39.884966, acc = 0.855000\n",
- "L = 39.861486, acc = 0.855000\n",
- "L = 39.838490, acc = 0.855000\n",
- "L = 39.815964, acc = 0.855000\n",
- "L = 39.793892, acc = 0.855000\n",
- "L = 39.772260, acc = 0.855000\n",
- "L = 39.751053, acc = 0.855000\n",
- "L = 39.730259, acc = 0.855000\n",
- "L = 39.709863, acc = 0.855000\n",
- "L = 39.689852, acc = 0.855000\n",
- "L = 39.670216, acc = 0.855000\n",
- "L = 39.650941, acc = 0.855000\n",
- "L = 39.632017, acc = 0.855000\n",
- "L = 39.613431, acc = 0.855000\n",
- "L = 39.595173, acc = 0.855000\n",
- "L = 39.577233, acc = 0.855000\n",
- "L = 39.559600, acc = 0.855000\n",
- "L = 39.542265, acc = 0.855000\n",
- "L = 39.525218, acc = 0.855000\n",
- "L = 39.508449, acc = 0.855000\n",
- "L = 39.491950, acc = 0.855000\n",
- "L = 39.475713, acc = 0.855000\n",
- "L = 39.459727, acc = 0.855000\n",
- "L = 39.443987, acc = 0.855000\n",
- "L = 39.428483, acc = 0.855000\n",
- "L = 39.413208, acc = 0.855000\n",
- "L = 39.398154, acc = 0.855000\n",
- "L = 39.383314, acc = 0.855000\n",
- "L = 39.368682, acc = 0.855000\n",
- "L = 39.354250, acc = 0.855000\n",
- "L = 39.340012, acc = 0.855000\n",
- "L = 39.325961, acc = 0.860000\n",
- "L = 39.312091, acc = 0.860000\n",
- "L = 39.298397, acc = 0.860000\n",
- "L = 39.284872, acc = 0.860000\n",
- "L = 39.271510, acc = 0.860000\n",
- "L = 39.258306, acc = 0.860000\n",
- "L = 39.245255, acc = 0.860000\n",
- "L = 39.232351, acc = 0.860000\n",
- "L = 39.219590, acc = 0.860000\n",
- "L = 39.206966, acc = 0.860000\n",
- "L = 39.194474, acc = 0.860000\n",
- "L = 39.182111, acc = 0.860000\n",
- "L = 39.169870, acc = 0.860000\n",
- "L = 39.157749, acc = 0.860000\n",
- "L = 39.145742, acc = 0.860000\n",
- "L = 39.133846, acc = 0.850000\n",
- "L = 39.122056, acc = 0.850000\n",
- "L = 39.110369, acc = 0.850000\n",
- "L = 39.098780, acc = 0.850000\n",
- "L = 39.087286, acc = 0.850000\n",
- "L = 39.075884, acc = 0.850000\n",
- "L = 39.064569, acc = 0.850000\n",
- "L = 39.053338, acc = 0.850000\n",
- "L = 39.042188, acc = 0.850000\n",
- "L = 39.031116, acc = 0.850000\n",
- "L = 39.020118, acc = 0.850000\n",
- "L = 39.009191, acc = 0.850000\n",
- "L = 38.998332, acc = 0.850000\n",
- "L = 38.987539, acc = 0.850000\n",
- "L = 38.976808, acc = 0.850000\n",
- "L = 38.966136, acc = 0.850000\n",
- "L = 38.955522, acc = 0.850000\n",
- "L = 38.944961, acc = 0.850000\n",
- "L = 38.934453, acc = 0.850000\n",
- "L = 38.923993, acc = 0.855000\n",
- "L = 38.913579, acc = 0.855000\n",
- "L = 38.903210, acc = 0.855000\n",
- "L = 38.892883, acc = 0.855000\n",
- "L = 38.882595, acc = 0.855000\n",
- "L = 38.872344, acc = 0.855000\n",
- "L = 38.862129, acc = 0.855000\n",
- "L = 38.851946, acc = 0.855000\n",
- "L = 38.841794, acc = 0.855000\n",
- "L = 38.831671, acc = 0.855000\n",
- "L = 38.821574, acc = 0.855000\n",
- "L = 38.811503, acc = 0.855000\n",
- "L = 38.801454, acc = 0.855000\n",
- "L = 38.791426, acc = 0.855000\n",
- "L = 38.781418, acc = 0.855000\n",
- "L = 38.771427, acc = 0.855000\n",
- "L = 38.761452, acc = 0.855000\n",
- "L = 38.751491, acc = 0.855000\n",
- "L = 38.741542, acc = 0.855000\n",
- "L = 38.731604, acc = 0.855000\n",
- "L = 38.721676, acc = 0.855000\n",
- "L = 38.711755, acc = 0.855000\n",
- "L = 38.701840, acc = 0.855000\n",
- "L = 38.691929, acc = 0.855000\n",
- "L = 38.682022, acc = 0.855000\n",
- "L = 38.672117, acc = 0.855000\n",
- "L = 38.662212, acc = 0.855000\n",
- "L = 38.652306, acc = 0.855000\n",
- "L = 38.642397, acc = 0.855000\n",
- "L = 38.632485, acc = 0.855000\n",
- "L = 38.622568, acc = 0.855000\n",
- "L = 38.612645, acc = 0.855000\n",
- "L = 38.602715, acc = 0.855000\n",
- "L = 38.592775, acc = 0.855000\n",
- "L = 38.582826, acc = 0.855000\n",
- "L = 38.572866, acc = 0.855000\n",
- "L = 38.562894, acc = 0.855000\n",
- "L = 38.552908, acc = 0.855000\n",
- "L = 38.542908, acc = 0.855000\n",
- "L = 38.532892, acc = 0.855000\n",
- "L = 38.522860, acc = 0.855000\n",
- "L = 38.512811, acc = 0.855000\n",
- "L = 38.502742, acc = 0.855000\n",
- "L = 38.492655, acc = 0.855000\n",
- "L = 38.482546, acc = 0.855000\n",
- "L = 38.472416, acc = 0.855000\n",
- "L = 38.462263, acc = 0.855000\n",
- "L = 38.452087, acc = 0.855000\n",
- "L = 38.441886, acc = 0.855000\n",
- "L = 38.431660, acc = 0.855000\n",
- "L = 38.421407, acc = 0.855000\n",
- "L = 38.411128, acc = 0.855000\n",
- "L = 38.400820, acc = 0.855000\n",
- "L = 38.390483, acc = 0.855000\n",
- "L = 38.380116, acc = 0.855000\n",
- "L = 38.369719, acc = 0.855000\n",
- "L = 38.359290, acc = 0.855000\n",
- "L = 38.348829, acc = 0.855000\n",
- "L = 38.338334, acc = 0.855000\n",
- "L = 38.327806, acc = 0.855000\n",
- "L = 38.317242, acc = 0.855000\n",
- "L = 38.306643, acc = 0.855000\n",
- "L = 38.296008, acc = 0.855000\n",
- "L = 38.285335, acc = 0.855000\n",
- "L = 38.274625, acc = 0.855000\n",
- "L = 38.263875, acc = 0.855000\n",
- "L = 38.253086, acc = 0.855000\n",
- "L = 38.242257, acc = 0.855000\n",
- "L = 38.231387, acc = 0.855000\n",
- "L = 38.220475, acc = 0.855000\n",
- "L = 38.209520, acc = 0.855000\n",
- "L = 38.198523, acc = 0.855000\n",
- "L = 38.187481, acc = 0.855000\n",
- "L = 38.176394, acc = 0.855000\n",
- "L = 38.165262, acc = 0.855000\n",
- "L = 38.154084, acc = 0.855000\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "L = 38.142859, acc = 0.855000\n",
- "L = 38.131586, acc = 0.855000\n",
- "L = 38.120265, acc = 0.855000\n",
- "L = 38.108895, acc = 0.855000\n",
- "L = 38.097475, acc = 0.855000\n",
- "L = 38.086004, acc = 0.855000\n",
- "L = 38.074483, acc = 0.855000\n",
- "L = 38.062909, acc = 0.855000\n",
- "L = 38.051283, acc = 0.855000\n",
- "L = 38.039603, acc = 0.855000\n",
- "L = 38.027870, acc = 0.855000\n",
- "L = 38.016082, acc = 0.855000\n",
- "L = 38.004238, acc = 0.855000\n",
- "L = 37.992338, acc = 0.860000\n",
- "L = 37.980381, acc = 0.860000\n",
- "L = 37.968367, acc = 0.860000\n",
- "L = 37.956295, acc = 0.860000\n",
- "L = 37.944163, acc = 0.860000\n",
- "L = 37.931972, acc = 0.860000\n",
- "L = 37.919720, acc = 0.860000\n",
- "L = 37.907408, acc = 0.860000\n",
- "L = 37.895033, acc = 0.860000\n",
- "L = 37.882596, acc = 0.860000\n",
- "L = 37.870096, acc = 0.860000\n",
- "L = 37.857532, acc = 0.860000\n",
- "L = 37.844903, acc = 0.860000\n",
- "L = 37.832209, acc = 0.860000\n",
- "L = 37.819448, acc = 0.860000\n",
- "L = 37.806621, acc = 0.860000\n",
- "L = 37.793727, acc = 0.860000\n",
- "L = 37.780763, acc = 0.860000\n",
- "L = 37.767731, acc = 0.860000\n",
- "L = 37.754630, acc = 0.860000\n",
- "L = 37.741457, acc = 0.860000\n",
- "L = 37.728214, acc = 0.865000\n",
- "L = 37.714898, acc = 0.865000\n",
- "L = 37.701510, acc = 0.865000\n",
- "L = 37.688048, acc = 0.865000\n",
- "L = 37.674512, acc = 0.865000\n",
- "L = 37.660902, acc = 0.865000\n",
- "L = 37.647215, acc = 0.865000\n",
- "L = 37.633452, acc = 0.865000\n",
- "L = 37.619612, acc = 0.865000\n",
- "L = 37.605693, acc = 0.865000\n",
- "L = 37.591696, acc = 0.865000\n",
- "L = 37.577620, acc = 0.865000\n",
- "L = 37.563463, acc = 0.865000\n",
- "L = 37.549225, acc = 0.870000\n",
- "L = 37.534905, acc = 0.865000\n",
- "L = 37.520503, acc = 0.865000\n",
- "L = 37.506017, acc = 0.865000\n",
- "L = 37.491447, acc = 0.865000\n",
- "L = 37.476792, acc = 0.865000\n",
- "L = 37.462052, acc = 0.865000\n",
- "L = 37.447224, acc = 0.865000\n",
- "L = 37.432310, acc = 0.865000\n",
- "L = 37.417307, acc = 0.865000\n",
- "L = 37.402215, acc = 0.865000\n",
- "L = 37.387033, acc = 0.865000\n",
- "L = 37.371761, acc = 0.865000\n",
- "L = 37.356398, acc = 0.865000\n",
- "L = 37.340942, acc = 0.865000\n",
- "L = 37.325393, acc = 0.865000\n",
- "L = 37.309751, acc = 0.865000\n",
- "L = 37.294013, acc = 0.865000\n",
- "L = 37.278181, acc = 0.865000\n",
- "L = 37.262252, acc = 0.865000\n",
- "L = 37.246226, acc = 0.865000\n",
- "L = 37.230101, acc = 0.865000\n",
- "L = 37.213879, acc = 0.865000\n",
- "L = 37.197556, acc = 0.865000\n",
- "L = 37.181133, acc = 0.865000\n",
- "L = 37.164609, acc = 0.865000\n",
- "L = 37.147983, acc = 0.865000\n",
- "L = 37.131254, acc = 0.865000\n",
- "L = 37.114421, acc = 0.865000\n",
- "L = 37.097483, acc = 0.865000\n",
- "L = 37.080440, acc = 0.865000\n",
- "L = 37.063291, acc = 0.865000\n",
- "L = 37.046035, acc = 0.865000\n",
- "L = 37.028670, acc = 0.865000\n",
- "L = 37.011197, acc = 0.865000\n",
- "L = 36.993614, acc = 0.865000\n",
- "L = 36.975921, acc = 0.865000\n",
- "L = 36.958116, acc = 0.865000\n",
- "L = 36.940199, acc = 0.865000\n",
- "L = 36.922169, acc = 0.865000\n",
- "L = 36.904025, acc = 0.865000\n",
- "L = 36.885767, acc = 0.865000\n",
- "L = 36.867393, acc = 0.870000\n",
- "L = 36.848902, acc = 0.870000\n",
- "L = 36.830294, acc = 0.870000\n",
- "L = 36.811568, acc = 0.870000\n",
- "L = 36.792724, acc = 0.870000\n",
- "L = 36.773759, acc = 0.870000\n",
- "L = 36.754674, acc = 0.870000\n",
- "L = 36.735467, acc = 0.870000\n",
- "L = 36.716138, acc = 0.870000\n",
- "L = 36.696686, acc = 0.870000\n",
- "L = 36.677111, acc = 0.870000\n",
- "L = 36.657410, acc = 0.870000\n",
- "L = 36.637584, acc = 0.870000\n",
- "L = 36.617631, acc = 0.870000\n",
- "L = 36.597551, acc = 0.870000\n",
- "L = 36.577343, acc = 0.870000\n",
- "L = 36.557006, acc = 0.870000\n",
- "L = 36.536540, acc = 0.870000\n",
- "L = 36.515943, acc = 0.875000\n",
- "L = 36.495215, acc = 0.875000\n",
- "L = 36.474354, acc = 0.875000\n",
- "L = 36.453361, acc = 0.875000\n",
- "L = 36.432234, acc = 0.875000\n",
- "L = 36.410972, acc = 0.875000\n",
- "L = 36.389576, acc = 0.875000\n",
- "L = 36.368043, acc = 0.875000\n",
- "L = 36.346373, acc = 0.875000\n",
- "L = 36.324566, acc = 0.875000\n",
- "L = 36.302620, acc = 0.875000\n",
- "L = 36.280535, acc = 0.875000\n",
- "L = 36.258310, acc = 0.875000\n",
- "L = 36.235944, acc = 0.875000\n",
- "L = 36.213437, acc = 0.875000\n",
- "L = 36.190788, acc = 0.875000\n",
- "L = 36.167996, acc = 0.875000\n",
- "L = 36.145060, acc = 0.875000\n",
- "L = 36.121980, acc = 0.875000\n",
- "L = 36.098755, acc = 0.875000\n",
- "L = 36.075384, acc = 0.875000\n",
- "L = 36.051866, acc = 0.875000\n",
- "L = 36.028201, acc = 0.875000\n",
- "L = 36.004388, acc = 0.875000\n",
- "L = 35.980427, acc = 0.875000\n",
- "L = 35.956316, acc = 0.875000\n",
- "L = 35.932055, acc = 0.875000\n",
- "L = 35.907644, acc = 0.875000\n",
- "L = 35.883081, acc = 0.875000\n",
- "L = 35.858366, acc = 0.875000\n",
- "L = 35.833499, acc = 0.875000\n",
- "L = 35.808478, acc = 0.875000\n",
- "L = 35.783303, acc = 0.875000\n",
- "L = 35.757974, acc = 0.875000\n",
- "L = 35.732489, acc = 0.875000\n",
- "L = 35.706849, acc = 0.875000\n",
- "L = 35.681052, acc = 0.875000\n",
- "L = 35.655099, acc = 0.875000\n",
- "L = 35.628988, acc = 0.875000\n",
- "L = 35.602718, acc = 0.875000\n",
- "L = 35.576290, acc = 0.875000\n",
- "L = 35.549703, acc = 0.875000\n",
- "L = 35.522956, acc = 0.875000\n",
- "L = 35.496049, acc = 0.875000\n",
- "L = 35.468980, acc = 0.875000\n",
- "L = 35.441751, acc = 0.875000\n",
- "L = 35.414359, acc = 0.875000\n",
- "L = 35.386805, acc = 0.875000\n",
- "L = 35.359088, acc = 0.875000\n",
- "L = 35.331208, acc = 0.875000\n",
- "L = 35.303164, acc = 0.875000\n",
- "L = 35.274956, acc = 0.875000\n",
- "L = 35.246582, acc = 0.875000\n",
- "L = 35.218044, acc = 0.875000\n",
- "L = 35.189340, acc = 0.875000\n",
- "L = 35.160470, acc = 0.875000\n",
- "L = 35.131434, acc = 0.875000\n",
- "L = 35.102230, acc = 0.875000\n",
- "L = 35.072860, acc = 0.875000\n",
- "L = 35.043321, acc = 0.875000\n",
- "L = 35.013615, acc = 0.875000\n",
- "L = 34.983741, acc = 0.880000\n",
- "L = 34.953697, acc = 0.880000\n",
- "L = 34.923485, acc = 0.880000\n",
- "L = 34.893103, acc = 0.880000\n",
- "L = 34.862552, acc = 0.880000\n",
- "L = 34.831831, acc = 0.880000\n",
- "L = 34.800940, acc = 0.880000\n",
- "L = 34.769878, acc = 0.880000\n",
- "L = 34.738645, acc = 0.880000\n",
- "L = 34.707242, acc = 0.880000\n",
- "L = 34.675667, acc = 0.880000\n",
- "L = 34.643920, acc = 0.880000\n",
- "L = 34.612002, acc = 0.880000\n",
- "L = 34.579912, acc = 0.880000\n",
- "L = 34.547650, acc = 0.880000\n",
- "L = 34.515216, acc = 0.880000\n",
- "L = 34.482609, acc = 0.880000\n",
- "L = 34.449830, acc = 0.880000\n",
- "L = 34.416878, acc = 0.885000\n",
- "L = 34.383754, acc = 0.885000\n",
- "L = 34.350456, acc = 0.885000\n",
- "L = 34.316985, acc = 0.885000\n",
- "L = 34.283341, acc = 0.890000\n",
- "L = 34.249524, acc = 0.890000\n",
- "L = 34.215534, acc = 0.890000\n",
- "L = 34.181370, acc = 0.890000\n",
- "L = 34.147033, acc = 0.890000\n",
- "L = 34.112523, acc = 0.890000\n",
- "L = 34.077839, acc = 0.890000\n",
- "L = 34.042982, acc = 0.890000\n",
- "L = 34.007951, acc = 0.890000\n",
- "L = 33.972747, acc = 0.890000\n",
- "L = 33.937370, acc = 0.890000\n",
- "L = 33.901819, acc = 0.890000\n",
- "L = 33.866095, acc = 0.890000\n",
- "L = 33.830199, acc = 0.890000\n",
- "L = 33.794129, acc = 0.890000\n",
- "L = 33.757886, acc = 0.890000\n",
- "L = 33.721471, acc = 0.890000\n",
- "L = 33.684882, acc = 0.890000\n",
- "L = 33.648122, acc = 0.890000\n",
- "L = 33.611189, acc = 0.890000\n",
- "L = 33.574083, acc = 0.890000\n",
- "L = 33.536806, acc = 0.890000\n",
- "L = 33.499357, acc = 0.890000\n",
- "L = 33.461737, acc = 0.895000\n",
- "L = 33.423945, acc = 0.895000\n",
- "L = 33.385982, acc = 0.895000\n",
- "L = 33.347848, acc = 0.895000\n",
- "L = 33.309543, acc = 0.895000\n",
- "L = 33.271069, acc = 0.895000\n",
- "L = 33.232424, acc = 0.895000\n",
- "L = 33.193610, acc = 0.895000\n",
- "L = 33.154626, acc = 0.895000\n",
- "L = 33.115473, acc = 0.895000\n",
- "L = 33.076151, acc = 0.895000\n",
- "L = 33.036662, acc = 0.895000\n",
- "L = 32.997004, acc = 0.895000\n",
- "L = 32.957179, acc = 0.895000\n",
- "L = 32.917186, acc = 0.895000\n",
- "L = 32.877027, acc = 0.895000\n",
- "L = 32.836701, acc = 0.895000\n",
- "L = 32.796210, acc = 0.895000\n",
- "L = 32.755553, acc = 0.895000\n",
- "L = 32.714731, acc = 0.895000\n",
- "L = 32.673745, acc = 0.895000\n",
- "L = 32.632595, acc = 0.895000\n",
- "L = 32.591282, acc = 0.895000\n",
- "L = 32.549805, acc = 0.895000\n",
- "L = 32.508166, acc = 0.895000\n",
- "L = 32.466366, acc = 0.895000\n",
- "L = 32.424404, acc = 0.895000\n",
- "L = 32.382281, acc = 0.895000\n",
- "L = 32.339998, acc = 0.895000\n",
- "L = 32.297556, acc = 0.895000\n",
- "L = 32.254955, acc = 0.895000\n",
- "L = 32.212196, acc = 0.900000\n",
- "L = 32.169279, acc = 0.900000\n",
- "L = 32.126206, acc = 0.900000\n",
- "L = 32.082976, acc = 0.900000\n",
- "L = 32.039590, acc = 0.900000\n",
- "L = 31.996050, acc = 0.900000\n",
- "L = 31.952356, acc = 0.900000\n",
- "L = 31.908508, acc = 0.900000\n",
- "L = 31.864507, acc = 0.900000\n",
- "L = 31.820355, acc = 0.900000\n",
- "L = 31.776051, acc = 0.900000\n",
- "L = 31.731597, acc = 0.900000\n",
- "L = 31.686994, acc = 0.900000\n",
- "L = 31.642241, acc = 0.900000\n",
- "L = 31.597341, acc = 0.900000\n",
- "L = 31.552294, acc = 0.900000\n",
- "L = 31.507100, acc = 0.900000\n",
- "L = 31.461761, acc = 0.900000\n",
- "L = 31.416278, acc = 0.900000\n",
- "L = 31.370651, acc = 0.900000\n",
- "L = 31.324881, acc = 0.900000\n",
- "L = 31.278969, acc = 0.900000\n",
- "L = 31.232916, acc = 0.900000\n",
- "L = 31.186724, acc = 0.900000\n",
- "L = 31.140392, acc = 0.900000\n",
- "L = 31.093922, acc = 0.900000\n",
- "L = 31.047316, acc = 0.900000\n",
- "L = 31.000573, acc = 0.900000\n",
- "L = 30.953695, acc = 0.900000\n",
- "L = 30.906683, acc = 0.900000\n",
- "L = 30.859538, acc = 0.905000\n",
- "L = 30.812261, acc = 0.905000\n",
- "L = 30.764853, acc = 0.905000\n",
- "L = 30.717315, acc = 0.905000\n",
- "L = 30.669648, acc = 0.905000\n",
- "L = 30.621854, acc = 0.905000\n",
- "L = 30.573933, acc = 0.905000\n",
- "L = 30.525886, acc = 0.910000\n",
- "L = 30.477715, acc = 0.910000\n",
- "L = 30.429421, acc = 0.910000\n",
- "L = 30.381005, acc = 0.910000\n",
- "L = 30.332468, acc = 0.910000\n",
- "L = 30.283811, acc = 0.910000\n",
- "L = 30.235036, acc = 0.910000\n",
- "L = 30.186143, acc = 0.910000\n",
- "L = 30.137135, acc = 0.910000\n",
- "L = 30.088011, acc = 0.910000\n",
- "L = 30.038774, acc = 0.910000\n",
- "L = 29.989424, acc = 0.910000\n",
- "L = 29.939963, acc = 0.910000\n",
- "L = 29.890392, acc = 0.910000\n",
- "L = 29.840713, acc = 0.910000\n",
- "L = 29.790926, acc = 0.910000\n",
- "L = 29.741034, acc = 0.910000\n",
- "L = 29.691036, acc = 0.910000\n",
- "L = 29.640935, acc = 0.910000\n",
- "L = 29.590733, acc = 0.910000\n",
- "L = 29.540429, acc = 0.910000\n",
- "L = 29.490027, acc = 0.910000\n",
- "L = 29.439526, acc = 0.915000\n",
- "L = 29.388929, acc = 0.915000\n",
- "L = 29.338237, acc = 0.915000\n",
- "L = 29.287451, acc = 0.915000\n",
- "L = 29.236573, acc = 0.915000\n",
- "L = 29.185604, acc = 0.915000\n",
- "L = 29.134546, acc = 0.915000\n",
- "L = 29.083399, acc = 0.915000\n",
- "L = 29.032166, acc = 0.915000\n",
- "L = 28.980848, acc = 0.915000\n",
- "L = 28.929446, acc = 0.915000\n",
- "L = 28.877963, acc = 0.915000\n",
- "L = 28.826398, acc = 0.915000\n",
- "L = 28.774755, acc = 0.915000\n",
- "L = 28.723034, acc = 0.915000\n",
- "L = 28.671237, acc = 0.915000\n",
- "L = 28.619366, acc = 0.915000\n",
- "L = 28.567421, acc = 0.915000\n",
- "L = 28.515405, acc = 0.915000\n",
- "L = 28.463320, acc = 0.915000\n",
- "L = 28.411166, acc = 0.915000\n",
- "L = 28.358945, acc = 0.915000\n",
- "L = 28.306660, acc = 0.915000\n",
- "L = 28.254311, acc = 0.915000\n",
- "L = 28.201900, acc = 0.915000\n",
- "L = 28.149428, acc = 0.920000\n",
- "L = 28.096899, acc = 0.920000\n",
- "L = 28.044312, acc = 0.920000\n",
- "L = 27.991670, acc = 0.920000\n",
- "L = 27.938974, acc = 0.920000\n",
- "L = 27.886226, acc = 0.920000\n",
- "L = 27.833427, acc = 0.920000\n",
- "L = 27.780580, acc = 0.920000\n",
- "L = 27.727686, acc = 0.920000\n",
- "L = 27.674747, acc = 0.920000\n",
- "L = 27.621764, acc = 0.920000\n",
- "L = 27.568739, acc = 0.920000\n",
- "L = 27.515673, acc = 0.920000\n",
- "L = 27.462569, acc = 0.925000\n",
- "L = 27.409429, acc = 0.925000\n",
- "L = 27.356253, acc = 0.925000\n",
- "L = 27.303043, acc = 0.925000\n",
- "L = 27.249802, acc = 0.925000\n",
- "L = 27.196531, acc = 0.925000\n",
- "L = 27.143232, acc = 0.925000\n",
- "L = 27.089906, acc = 0.925000\n",
- "L = 27.036556, acc = 0.925000\n",
- "L = 26.983183, acc = 0.925000\n",
- "L = 26.929788, acc = 0.925000\n",
- "L = 26.876374, acc = 0.925000\n",
- "L = 26.822943, acc = 0.925000\n",
- "L = 26.769495, acc = 0.925000\n",
- "L = 26.716034, acc = 0.925000\n",
- "L = 26.662560, acc = 0.925000\n",
- "L = 26.609075, acc = 0.925000\n",
- "L = 26.555582, acc = 0.925000\n",
- "L = 26.502081, acc = 0.925000\n",
- "L = 26.448576, acc = 0.925000\n",
- "L = 26.395067, acc = 0.925000\n",
- "L = 26.341556, acc = 0.925000\n",
- "L = 26.288045, acc = 0.925000\n",
- "L = 26.234536, acc = 0.925000\n",
- "L = 26.181031, acc = 0.930000\n",
- "L = 26.127532, acc = 0.930000\n",
- "L = 26.074040, acc = 0.930000\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "L = 26.020557, acc = 0.930000\n",
- "L = 25.967084, acc = 0.930000\n",
- "L = 25.913625, acc = 0.930000\n",
- "L = 25.860180, acc = 0.930000\n",
- "L = 25.806751, acc = 0.930000\n",
- "L = 25.753340, acc = 0.930000\n",
- "L = 25.699949, acc = 0.930000\n",
- "L = 25.646580, acc = 0.930000\n",
- "L = 25.593234, acc = 0.930000\n",
- "L = 25.539913, acc = 0.930000\n",
- "L = 25.486619, acc = 0.930000\n",
- "L = 25.433354, acc = 0.930000\n",
- "L = 25.380119, acc = 0.930000\n",
- "L = 25.326917, acc = 0.930000\n",
- "L = 25.273749, acc = 0.930000\n",
- "L = 25.220617, acc = 0.930000\n",
- "L = 25.167522, acc = 0.930000\n",
- "L = 25.114466, acc = 0.930000\n",
- "L = 25.061452, acc = 0.930000\n",
- "L = 25.008480, acc = 0.930000\n",
- "L = 24.955553, acc = 0.930000\n",
- "L = 24.902673, acc = 0.930000\n",
- "L = 24.849840, acc = 0.935000\n",
- "L = 24.797058, acc = 0.935000\n",
- "L = 24.744326, acc = 0.935000\n",
- "L = 24.691648, acc = 0.935000\n",
- "L = 24.639025, acc = 0.935000\n",
- "L = 24.586459, acc = 0.935000\n",
- "L = 24.533951, acc = 0.935000\n",
- "L = 24.481502, acc = 0.935000\n",
- "L = 24.429116, acc = 0.935000\n",
- "L = 24.376793, acc = 0.935000\n",
- "L = 24.324535, acc = 0.935000\n",
- "L = 24.272343, acc = 0.940000\n",
- "L = 24.220220, acc = 0.940000\n",
- "L = 24.168167, acc = 0.940000\n",
- "L = 24.116186, acc = 0.940000\n",
- "L = 24.064277, acc = 0.940000\n",
- "L = 24.012444, acc = 0.940000\n",
- "L = 23.960687, acc = 0.940000\n",
- "L = 23.909008, acc = 0.940000\n",
- "L = 23.857408, acc = 0.940000\n",
- "L = 23.805890, acc = 0.940000\n",
- "L = 23.754455, acc = 0.940000\n",
- "L = 23.703103, acc = 0.940000\n",
- "L = 23.651838, acc = 0.940000\n",
- "L = 23.600660, acc = 0.940000\n",
- "L = 23.549570, acc = 0.940000\n",
- "L = 23.498571, acc = 0.940000\n",
- "L = 23.447664, acc = 0.940000\n",
- "L = 23.396850, acc = 0.940000\n",
- "L = 23.346131, acc = 0.940000\n",
- "L = 23.295508, acc = 0.940000\n",
- "L = 23.244983, acc = 0.940000\n",
- "L = 23.194557, acc = 0.940000\n",
- "L = 23.144231, acc = 0.940000\n",
- "L = 23.094008, acc = 0.940000\n",
- "L = 23.043887, acc = 0.940000\n",
- "L = 22.993871, acc = 0.940000\n",
- "L = 22.943961, acc = 0.940000\n",
- "L = 22.894159, acc = 0.940000\n",
- "L = 22.844465, acc = 0.940000\n",
- "L = 22.794881, acc = 0.940000\n",
- "L = 22.745409, acc = 0.940000\n",
- "L = 22.696048, acc = 0.940000\n",
- "L = 22.646802, acc = 0.940000\n",
- "L = 22.597671, acc = 0.945000\n",
- "L = 22.548656, acc = 0.945000\n",
- "L = 22.499758, acc = 0.945000\n",
- "L = 22.450980, acc = 0.945000\n",
- "L = 22.402321, acc = 0.945000\n",
- "L = 22.353783, acc = 0.945000\n",
- "L = 22.305367, acc = 0.945000\n",
- "L = 22.257075, acc = 0.945000\n",
- "L = 22.208907, acc = 0.945000\n",
- "L = 22.160865, acc = 0.945000\n",
- "L = 22.112950, acc = 0.945000\n",
- "L = 22.065162, acc = 0.945000\n",
- "L = 22.017503, acc = 0.945000\n",
- "L = 21.969973, acc = 0.945000\n",
- "L = 21.922575, acc = 0.945000\n",
- "L = 21.875308, acc = 0.945000\n",
- "L = 21.828175, acc = 0.945000\n",
- "L = 21.781174, acc = 0.945000\n",
- "L = 21.734309, acc = 0.945000\n",
- "L = 21.687579, acc = 0.945000\n",
- "L = 21.640986, acc = 0.945000\n",
- "L = 21.594530, acc = 0.945000\n",
- "L = 21.548213, acc = 0.945000\n",
- "L = 21.502034, acc = 0.945000\n",
- "L = 21.455996, acc = 0.945000\n",
- "L = 21.410098, acc = 0.945000\n",
- "L = 21.364342, acc = 0.945000\n",
- "L = 21.318729, acc = 0.945000\n",
- "L = 21.273258, acc = 0.945000\n",
- "L = 21.227932, acc = 0.945000\n",
- "L = 21.182750, acc = 0.945000\n",
- "L = 21.137714, acc = 0.945000\n",
- "L = 21.092823, acc = 0.945000\n",
- "L = 21.048079, acc = 0.945000\n",
- "L = 21.003483, acc = 0.945000\n",
- "L = 20.959034, acc = 0.945000\n",
- "L = 20.914734, acc = 0.945000\n",
- "L = 20.870584, acc = 0.945000\n",
- "L = 20.826583, acc = 0.945000\n",
- "L = 20.782732, acc = 0.945000\n",
- "L = 20.739032, acc = 0.945000\n",
- "L = 20.695484, acc = 0.945000\n",
- "L = 20.652088, acc = 0.945000\n",
- "L = 20.608844, acc = 0.945000\n",
- "L = 20.565752, acc = 0.945000\n",
- "L = 20.522815, acc = 0.945000\n",
- "L = 20.480031, acc = 0.945000\n",
- "L = 20.437401, acc = 0.945000\n",
- "L = 20.394926, acc = 0.945000\n",
- "L = 20.352605, acc = 0.945000\n",
- "L = 20.310440, acc = 0.945000\n",
- "L = 20.268431, acc = 0.945000\n",
- "L = 20.226578, acc = 0.945000\n",
- "L = 20.184881, acc = 0.945000\n",
- "L = 20.143341, acc = 0.945000\n",
- "L = 20.101957, acc = 0.945000\n",
- "L = 20.060731, acc = 0.945000\n",
- "L = 20.019662, acc = 0.945000\n",
- "L = 19.978751, acc = 0.945000\n",
- "L = 19.937997, acc = 0.945000\n",
- "L = 19.897402, acc = 0.945000\n",
- "L = 19.856965, acc = 0.945000\n",
- "L = 19.816686, acc = 0.945000\n",
- "L = 19.776566, acc = 0.945000\n",
- "L = 19.736604, acc = 0.945000\n",
- "L = 19.696802, acc = 0.945000\n",
- "L = 19.657158, acc = 0.945000\n",
- "L = 19.617673, acc = 0.945000\n",
- "L = 19.578347, acc = 0.945000\n",
- "L = 19.539180, acc = 0.945000\n",
- "L = 19.500173, acc = 0.945000\n",
- "L = 19.461324, acc = 0.945000\n",
- "L = 19.422635, acc = 0.945000\n",
- "L = 19.384105, acc = 0.945000\n",
- "L = 19.345734, acc = 0.945000\n",
- "L = 19.307522, acc = 0.945000\n",
- "L = 19.269469, acc = 0.945000\n",
- "L = 19.231575, acc = 0.945000\n",
- "L = 19.193840, acc = 0.945000\n",
- "L = 19.156264, acc = 0.945000\n",
- "L = 19.118847, acc = 0.945000\n",
- "L = 19.081588, acc = 0.945000\n",
- "L = 19.044488, acc = 0.945000\n",
- "L = 19.007546, acc = 0.945000\n",
- "L = 18.970763, acc = 0.945000\n",
- "L = 18.934137, acc = 0.945000\n",
- "L = 18.897670, acc = 0.945000\n",
- "L = 18.861360, acc = 0.945000\n",
- "L = 18.825208, acc = 0.945000\n",
- "L = 18.789212, acc = 0.945000\n",
- "L = 18.753374, acc = 0.945000\n",
- "L = 18.717693, acc = 0.945000\n",
- "L = 18.682169, acc = 0.945000\n",
- "L = 18.646800, acc = 0.945000\n",
- "L = 18.611588, acc = 0.945000\n",
- "L = 18.576532, acc = 0.945000\n",
- "L = 18.541631, acc = 0.945000\n",
- "L = 18.506885, acc = 0.945000\n",
- "L = 18.472295, acc = 0.945000\n",
- "L = 18.437858, acc = 0.945000\n",
- "L = 18.403577, acc = 0.945000\n",
- "L = 18.369449, acc = 0.945000\n",
- "L = 18.335475, acc = 0.945000\n",
- "L = 18.301654, acc = 0.945000\n",
- "L = 18.267985, acc = 0.945000\n",
- "L = 18.234470, acc = 0.945000\n",
- "L = 18.201106, acc = 0.945000\n",
- "L = 18.167895, acc = 0.945000\n",
- "L = 18.134835, acc = 0.945000\n",
- "L = 18.101925, acc = 0.945000\n",
- "L = 18.069167, acc = 0.945000\n",
- "L = 18.036558, acc = 0.945000\n",
- "L = 18.004099, acc = 0.945000\n",
- "L = 17.971790, acc = 0.945000\n",
- "L = 17.939629, acc = 0.945000\n",
- "L = 17.907617, acc = 0.945000\n",
- "L = 17.875753, acc = 0.945000\n",
- "L = 17.844036, acc = 0.945000\n",
- "L = 17.812467, acc = 0.945000\n",
- "L = 17.781044, acc = 0.945000\n",
- "L = 17.749767, acc = 0.945000\n",
- "L = 17.718636, acc = 0.945000\n",
- "L = 17.687650, acc = 0.945000\n",
- "L = 17.656809, acc = 0.945000\n",
- "L = 17.626111, acc = 0.945000\n",
- "L = 17.595558, acc = 0.945000\n",
- "L = 17.565148, acc = 0.945000\n",
- "L = 17.534880, acc = 0.945000\n",
- "L = 17.504755, acc = 0.945000\n",
- "L = 17.474771, acc = 0.945000\n",
- "L = 17.444929, acc = 0.945000\n",
- "L = 17.415227, acc = 0.945000\n",
- "L = 17.385665, acc = 0.945000\n",
- "L = 17.356243, acc = 0.945000\n",
- "L = 17.326960, acc = 0.945000\n",
- "L = 17.297815, acc = 0.945000\n",
- "L = 17.268808, acc = 0.945000\n",
- "L = 17.239939, acc = 0.945000\n",
- "L = 17.211206, acc = 0.945000\n",
- "L = 17.182610, acc = 0.950000\n",
- "L = 17.154149, acc = 0.950000\n",
- "L = 17.125824, acc = 0.950000\n",
- "L = 17.097633, acc = 0.950000\n",
- "L = 17.069577, acc = 0.950000\n",
- "L = 17.041653, acc = 0.950000\n",
- "L = 17.013863, acc = 0.950000\n",
- "L = 16.986205, acc = 0.950000\n",
- "L = 16.958679, acc = 0.950000\n",
- "L = 16.931284, acc = 0.950000\n",
- "L = 16.904020, acc = 0.950000\n",
- "L = 16.876886, acc = 0.950000\n",
- "L = 16.849881, acc = 0.950000\n",
- "L = 16.823006, acc = 0.950000\n",
- "L = 16.796258, acc = 0.950000\n",
- "L = 16.769639, acc = 0.950000\n",
- "L = 16.743146, acc = 0.950000\n",
- "L = 16.716780, acc = 0.950000\n",
- "L = 16.690540, acc = 0.950000\n",
- "L = 16.664426, acc = 0.950000\n",
- "L = 16.638436, acc = 0.950000\n",
- "L = 16.612571, acc = 0.950000\n",
- "L = 16.586829, acc = 0.950000\n",
- "L = 16.561211, acc = 0.950000\n",
- "L = 16.535715, acc = 0.950000\n",
- "L = 16.510341, acc = 0.950000\n",
- "L = 16.485088, acc = 0.950000\n",
- "L = 16.459956, acc = 0.950000\n",
- "L = 16.434944, acc = 0.950000\n",
- "L = 16.410051, acc = 0.950000\n",
- "L = 16.385278, acc = 0.950000\n",
- "L = 16.360623, acc = 0.950000\n",
- "L = 16.336085, acc = 0.950000\n",
- "L = 16.311665, acc = 0.950000\n",
- "L = 16.287362, acc = 0.950000\n",
- "L = 16.263175, acc = 0.950000\n",
- "L = 16.239103, acc = 0.955000\n",
- "L = 16.215146, acc = 0.955000\n",
- "L = 16.191303, acc = 0.955000\n",
- "L = 16.167574, acc = 0.955000\n",
- "L = 16.143958, acc = 0.955000\n",
- "L = 16.120455, acc = 0.955000\n",
- "L = 16.097064, acc = 0.955000\n",
- "L = 16.073784, acc = 0.955000\n",
- "L = 16.050615, acc = 0.955000\n",
- "L = 16.027556, acc = 0.955000\n",
- "L = 16.004606, acc = 0.955000\n",
- "L = 15.981766, acc = 0.955000\n",
- "L = 15.959035, acc = 0.955000\n",
- "L = 15.936411, acc = 0.955000\n",
- "L = 15.913895, acc = 0.955000\n",
- "L = 15.891485, acc = 0.955000\n",
- "L = 15.869182, acc = 0.955000\n",
- "L = 15.846984, acc = 0.955000\n",
- "L = 15.824892, acc = 0.955000\n",
- "L = 15.802904, acc = 0.955000\n",
- "L = 15.781020, acc = 0.955000\n",
- "L = 15.759239, acc = 0.955000\n",
- "L = 15.737561, acc = 0.955000\n",
- "L = 15.715986, acc = 0.955000\n",
- "L = 15.694512, acc = 0.955000\n",
- "L = 15.673140, acc = 0.955000\n",
- "L = 15.651868, acc = 0.955000\n",
- "L = 15.630696, acc = 0.955000\n",
- "L = 15.609624, acc = 0.955000\n",
- "L = 15.588651, acc = 0.955000\n",
- "L = 15.567776, acc = 0.955000\n",
- "L = 15.546999, acc = 0.955000\n",
- "L = 15.526320, acc = 0.955000\n",
- "L = 15.505737, acc = 0.955000\n",
- "L = 15.485251, acc = 0.955000\n",
- "L = 15.464860, acc = 0.955000\n",
- "L = 15.444565, acc = 0.955000\n",
- "L = 15.424364, acc = 0.955000\n",
- "L = 15.404258, acc = 0.955000\n",
- "L = 15.384245, acc = 0.955000\n",
- "L = 15.364325, acc = 0.955000\n",
- "L = 15.344498, acc = 0.955000\n",
- "L = 15.324763, acc = 0.955000\n",
- "L = 15.305119, acc = 0.955000\n",
- "L = 15.285567, acc = 0.955000\n",
- "L = 15.266105, acc = 0.955000\n",
- "L = 15.246733, acc = 0.955000\n",
- "L = 15.227450, acc = 0.955000\n",
- "L = 15.208257, acc = 0.955000\n",
- "L = 15.189152, acc = 0.955000\n",
- "L = 15.170135, acc = 0.955000\n",
- "L = 15.151205, acc = 0.955000\n",
- "L = 15.132362, acc = 0.955000\n",
- "L = 15.113606, acc = 0.955000\n",
- "L = 15.094936, acc = 0.955000\n",
- "L = 15.076352, acc = 0.955000\n",
- "L = 15.057852, acc = 0.955000\n",
- "L = 15.039437, acc = 0.955000\n",
- "L = 15.021106, acc = 0.955000\n",
- "L = 15.002859, acc = 0.955000\n",
- "L = 14.984695, acc = 0.955000\n",
- "L = 14.966613, acc = 0.955000\n",
- "L = 14.948613, acc = 0.960000\n",
- "L = 14.930695, acc = 0.960000\n",
- "L = 14.912859, acc = 0.960000\n",
- "L = 14.895103, acc = 0.960000\n",
- "L = 14.877427, acc = 0.960000\n",
- "L = 14.859831, acc = 0.960000\n",
- "L = 14.842314, acc = 0.960000\n",
- "L = 14.824876, acc = 0.960000\n",
- "L = 14.807517, acc = 0.960000\n",
- "L = 14.790236, acc = 0.960000\n",
- "L = 14.773032, acc = 0.960000\n",
- "L = 14.755905, acc = 0.960000\n",
- "L = 14.738855, acc = 0.960000\n",
- "L = 14.721881, acc = 0.960000\n",
- "L = 14.704982, acc = 0.960000\n",
- "L = 14.688159, acc = 0.960000\n",
- "L = 14.671411, acc = 0.960000\n",
- "L = 14.654737, acc = 0.960000\n",
- "L = 14.638137, acc = 0.960000\n",
- "L = 14.621611, acc = 0.960000\n",
- "L = 14.605157, acc = 0.960000\n",
- "L = 14.588777, acc = 0.960000\n",
- "L = 14.572468, acc = 0.960000\n",
- "L = 14.556232, acc = 0.960000\n",
- "L = 14.540067, acc = 0.960000\n",
- "L = 14.523973, acc = 0.960000\n",
- "L = 14.507949, acc = 0.960000\n",
- "L = 14.491996, acc = 0.960000\n",
- "L = 14.476113, acc = 0.960000\n",
- "L = 14.460298, acc = 0.960000\n",
- "L = 14.444553, acc = 0.960000\n",
- "L = 14.428877, acc = 0.960000\n",
- "L = 14.413268, acc = 0.960000\n",
- "L = 14.397727, acc = 0.960000\n",
- "L = 14.382254, acc = 0.960000\n",
- "L = 14.366847, acc = 0.960000\n",
- "L = 14.351507, acc = 0.960000\n",
- "L = 14.336234, acc = 0.960000\n",
- "L = 14.321026, acc = 0.960000\n",
- "L = 14.305883, acc = 0.960000\n",
- "L = 14.290805, acc = 0.960000\n",
- "L = 14.275793, acc = 0.960000\n",
- "L = 14.260844, acc = 0.960000\n",
- "L = 14.245959, acc = 0.960000\n",
- "L = 14.231138, acc = 0.960000\n",
- "L = 14.216380, acc = 0.960000\n",
- "L = 14.201684, acc = 0.960000\n",
- "L = 14.187051, acc = 0.960000\n",
- "L = 14.172480, acc = 0.960000\n",
- "L = 14.157971, acc = 0.960000\n",
- "L = 14.143523, acc = 0.960000\n",
- "L = 14.129136, acc = 0.960000\n",
- "L = 14.114810, acc = 0.960000\n",
- "L = 14.100543, acc = 0.960000\n",
- "L = 14.086337, acc = 0.960000\n",
- "L = 14.072190, acc = 0.960000\n",
- "L = 14.058102, acc = 0.960000\n",
- "L = 14.044074, acc = 0.960000\n",
- "L = 14.030103, acc = 0.960000\n",
- "L = 14.016191, acc = 0.960000\n",
- "L = 14.002337, acc = 0.960000\n",
- "L = 13.988540, acc = 0.960000\n",
- "L = 13.974800, acc = 0.960000\n",
- "L = 13.961117, acc = 0.960000\n",
- "L = 13.947491, acc = 0.960000\n",
- "L = 13.933920, acc = 0.960000\n",
- "L = 13.920406, acc = 0.960000\n",
- "L = 13.906947, acc = 0.960000\n",
- "L = 13.893543, acc = 0.960000\n",
- "L = 13.880194, acc = 0.960000\n",
- "L = 13.866899, acc = 0.960000\n",
- "L = 13.853659, acc = 0.960000\n",
- "L = 13.840472, acc = 0.960000\n",
- "L = 13.827339, acc = 0.960000\n",
- "L = 13.814260, acc = 0.960000\n",
- "L = 13.801233, acc = 0.960000\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "L = 13.788259, acc = 0.960000\n",
- "L = 13.775337, acc = 0.960000\n",
- "L = 13.762467, acc = 0.965000\n",
- "L = 13.749649, acc = 0.965000\n",
- "L = 13.736883, acc = 0.965000\n",
- "L = 13.724167, acc = 0.965000\n",
- "L = 13.711503, acc = 0.965000\n",
- "L = 13.698888, acc = 0.965000\n",
- "L = 13.686324, acc = 0.965000\n",
- "L = 13.673810, acc = 0.965000\n",
- "L = 13.661346, acc = 0.965000\n",
- "L = 13.648931, acc = 0.965000\n",
- "L = 13.636565, acc = 0.965000\n",
- "L = 13.624248, acc = 0.965000\n",
- "L = 13.611980, acc = 0.965000\n",
- "L = 13.599759, acc = 0.965000\n",
- "L = 13.587587, acc = 0.965000\n",
- "L = 13.575462, acc = 0.965000\n",
- "L = 13.563385, acc = 0.965000\n",
- "L = 13.551354, acc = 0.965000\n",
- "L = 13.539371, acc = 0.965000\n",
- "L = 13.527434, acc = 0.965000\n",
- "L = 13.515544, acc = 0.965000\n",
- "L = 13.503699, acc = 0.965000\n",
- "L = 13.491901, acc = 0.965000\n",
- "L = 13.480147, acc = 0.965000\n",
- "L = 13.468439, acc = 0.965000\n",
- "L = 13.456776, acc = 0.965000\n",
- "L = 13.445158, acc = 0.965000\n",
- "L = 13.433585, acc = 0.965000\n",
- "L = 13.422055, acc = 0.965000\n",
- "L = 13.410569, acc = 0.965000\n",
- "L = 13.399128, acc = 0.965000\n",
- "L = 13.387729, acc = 0.965000\n",
- "L = 13.376374, acc = 0.965000\n",
- "L = 13.365062, acc = 0.965000\n",
- "L = 13.353792, acc = 0.965000\n",
- "L = 13.342565, acc = 0.965000\n",
- "L = 13.331380, acc = 0.965000\n",
- "L = 13.320237, acc = 0.965000\n",
- "L = 13.309136, acc = 0.965000\n",
- "L = 13.298077, acc = 0.965000\n",
- "L = 13.287059, acc = 0.965000\n",
- "L = 13.276081, acc = 0.965000\n",
- "L = 13.265145, acc = 0.965000\n",
- "L = 13.254249, acc = 0.965000\n",
- "L = 13.243393, acc = 0.965000\n",
- "L = 13.232578, acc = 0.965000\n",
- "L = 13.221802, acc = 0.965000\n",
- "L = 13.211066, acc = 0.965000\n",
- "L = 13.200370, acc = 0.965000\n",
- "L = 13.189712, acc = 0.965000\n",
- "L = 13.179094, acc = 0.965000\n",
- "L = 13.168515, acc = 0.965000\n",
- "L = 13.157973, acc = 0.965000\n",
- "L = 13.147471, acc = 0.965000\n",
- "L = 13.137006, acc = 0.965000\n",
- "L = 13.126579, acc = 0.965000\n",
- "L = 13.116190, acc = 0.965000\n",
- "L = 13.105839, acc = 0.965000\n",
- "L = 13.095525, acc = 0.965000\n",
- "L = 13.085247, acc = 0.965000\n",
- "L = 13.075007, acc = 0.965000\n",
- "L = 13.064803, acc = 0.965000\n",
- "L = 13.054636, acc = 0.965000\n",
- "L = 13.044504, acc = 0.965000\n",
- "L = 13.034409, acc = 0.965000\n",
- "L = 13.024350, acc = 0.965000\n",
- "L = 13.014326, acc = 0.965000\n",
- "L = 13.004338, acc = 0.965000\n",
- "L = 12.994385, acc = 0.965000\n",
- "L = 12.984467, acc = 0.965000\n",
- "L = 12.974583, acc = 0.965000\n",
- "L = 12.964735, acc = 0.965000\n",
- "L = 12.954920, acc = 0.965000\n",
- "L = 12.945140, acc = 0.965000\n",
- "L = 12.935394, acc = 0.965000\n",
- "L = 12.925682, acc = 0.965000\n",
- "L = 12.916004, acc = 0.965000\n",
- "L = 12.906359, acc = 0.965000\n",
- "L = 12.896747, acc = 0.965000\n",
- "L = 12.887169, acc = 0.965000\n",
- "L = 12.877623, acc = 0.965000\n",
- "L = 12.868110, acc = 0.965000\n",
- "L = 12.858630, acc = 0.965000\n",
- "L = 12.849182, acc = 0.965000\n",
- "L = 12.839766, acc = 0.965000\n",
- "L = 12.830383, acc = 0.965000\n",
- "L = 12.821031, acc = 0.965000\n",
- "L = 12.811711, acc = 0.965000\n",
- "L = 12.802422, acc = 0.965000\n",
- "L = 12.793165, acc = 0.965000\n",
- "L = 12.783939, acc = 0.965000\n",
- "L = 12.774743, acc = 0.965000\n",
- "L = 12.765579, acc = 0.965000\n",
- "L = 12.756445, acc = 0.965000\n",
- "L = 12.747342, acc = 0.965000\n",
- "L = 12.738269, acc = 0.965000\n",
- "L = 12.729226, acc = 0.965000\n",
- "L = 12.720214, acc = 0.965000\n",
- "L = 12.711231, acc = 0.965000\n",
- "L = 12.702277, acc = 0.965000\n",
- "L = 12.693354, acc = 0.965000\n",
- "L = 12.684459, acc = 0.965000\n",
- "L = 12.675594, acc = 0.965000\n",
- "L = 12.666757, acc = 0.965000\n",
- "L = 12.657950, acc = 0.965000\n",
- "L = 12.649171, acc = 0.965000\n",
- "L = 12.640421, acc = 0.965000\n",
- "L = 12.631699, acc = 0.965000\n",
- "L = 12.623006, acc = 0.965000\n",
- "L = 12.614340, acc = 0.965000\n",
- "L = 12.605703, acc = 0.965000\n",
- "L = 12.597093, acc = 0.965000\n",
- "L = 12.588511, acc = 0.965000\n",
- "L = 12.579956, acc = 0.965000\n",
- "L = 12.571429, acc = 0.965000\n",
- "L = 12.562928, acc = 0.965000\n",
- "L = 12.554455, acc = 0.965000\n",
- "L = 12.546009, acc = 0.965000\n",
- "L = 12.537590, acc = 0.965000\n",
- "L = 12.529197, acc = 0.965000\n",
- "L = 12.520831, acc = 0.965000\n",
- "L = 12.512491, acc = 0.965000\n",
- "L = 12.504177, acc = 0.965000\n",
- "L = 12.495889, acc = 0.965000\n",
- "L = 12.487627, acc = 0.965000\n",
- "L = 12.479391, acc = 0.965000\n",
- "L = 12.471180, acc = 0.965000\n",
- "L = 12.462995, acc = 0.965000\n",
- "L = 12.454836, acc = 0.965000\n",
- "L = 12.446701, acc = 0.965000\n",
- "L = 12.438592, acc = 0.965000\n",
- "L = 12.430508, acc = 0.965000\n",
- "L = 12.422448, acc = 0.965000\n",
- "L = 12.414413, acc = 0.965000\n",
- "L = 12.406403, acc = 0.965000\n",
- "L = 12.398417, acc = 0.965000\n",
- "L = 12.390456, acc = 0.965000\n",
- "L = 12.382519, acc = 0.965000\n",
- "L = 12.374605, acc = 0.965000\n",
- "L = 12.366716, acc = 0.965000\n",
- "L = 12.358851, acc = 0.965000\n",
- "L = 12.351009, acc = 0.965000\n",
- "L = 12.343190, acc = 0.965000\n",
- "L = 12.335396, acc = 0.965000\n",
- "L = 12.327624, acc = 0.965000\n",
- "L = 12.319876, acc = 0.965000\n",
- "L = 12.312151, acc = 0.965000\n",
- "L = 12.304448, acc = 0.965000\n",
- "L = 12.296769, acc = 0.965000\n",
- "L = 12.289112, acc = 0.965000\n",
- "L = 12.281478, acc = 0.965000\n",
- "L = 12.273866, acc = 0.965000\n",
- "L = 12.266277, acc = 0.965000\n",
- "L = 12.258710, acc = 0.965000\n",
- "L = 12.251165, acc = 0.965000\n",
- "L = 12.243642, acc = 0.965000\n",
- "L = 12.236141, acc = 0.965000\n",
- "L = 12.228662, acc = 0.965000\n",
- "L = 12.221204, acc = 0.965000\n",
- "L = 12.213768, acc = 0.965000\n",
- "L = 12.206354, acc = 0.965000\n",
- "L = 12.198961, acc = 0.965000\n",
- "L = 12.191589, acc = 0.965000\n",
- "L = 12.184238, acc = 0.965000\n",
- "L = 12.176908, acc = 0.965000\n",
- "L = 12.169599, acc = 0.965000\n",
- "L = 12.162311, acc = 0.965000\n",
- "L = 12.155044, acc = 0.965000\n",
- "L = 12.147797, acc = 0.965000\n",
- "L = 12.140571, acc = 0.965000\n",
- "L = 12.133365, acc = 0.965000\n",
- "L = 12.126180, acc = 0.965000\n",
- "L = 12.119015, acc = 0.965000\n",
- "L = 12.111869, acc = 0.965000\n",
- "L = 12.104744, acc = 0.965000\n",
- "L = 12.097639, acc = 0.965000\n",
- "L = 12.090553, acc = 0.965000\n",
- "L = 12.083487, acc = 0.965000\n",
- "L = 12.076441, acc = 0.965000\n",
- "L = 12.069414, acc = 0.965000\n",
- "L = 12.062407, acc = 0.965000\n",
- "L = 12.055419, acc = 0.965000\n",
- "L = 12.048450, acc = 0.965000\n",
- "L = 12.041500, acc = 0.965000\n",
- "L = 12.034569, acc = 0.965000\n",
- "L = 12.027657, acc = 0.965000\n",
- "L = 12.020764, acc = 0.965000\n",
- "L = 12.013890, acc = 0.965000\n",
- "L = 12.007034, acc = 0.965000\n",
- "L = 12.000197, acc = 0.965000\n",
- "L = 11.993379, acc = 0.965000\n",
- "L = 11.986578, acc = 0.965000\n",
- "L = 11.979796, acc = 0.965000\n",
- "L = 11.973033, acc = 0.965000\n",
- "L = 11.966287, acc = 0.965000\n",
- "L = 11.959559, acc = 0.965000\n",
- "L = 11.952849, acc = 0.965000\n",
- "L = 11.946157, acc = 0.965000\n",
- "L = 11.939483, acc = 0.965000\n",
- "L = 11.932827, acc = 0.965000\n",
- "L = 11.926188, acc = 0.965000\n",
- "L = 11.919566, acc = 0.965000\n",
- "L = 11.912962, acc = 0.965000\n",
- "L = 11.906376, acc = 0.965000\n",
- "L = 11.899806, acc = 0.965000\n",
- "L = 11.893254, acc = 0.965000\n",
- "L = 11.886718, acc = 0.965000\n",
- "L = 11.880200, acc = 0.965000\n",
- "L = 11.873699, acc = 0.965000\n",
- "L = 11.867214, acc = 0.965000\n",
- "L = 11.860747, acc = 0.965000\n",
- "L = 11.854295, acc = 0.965000\n",
- "L = 11.847861, acc = 0.965000\n",
- "L = 11.841443, acc = 0.965000\n",
- "L = 11.835041, acc = 0.965000\n",
- "L = 11.828656, acc = 0.965000\n",
- "L = 11.822287, acc = 0.965000\n",
- "L = 11.815935, acc = 0.965000\n",
- "L = 11.809598, acc = 0.965000\n",
- "L = 11.803278, acc = 0.965000\n",
- "L = 11.796973, acc = 0.965000\n",
- "L = 11.790684, acc = 0.965000\n",
- "L = 11.784412, acc = 0.965000\n",
- "L = 11.778154, acc = 0.965000\n",
- "L = 11.771913, acc = 0.965000\n",
- "L = 11.765687, acc = 0.965000\n",
- "L = 11.759477, acc = 0.965000\n",
- "L = 11.753282, acc = 0.970000\n",
- "L = 11.747103, acc = 0.970000\n",
- "L = 11.740939, acc = 0.970000\n",
- "L = 11.734790, acc = 0.970000\n",
- "L = 11.728656, acc = 0.970000\n",
- "L = 11.722538, acc = 0.970000\n",
- "L = 11.716434, acc = 0.970000\n",
- "L = 11.710346, acc = 0.970000\n",
- "L = 11.704272, acc = 0.970000\n",
- "L = 11.698213, acc = 0.970000\n",
- "L = 11.692169, acc = 0.970000\n",
- "L = 11.686140, acc = 0.970000\n",
- "L = 11.680125, acc = 0.970000\n",
- "L = 11.674125, acc = 0.970000\n",
- "L = 11.668140, acc = 0.970000\n",
- "L = 11.662169, acc = 0.970000\n",
- "L = 11.656212, acc = 0.970000\n",
- "L = 11.650269, acc = 0.970000\n",
- "L = 11.644341, acc = 0.970000\n",
- "L = 11.638427, acc = 0.970000\n",
- "L = 11.632527, acc = 0.970000\n",
- "L = 11.626641, acc = 0.970000\n",
- "L = 11.620769, acc = 0.970000\n",
- "L = 11.614911, acc = 0.970000\n",
- "L = 11.609067, acc = 0.970000\n",
- "L = 11.603237, acc = 0.970000\n",
- "L = 11.597420, acc = 0.970000\n",
- "L = 11.591618, acc = 0.970000\n",
- "L = 11.585828, acc = 0.970000\n",
- "L = 11.580053, acc = 0.970000\n",
- "L = 11.574291, acc = 0.970000\n",
- "L = 11.568542, acc = 0.970000\n",
- "L = 11.562807, acc = 0.970000\n",
- "L = 11.557085, acc = 0.970000\n",
- "L = 11.551376, acc = 0.970000\n",
- "L = 11.545680, acc = 0.970000\n",
- "L = 11.539998, acc = 0.970000\n",
- "L = 11.534329, acc = 0.970000\n",
- "L = 11.528673, acc = 0.970000\n",
- "L = 11.523029, acc = 0.970000\n",
- "L = 11.517399, acc = 0.970000\n",
- "L = 11.511782, acc = 0.970000\n",
- "L = 11.506177, acc = 0.970000\n",
- "L = 11.500585, acc = 0.970000\n",
- "L = 11.495006, acc = 0.970000\n",
- "L = 11.489440, acc = 0.970000\n",
- "L = 11.483886, acc = 0.970000\n",
- "L = 11.478345, acc = 0.970000\n",
- "L = 11.472816, acc = 0.970000\n",
- "L = 11.467300, acc = 0.970000\n",
- "L = 11.461796, acc = 0.970000\n",
- "L = 11.456304, acc = 0.970000\n",
- "L = 11.450825, acc = 0.970000\n",
- "L = 11.445358, acc = 0.970000\n",
- "L = 11.439903, acc = 0.970000\n",
- "L = 11.434461, acc = 0.970000\n",
- "L = 11.429030, acc = 0.970000\n",
- "L = 11.423612, acc = 0.970000\n",
- "L = 11.418205, acc = 0.970000\n",
- "L = 11.412810, acc = 0.970000\n",
- "L = 11.407428, acc = 0.970000\n",
- "L = 11.402057, acc = 0.970000\n",
- "L = 11.396698, acc = 0.970000\n",
- "L = 11.391351, acc = 0.970000\n",
- "L = 11.386015, acc = 0.970000\n",
- "L = 11.380691, acc = 0.970000\n",
- "L = 11.375379, acc = 0.970000\n",
- "L = 11.370078, acc = 0.970000\n",
- "L = 11.364789, acc = 0.970000\n",
- "L = 11.359511, acc = 0.970000\n",
- "L = 11.354245, acc = 0.970000\n",
- "L = 11.348990, acc = 0.970000\n",
- "L = 11.343746, acc = 0.970000\n",
- "L = 11.338514, acc = 0.970000\n",
- "L = 11.333293, acc = 0.970000\n",
- "L = 11.328083, acc = 0.970000\n",
- "L = 11.322884, acc = 0.970000\n",
- "L = 11.317696, acc = 0.970000\n",
- "L = 11.312520, acc = 0.970000\n",
- "L = 11.307354, acc = 0.970000\n",
- "L = 11.302200, acc = 0.970000\n",
- "L = 11.297056, acc = 0.970000\n",
- "L = 11.291923, acc = 0.970000\n",
- "L = 11.286802, acc = 0.970000\n",
- "L = 11.281691, acc = 0.970000\n",
- "L = 11.276590, acc = 0.970000\n",
- "L = 11.271501, acc = 0.970000\n",
- "L = 11.266422, acc = 0.970000\n",
- "L = 11.261354, acc = 0.970000\n",
- "L = 11.256296, acc = 0.970000\n",
- "L = 11.251249, acc = 0.970000\n",
- "L = 11.246213, acc = 0.970000\n",
- "L = 11.241187, acc = 0.970000\n",
- "L = 11.236171, acc = 0.970000\n",
- "L = 11.231166, acc = 0.970000\n",
- "L = 11.226172, acc = 0.970000\n",
- "L = 11.221187, acc = 0.970000\n",
- "L = 11.216213, acc = 0.970000\n",
- "L = 11.211249, acc = 0.970000\n",
- "L = 11.206296, acc = 0.970000\n",
- "L = 11.201352, acc = 0.970000\n",
- "L = 11.196419, acc = 0.970000\n",
- "L = 11.191496, acc = 0.970000\n",
- "L = 11.186583, acc = 0.970000\n",
- "L = 11.181680, acc = 0.970000\n",
- "L = 11.176787, acc = 0.970000\n",
- "L = 11.171904, acc = 0.970000\n",
- "L = 11.167031, acc = 0.970000\n",
- "L = 11.162167, acc = 0.970000\n",
- "L = 11.157314, acc = 0.970000\n",
- "L = 11.152470, acc = 0.970000\n",
- "L = 11.147637, acc = 0.970000\n",
- "L = 11.142813, acc = 0.970000\n",
- "L = 11.137998, acc = 0.970000\n",
- "L = 11.133194, acc = 0.970000\n",
- "L = 11.128399, acc = 0.970000\n",
- "L = 11.123613, acc = 0.970000\n",
- "L = 11.118838, acc = 0.970000\n",
- "L = 11.114072, acc = 0.970000\n",
- "L = 11.109315, acc = 0.970000\n",
- "L = 11.104568, acc = 0.970000\n",
- "L = 11.099830, acc = 0.970000\n",
- "L = 11.095102, acc = 0.970000\n",
- "L = 11.090383, acc = 0.970000\n",
- "L = 11.085673, acc = 0.970000\n",
- "L = 11.080973, acc = 0.970000\n",
- "L = 11.076282, acc = 0.970000\n",
- "L = 11.071600, acc = 0.970000\n",
- "L = 11.066928, acc = 0.970000\n",
- "L = 11.062264, acc = 0.970000\n",
- "L = 11.057610, acc = 0.970000\n",
- "L = 11.052965, acc = 0.970000\n",
- "L = 11.048329, acc = 0.970000\n",
- "L = 11.043702, acc = 0.970000\n",
- "L = 11.039085, acc = 0.970000\n",
- "L = 11.034476, acc = 0.970000\n",
- "L = 11.029876, acc = 0.970000\n",
- "L = 11.025285, acc = 0.970000\n",
- "L = 11.020703, acc = 0.970000\n",
- "L = 11.016130, acc = 0.970000\n",
- "L = 11.011566, acc = 0.970000\n",
- "L = 11.007011, acc = 0.970000\n",
- "L = 11.002464, acc = 0.970000\n",
- "L = 10.997927, acc = 0.970000\n",
- "L = 10.993398, acc = 0.970000\n",
- "L = 10.988877, acc = 0.970000\n",
- "L = 10.984366, acc = 0.970000\n",
- "L = 10.979863, acc = 0.970000\n",
- "L = 10.975369, acc = 0.970000\n",
- "L = 10.970883, acc = 0.970000\n",
- "L = 10.966406, acc = 0.970000\n",
- "L = 10.961938, acc = 0.970000\n",
- "L = 10.957478, acc = 0.970000\n",
- "L = 10.953026, acc = 0.970000\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "L = 10.948583, acc = 0.970000\n",
- "L = 10.944149, acc = 0.970000\n",
- "L = 10.939723, acc = 0.970000\n",
- "L = 10.935305, acc = 0.970000\n",
- "L = 10.930896, acc = 0.965000\n",
- "L = 10.926495, acc = 0.965000\n",
- "L = 10.922102, acc = 0.965000\n",
- "L = 10.917718, acc = 0.965000\n",
- "L = 10.913342, acc = 0.965000\n",
- "L = 10.908974, acc = 0.965000\n",
- "L = 10.904614, acc = 0.965000\n",
- "L = 10.900263, acc = 0.965000\n",
- "L = 10.895920, acc = 0.965000\n",
- "L = 10.891585, acc = 0.965000\n",
- "L = 10.887258, acc = 0.965000\n",
- "L = 10.882939, acc = 0.965000\n",
- "L = 10.878628, acc = 0.965000\n",
- "L = 10.874325, acc = 0.965000\n",
- "L = 10.870031, acc = 0.965000\n",
- "L = 10.865744, acc = 0.965000\n",
- "L = 10.861465, acc = 0.965000\n",
- "L = 10.857195, acc = 0.965000\n",
- "L = 10.852932, acc = 0.965000\n",
- "L = 10.848677, acc = 0.965000\n",
- "L = 10.844430, acc = 0.965000\n",
- "L = 10.840191, acc = 0.965000\n",
- "L = 10.835959, acc = 0.965000\n",
- "L = 10.831736, acc = 0.965000\n",
- "L = 10.827520, acc = 0.965000\n",
- "L = 10.823312, acc = 0.965000\n",
- "L = 10.819112, acc = 0.965000\n",
- "L = 10.814919, acc = 0.965000\n",
- "L = 10.810735, acc = 0.965000\n",
- "L = 10.806558, acc = 0.965000\n",
- "L = 10.802388, acc = 0.965000\n",
- "L = 10.798226, acc = 0.965000\n",
- "L = 10.794072, acc = 0.965000\n",
- "L = 10.789926, acc = 0.965000\n",
- "L = 10.785787, acc = 0.965000\n",
- "L = 10.781655, acc = 0.965000\n",
- "L = 10.777531, acc = 0.965000\n",
- "L = 10.773415, acc = 0.965000\n",
- "L = 10.769306, acc = 0.965000\n",
- "L = 10.765205, acc = 0.965000\n",
- "L = 10.761111, acc = 0.965000\n",
- "L = 10.757024, acc = 0.965000\n",
- "L = 10.752945, acc = 0.965000\n",
- "L = 10.748873, acc = 0.965000\n",
- "L = 10.744809, acc = 0.965000\n",
- "L = 10.740752, acc = 0.965000\n",
- "L = 10.736702, acc = 0.965000\n",
- "L = 10.732660, acc = 0.965000\n",
- "L = 10.728625, acc = 0.965000\n",
- "L = 10.724597, acc = 0.965000\n",
- "L = 10.720576, acc = 0.965000\n",
- "L = 10.716563, acc = 0.965000\n",
- "L = 10.712557, acc = 0.965000\n",
- "L = 10.708558, acc = 0.965000\n",
- "L = 10.704566, acc = 0.965000\n",
- "L = 10.700582, acc = 0.965000\n",
- "L = 10.696604, acc = 0.965000\n",
- "L = 10.692634, acc = 0.965000\n",
- "L = 10.688671, acc = 0.965000\n",
- "L = 10.684715, acc = 0.965000\n",
- "L = 10.680766, acc = 0.965000\n",
- "L = 10.676824, acc = 0.965000\n",
- "L = 10.672889, acc = 0.965000\n",
- "L = 10.668961, acc = 0.965000\n",
- "L = 10.665040, acc = 0.965000\n",
- "L = 10.661126, acc = 0.965000\n",
- "L = 10.657219, acc = 0.965000\n",
- "L = 10.653318, acc = 0.965000\n",
- "L = 10.649425, acc = 0.965000\n",
- "L = 10.645539, acc = 0.965000\n",
- "L = 10.641659, acc = 0.965000\n",
- "L = 10.637787, acc = 0.965000\n",
- "L = 10.633921, acc = 0.965000\n",
- "L = 10.630062, acc = 0.965000\n",
- "L = 10.626210, acc = 0.965000\n",
- "L = 10.622365, acc = 0.965000\n",
- "L = 10.618526, acc = 0.965000\n",
- "L = 10.614695, acc = 0.965000\n",
- "L = 10.610870, acc = 0.965000\n",
- "L = 10.607051, acc = 0.965000\n",
- "L = 10.603240, acc = 0.965000\n",
- "L = 10.599435, acc = 0.965000\n",
- "L = 10.595637, acc = 0.965000\n",
- "L = 10.591845, acc = 0.965000\n",
- "L = 10.588060, acc = 0.965000\n",
- "L = 10.584282, acc = 0.965000\n",
- "L = 10.580510, acc = 0.965000\n",
- "L = 10.576745, acc = 0.965000\n",
- "L = 10.572987, acc = 0.965000\n",
- "L = 10.569235, acc = 0.965000\n",
- "L = 10.565490, acc = 0.965000\n",
- "L = 10.561751, acc = 0.965000\n",
- "L = 10.558019, acc = 0.965000\n",
- "L = 10.554293, acc = 0.965000\n",
- "L = 10.550574, acc = 0.965000\n",
- "L = 10.546861, acc = 0.965000\n",
- "L = 10.543154, acc = 0.965000\n",
- "L = 10.539454, acc = 0.965000\n",
- "L = 10.535761, acc = 0.965000\n",
- "L = 10.532074, acc = 0.965000\n",
- "L = 10.528393, acc = 0.965000\n",
- "L = 10.524719, acc = 0.965000\n",
- "L = 10.521051, acc = 0.965000\n",
- "L = 10.517389, acc = 0.965000\n",
- "L = 10.513734, acc = 0.965000\n",
- "L = 10.510085, acc = 0.965000\n",
- "L = 10.506442, acc = 0.965000\n",
- "L = 10.502806, acc = 0.965000\n",
- "L = 10.499176, acc = 0.965000\n",
- "L = 10.495552, acc = 0.965000\n",
- "L = 10.491934, acc = 0.965000\n",
- "L = 10.488323, acc = 0.965000\n",
- "L = 10.484717, acc = 0.965000\n",
- "L = 10.481118, acc = 0.965000\n",
- "L = 10.477526, acc = 0.965000\n",
- "L = 10.473939, acc = 0.965000\n",
- "L = 10.470359, acc = 0.965000\n",
- "L = 10.466784, acc = 0.965000\n",
- "L = 10.463216, acc = 0.965000\n",
- "L = 10.459654, acc = 0.965000\n",
- "L = 10.456098, acc = 0.965000\n",
- "L = 10.452548, acc = 0.965000\n",
- "L = 10.449004, acc = 0.965000\n",
- "L = 10.445466, acc = 0.965000\n",
- "L = 10.441935, acc = 0.965000\n",
- "L = 10.438409, acc = 0.965000\n",
- "L = 10.434889, acc = 0.965000\n",
- "L = 10.431376, acc = 0.965000\n",
- "L = 10.427868, acc = 0.965000\n",
- "L = 10.424366, acc = 0.965000\n",
- "L = 10.420870, acc = 0.965000\n",
- "L = 10.417381, acc = 0.965000\n",
- "L = 10.413897, acc = 0.965000\n",
- "L = 10.410419, acc = 0.965000\n",
- "L = 10.406947, acc = 0.965000\n",
- "L = 10.403481, acc = 0.965000\n",
- "L = 10.400020, acc = 0.965000\n",
- "L = 10.396566, acc = 0.965000\n",
- "L = 10.393117, acc = 0.965000\n",
- "L = 10.389675, acc = 0.965000\n",
- "L = 10.386238, acc = 0.965000\n",
- "L = 10.382807, acc = 0.965000\n",
- "L = 10.379381, acc = 0.965000\n",
- "L = 10.375962, acc = 0.965000\n",
- "L = 10.372548, acc = 0.965000\n",
- "L = 10.369140, acc = 0.965000\n",
- "L = 10.365738, acc = 0.965000\n",
- "L = 10.362341, acc = 0.965000\n",
- "L = 10.358951, acc = 0.965000\n",
- "L = 10.355566, acc = 0.965000\n",
- "L = 10.352186, acc = 0.965000\n",
- "L = 10.348813, acc = 0.965000\n",
- "L = 10.345445, acc = 0.965000\n",
- "L = 10.342082, acc = 0.965000\n",
- "L = 10.338726, acc = 0.965000\n",
- "L = 10.335375, acc = 0.965000\n",
- "L = 10.332029, acc = 0.965000\n",
- "L = 10.328690, acc = 0.965000\n",
- "L = 10.325355, acc = 0.965000\n",
- "L = 10.322027, acc = 0.965000\n",
- "L = 10.318704, acc = 0.965000\n",
- "L = 10.315386, acc = 0.965000\n",
- "L = 10.312074, acc = 0.965000\n",
- "L = 10.308768, acc = 0.965000\n",
- "L = 10.305467, acc = 0.965000\n",
- "L = 10.302172, acc = 0.965000\n",
- "L = 10.298882, acc = 0.965000\n",
- "L = 10.295597, acc = 0.965000\n",
- "L = 10.292319, acc = 0.965000\n",
- "L = 10.289045, acc = 0.965000\n",
- "L = 10.285777, acc = 0.965000\n",
- "L = 10.282515, acc = 0.965000\n",
- "L = 10.279258, acc = 0.965000\n",
- "L = 10.276006, acc = 0.965000\n",
- "L = 10.272760, acc = 0.965000\n",
- "L = 10.269519, acc = 0.965000\n",
- "L = 10.266283, acc = 0.965000\n",
- "L = 10.263053, acc = 0.965000\n",
- "L = 10.259828, acc = 0.965000\n",
- "L = 10.256609, acc = 0.965000\n",
- "L = 10.253395, acc = 0.965000\n",
- "L = 10.250186, acc = 0.965000\n",
- "L = 10.246983, acc = 0.965000\n",
- "L = 10.243785, acc = 0.965000\n",
- "L = 10.240592, acc = 0.965000\n",
- "L = 10.237404, acc = 0.965000\n",
- "L = 10.234222, acc = 0.965000\n",
- "L = 10.231045, acc = 0.965000\n",
- "L = 10.227873, acc = 0.965000\n",
- "L = 10.224707, acc = 0.965000\n",
- "L = 10.221545, acc = 0.965000\n",
- "L = 10.218389, acc = 0.965000\n",
- "L = 10.215238, acc = 0.965000\n",
- "L = 10.212092, acc = 0.965000\n",
- "L = 10.208952, acc = 0.965000\n",
- "L = 10.205816, acc = 0.965000\n",
- "L = 10.202686, acc = 0.965000\n",
- "L = 10.199561, acc = 0.965000\n",
- "L = 10.196441, acc = 0.965000\n",
- "L = 10.193326, acc = 0.965000\n",
- "L = 10.190216, acc = 0.965000\n",
- "L = 10.187112, acc = 0.965000\n",
- "L = 10.184012, acc = 0.965000\n",
- "L = 10.180918, acc = 0.965000\n",
- "L = 10.177828, acc = 0.965000\n",
- "L = 10.174744, acc = 0.965000\n",
- "L = 10.171665, acc = 0.965000\n",
- "L = 10.168591, acc = 0.965000\n",
- "L = 10.165521, acc = 0.965000\n",
- "L = 10.162457, acc = 0.965000\n",
- "L = 10.159398, acc = 0.965000\n",
- "L = 10.156344, acc = 0.965000\n",
- "L = 10.153294, acc = 0.965000\n",
- "L = 10.150250, acc = 0.965000\n",
- "L = 10.147211, acc = 0.965000\n",
- "L = 10.144176, acc = 0.965000\n",
- "L = 10.141147, acc = 0.965000\n",
- "L = 10.138122, acc = 0.965000\n",
- "L = 10.135103, acc = 0.965000\n",
- "L = 10.132088, acc = 0.965000\n",
- "L = 10.129078, acc = 0.965000\n",
- "L = 10.126073, acc = 0.965000\n",
- "L = 10.123073, acc = 0.965000\n",
- "L = 10.120078, acc = 0.965000\n",
- "L = 10.117088, acc = 0.965000\n",
- "L = 10.114103, acc = 0.965000\n",
- "L = 10.111122, acc = 0.965000\n",
- "L = 10.108146, acc = 0.965000\n",
- "L = 10.105175, acc = 0.965000\n",
- "L = 10.102209, acc = 0.965000\n",
- "L = 10.099248, acc = 0.965000\n",
- "L = 10.096291, acc = 0.965000\n",
- "L = 10.093339, acc = 0.965000\n",
- "L = 10.090392, acc = 0.965000\n",
- "L = 10.087450, acc = 0.965000\n",
- "L = 10.084512, acc = 0.965000\n",
- "L = 10.081579, acc = 0.965000\n",
- "L = 10.078651, acc = 0.965000\n",
- "L = 10.075728, acc = 0.965000\n",
- "L = 10.072809, acc = 0.965000\n",
- "L = 10.069895, acc = 0.965000\n",
- "L = 10.066986, acc = 0.965000\n",
- "L = 10.064081, acc = 0.965000\n",
- "L = 10.061181, acc = 0.965000\n",
- "L = 10.058286, acc = 0.965000\n",
- "L = 10.055395, acc = 0.965000\n",
- "L = 10.052509, acc = 0.965000\n",
- "L = 10.049628, acc = 0.965000\n",
- "L = 10.046751, acc = 0.965000\n",
- "L = 10.043879, acc = 0.965000\n",
- "L = 10.041011, acc = 0.965000\n",
- "L = 10.038148, acc = 0.965000\n",
- "L = 10.035290, acc = 0.965000\n",
- "L = 10.032436, acc = 0.965000\n",
- "L = 10.029586, acc = 0.965000\n",
- "L = 10.026742, acc = 0.965000\n",
- "L = 10.023901, acc = 0.965000\n",
- "L = 10.021066, acc = 0.965000\n",
- "L = 10.018234, acc = 0.965000\n",
- "L = 10.015408, acc = 0.965000\n",
- "L = 10.012586, acc = 0.965000\n",
- "L = 10.009768, acc = 0.965000\n",
- "L = 10.006955, acc = 0.965000\n",
- "L = 10.004146, acc = 0.965000\n",
- "L = 10.001342, acc = 0.965000\n",
- "L = 9.998542, acc = 0.965000\n",
- "L = 9.995746, acc = 0.965000\n",
- "L = 9.992955, acc = 0.965000\n",
- "L = 9.990169, acc = 0.965000\n",
- "L = 9.987387, acc = 0.965000\n",
- "L = 9.984609, acc = 0.965000\n",
- "L = 9.981835, acc = 0.965000\n",
- "L = 9.979066, acc = 0.965000\n",
- "L = 9.976302, acc = 0.965000\n",
- "L = 9.973542, acc = 0.965000\n",
- "L = 9.970786, acc = 0.965000\n",
- "L = 9.968034, acc = 0.965000\n",
- "L = 9.965287, acc = 0.965000\n",
- "L = 9.962544, acc = 0.965000\n",
- "L = 9.959806, acc = 0.965000\n",
- "L = 9.957071, acc = 0.965000\n",
- "L = 9.954342, acc = 0.965000\n",
- "L = 9.951616, acc = 0.965000\n",
- "L = 9.948895, acc = 0.965000\n",
- "L = 9.946177, acc = 0.965000\n",
- "L = 9.943465, acc = 0.970000\n",
- "L = 9.940756, acc = 0.970000\n",
- "L = 9.938052, acc = 0.970000\n",
- "L = 9.935352, acc = 0.970000\n",
- "L = 9.932656, acc = 0.970000\n",
- "L = 9.929964, acc = 0.970000\n",
- "L = 9.927277, acc = 0.970000\n",
- "L = 9.924594, acc = 0.970000\n",
- "L = 9.921915, acc = 0.970000\n",
- "L = 9.919240, acc = 0.970000\n",
- "L = 9.916569, acc = 0.970000\n",
- "L = 9.913903, acc = 0.970000\n",
- "L = 9.911240, acc = 0.970000\n",
- "L = 9.908582, acc = 0.970000\n",
- "L = 9.905928, acc = 0.970000\n",
- "L = 9.903278, acc = 0.970000\n",
- "L = 9.900632, acc = 0.970000\n",
- "L = 9.897991, acc = 0.970000\n",
- "L = 9.895353, acc = 0.970000\n",
- "L = 9.892720, acc = 0.970000\n",
- "L = 9.890090, acc = 0.970000\n",
- "L = 9.887465, acc = 0.970000\n",
- "L = 9.884844, acc = 0.970000\n",
- "L = 9.882227, acc = 0.970000\n",
- "L = 9.879614, acc = 0.970000\n",
- "L = 9.877004, acc = 0.970000\n",
- "L = 9.874399, acc = 0.970000\n",
- "L = 9.871798, acc = 0.970000\n",
- "L = 9.869201, acc = 0.970000\n",
- "L = 9.866608, acc = 0.970000\n",
- "L = 9.864019, acc = 0.970000\n",
- "L = 9.861434, acc = 0.970000\n",
- "L = 9.858853, acc = 0.970000\n",
- "L = 9.856276, acc = 0.970000\n",
- "L = 9.853703, acc = 0.970000\n",
- "L = 9.851134, acc = 0.970000\n",
- "L = 9.848569, acc = 0.970000\n",
- "L = 9.846008, acc = 0.970000\n",
- "L = 9.843450, acc = 0.970000\n",
- "L = 9.840897, acc = 0.970000\n",
- "L = 9.838348, acc = 0.970000\n",
- "L = 9.835802, acc = 0.970000\n",
- "L = 9.833261, acc = 0.970000\n",
- "L = 9.830723, acc = 0.970000\n",
- "L = 9.828189, acc = 0.970000\n",
- "L = 9.825659, acc = 0.970000\n",
- "L = 9.823133, acc = 0.970000\n",
- "L = 9.820611, acc = 0.970000\n",
- "L = 9.818092, acc = 0.970000\n",
- "L = 9.815578, acc = 0.970000\n",
- "L = 9.813067, acc = 0.970000\n",
- "L = 9.810560, acc = 0.970000\n",
- "L = 9.808057, acc = 0.970000\n",
- "L = 9.805558, acc = 0.970000\n",
- "L = 9.803062, acc = 0.970000\n",
- "L = 9.800570, acc = 0.970000\n",
- "L = 9.798082, acc = 0.970000\n",
- "L = 9.795598, acc = 0.970000\n",
- "L = 9.793118, acc = 0.970000\n",
- "L = 9.790641, acc = 0.970000\n",
- "L = 9.788168, acc = 0.970000\n",
- "L = 9.785699, acc = 0.970000\n",
- "L = 9.783234, acc = 0.970000\n",
- "L = 9.780772, acc = 0.970000\n",
- "L = 9.778314, acc = 0.970000\n",
- "L = 9.775860, acc = 0.970000\n",
- "L = 9.773410, acc = 0.970000\n",
- "L = 9.770963, acc = 0.970000\n",
- "L = 9.768520, acc = 0.970000\n",
- "L = 9.766080, acc = 0.970000\n",
- "L = 9.763645, acc = 0.970000\n",
- "L = 9.761213, acc = 0.970000\n",
- "L = 9.758784, acc = 0.970000\n",
- "L = 9.756359, acc = 0.970000\n",
- "L = 9.753938, acc = 0.970000\n",
- "L = 9.751521, acc = 0.970000\n",
- "L = 9.749107, acc = 0.970000\n",
- "L = 9.746696, acc = 0.970000\n",
- "L = 9.744290, acc = 0.970000\n",
- "L = 9.741887, acc = 0.970000\n",
- "L = 9.739487, acc = 0.970000\n",
- "L = 9.737091, acc = 0.970000\n",
- "L = 9.734699, acc = 0.970000\n",
- "L = 9.732310, acc = 0.970000\n",
- "L = 9.729925, acc = 0.970000\n",
- "L = 9.727544, acc = 0.970000\n",
- "L = 9.725166, acc = 0.970000\n",
- "L = 9.722791, acc = 0.970000\n",
- "L = 9.720420, acc = 0.970000\n",
- "L = 9.718053, acc = 0.970000\n",
- "L = 9.715689, acc = 0.970000\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "L = 9.713328, acc = 0.970000\n",
- "L = 9.710971, acc = 0.970000\n",
- "L = 9.708618, acc = 0.970000\n",
- "L = 9.706268, acc = 0.970000\n",
- "L = 9.703921, acc = 0.970000\n",
- "L = 9.701578, acc = 0.970000\n",
- "L = 9.699239, acc = 0.970000\n",
- "L = 9.696903, acc = 0.970000\n",
- "L = 9.694570, acc = 0.970000\n",
- "L = 9.692241, acc = 0.970000\n",
- "L = 9.689915, acc = 0.970000\n",
- "L = 9.687593, acc = 0.970000\n",
- "L = 9.685274, acc = 0.970000\n",
- "L = 9.682959, acc = 0.970000\n",
- "L = 9.680647, acc = 0.970000\n",
- "L = 9.678338, acc = 0.970000\n",
- "L = 9.676033, acc = 0.970000\n",
- "L = 9.673731, acc = 0.970000\n",
- "L = 9.671432, acc = 0.970000\n",
- "L = 9.669137, acc = 0.970000\n",
- "L = 9.666845, acc = 0.970000\n",
- "L = 9.664557, acc = 0.970000\n",
- "L = 9.662272, acc = 0.970000\n",
- "L = 9.659990, acc = 0.970000\n",
- "L = 9.657712, acc = 0.970000\n",
- "L = 9.655437, acc = 0.970000\n",
- "L = 9.653165, acc = 0.970000\n",
- "L = 9.650897, acc = 0.970000\n",
- "L = 9.648631, acc = 0.970000\n",
- "L = 9.646370, acc = 0.970000\n",
- "L = 9.644111, acc = 0.970000\n",
- "L = 9.641856, acc = 0.970000\n",
- "L = 9.639604, acc = 0.970000\n",
- "L = 9.637355, acc = 0.970000\n",
- "L = 9.635110, acc = 0.970000\n",
- "L = 9.632868, acc = 0.970000\n",
- "L = 9.630629, acc = 0.970000\n",
- "L = 9.628393, acc = 0.970000\n",
- "L = 9.626160, acc = 0.970000\n",
- "L = 9.623931, acc = 0.970000\n",
- "L = 9.621705, acc = 0.970000\n",
- "L = 9.619482, acc = 0.970000\n",
- "L = 9.617263, acc = 0.970000\n",
- "L = 9.615046, acc = 0.970000\n",
- "L = 9.612833, acc = 0.970000\n",
- "L = 9.610623, acc = 0.970000\n",
- "L = 9.608416, acc = 0.970000\n",
- "L = 9.606213, acc = 0.970000\n",
- "L = 9.604012, acc = 0.970000\n",
- "L = 9.601815, acc = 0.970000\n",
- "L = 9.599621, acc = 0.970000\n",
- "L = 9.597430, acc = 0.970000\n",
- "L = 9.595242, acc = 0.970000\n",
- "L = 9.593057, acc = 0.970000\n",
- "L = 9.590876, acc = 0.970000\n",
- "L = 9.588697, acc = 0.970000\n",
- "L = 9.586522, acc = 0.970000\n",
- "L = 9.584349, acc = 0.970000\n",
- "L = 9.582180, acc = 0.970000\n",
- "L = 9.580014, acc = 0.970000\n",
- "L = 9.577851, acc = 0.970000\n",
- "L = 9.575691, acc = 0.970000\n",
- "L = 9.573534, acc = 0.970000\n",
- "L = 9.571381, acc = 0.970000\n",
- "L = 9.569230, acc = 0.970000\n",
- "L = 9.567082, acc = 0.970000\n",
- "L = 9.564937, acc = 0.970000\n",
- "L = 9.562796, acc = 0.970000\n",
- "L = 9.560657, acc = 0.970000\n",
- "L = 9.558522, acc = 0.970000\n",
- "L = 9.556389, acc = 0.970000\n",
- "L = 9.554260, acc = 0.970000\n",
- "L = 9.552133, acc = 0.970000\n",
- "L = 9.550010, acc = 0.970000\n",
- "L = 9.547889, acc = 0.970000\n",
- "L = 9.545772, acc = 0.970000\n",
- "L = 9.543657, acc = 0.970000\n",
- "L = 9.541546, acc = 0.970000\n",
- "L = 9.539437, acc = 0.970000\n",
- "L = 9.537332, acc = 0.970000\n",
- "L = 9.535229, acc = 0.970000\n",
- "L = 9.533129, acc = 0.970000\n",
- "L = 9.531032, acc = 0.970000\n",
- "L = 9.528939, acc = 0.970000\n",
- "L = 9.526848, acc = 0.970000\n",
- "L = 9.524760, acc = 0.970000\n",
- "L = 9.522675, acc = 0.970000\n",
- "L = 9.520592, acc = 0.970000\n",
- "L = 9.518513, acc = 0.970000\n",
- "L = 9.516437, acc = 0.970000\n",
- "L = 9.514363, acc = 0.970000\n",
- "L = 9.512293, acc = 0.970000\n",
- "L = 9.510225, acc = 0.970000\n",
- "L = 9.508160, acc = 0.970000\n",
- "L = 9.506098, acc = 0.970000\n",
- "L = 9.504039, acc = 0.970000\n",
- "L = 9.501983, acc = 0.970000\n",
- "L = 9.499930, acc = 0.970000\n",
- "L = 9.497879, acc = 0.970000\n",
- "L = 9.495832, acc = 0.970000\n",
- "L = 9.493787, acc = 0.975000\n",
- "L = 9.491745, acc = 0.975000\n",
- "L = 9.489706, acc = 0.975000\n",
- "L = 9.487669, acc = 0.975000\n",
- "L = 9.485636, acc = 0.975000\n",
- "L = 9.483605, acc = 0.975000\n",
- "L = 9.481577, acc = 0.975000\n",
- "L = 9.479552, acc = 0.975000\n",
- "L = 9.477529, acc = 0.975000\n",
- "L = 9.475510, acc = 0.975000\n",
- "L = 9.473493, acc = 0.975000\n",
- "L = 9.471479, acc = 0.975000\n",
- "L = 9.469467, acc = 0.975000\n",
- "L = 9.467459, acc = 0.975000\n",
- "L = 9.465453, acc = 0.975000\n",
- "L = 9.463450, acc = 0.975000\n",
- "L = 9.461450, acc = 0.975000\n",
- "L = 9.459452, acc = 0.975000\n",
- "L = 9.457457, acc = 0.975000\n",
- "L = 9.455465, acc = 0.975000\n",
- "L = 9.453475, acc = 0.975000\n",
- "L = 9.451489, acc = 0.975000\n",
- "L = 9.449505, acc = 0.975000\n",
- "L = 9.447523, acc = 0.975000\n",
- "L = 9.445545, acc = 0.975000\n",
- "L = 9.443569, acc = 0.975000\n",
- "L = 9.441595, acc = 0.975000\n",
- "L = 9.439625, acc = 0.975000\n",
- "L = 9.437657, acc = 0.975000\n",
- "L = 9.435692, acc = 0.975000\n",
- "L = 9.433729, acc = 0.975000\n"
- ]
- }
- ],
- "source": [
- "# use the NN model and training\n",
- "nn = NN_Model([2, 6, 4, 2])\n",
- "nn.init_weight()\n",
- "nn.backpropagation(X, t, 2000)\n",
- "\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEICAYAAAC3Y/QeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzsnXV4FFf3xz93Zi3uCRbc3R2KtFixlra0hXpLjVLlrb116t63Qu3XFkqLFHer4F4kSCBIDELcszrz+2NDYNkNxBNgPs/D85DZmXvPJrtn7px7zvcIVVXR0NDQ0Li2kKrbAA0NDQ2Nqkdz/hoaGhrXIJrz19DQ0LgG0Zy/hoaGxjWI5vw1NDQ0rkE056+hoaFxDaI5fw2NciCEeF0I8WsVz9lQCKEKIXRVOa/G1YXm/DU0KgkhxAAhREIFjHNKCHF9RdikoXEOzflrXFVcaavhK81ejasHzflr1HiEEJ2FEP8KIXKEEPOEEHOEENMKXxsghEgQQjwvhEgCfio8/pAQIkYIkS6EWCKEqFN43C1kIoT4WwjxYOH/7xVCbBJCfCSEyBBCnBRCDL/g3EZCiH8KbVkLhBZjsw+wEqgjhMgt/FenMEz0hxDiVyFENnCvEOLnc+/nwvdU+P+ZQH1gaeEY/7lgmglCiDghRKoQ4uWK+F1rXDtozl+jRiOEMAALgZ+BYOB34KaLTqtV+FoDYJIQYhDwLnAbUBuIBWaXYtoeQDROx/4B8KMQQhS+9huwu/C1t4B7PA2gqmoeMBw4raqqb+G/04UvjwH+AAKBWZcyRFXVu4A4YFThGB9c8HJfoAUwGHhVCNGqFO9R4xpHe+TUqOn0xPk5/UJ1ClEtEELsuOgcBXhNVVULgBBiAvB/qqruKfz5RSBDCNGwhHPGqqr6feG1vwBfAxGFN6JuwPWFc20QQiwtw3vaqqrqosL/F5y/r5SaN1RVLQD2CSH2AR2Aw2UdTOPaQlv5a9R06gCJqqsCYfxF56Soqmq+6JrYcz+oqpoLpAF1Szhn0gXX5hf+17dw3IzCVf05Yik9F9tfVpIu+H8+Ths1NEqE5vw1ajpngLrCdXkcedE5F0vTnsYZAgKK4u8hQCJwznF7X3B+rVLYElQ43jnqX+L84iRzLz6edxl7NOldjQpHc/4aNZ2tgAOYLITQCSHGAN0vc83vwH1CiI5CCCPwDrBdVdVTqqqm4LwJTBRCyEKI+4EmJTFEVdVYYBfwhhDCIIToC4y6xCVngRAhRMBlht4LjBBCBAshagFPeRincUls1NAoKZrz16jRqKpqBW4GHgAygYnAMsByiWvWAa8A83Gu1psAt19wykPAVJyhoDbAllKYdCfODeF04DVgxiXsOILzRnRCCJF5LuPIAzOBfcApYA0w56LX3wX+WzjGc6WwVUOjWITWzEXjSkMIsR2YrqrqT9Vti4bGlYq28teo8QghrhNC1CoM+9wDtAdWVbddGhpXMlqqp8aVQAtgLuADnABuUVX1TPWapKFxZaOFfTQ0NDSuQbSwj4aGhsY1SI0N+4SGhqoNGzasbjM0NDQ0rih2796dqqpq2OXOq7HOv2HDhuzatau6zdDQ0NC4ohBClKjqXAv7aGhoaFyDaM5fQ0ND4xpEc/4aGhoa1yCa89fQ0NC4BtGcv4aGhsY1iOb8NcqFLa8Ah8Va3WZoaGiUkhqb6qlRs0nfd5xND35E+r7jCCGoN6IHfb5/FlPo5dSLNTQ0agLayl+j1BQkZ7DiuqdI230U1e5AsdlJWLGdVYOfpabIhSgOB6qiVLcZGho1Fs35a5Saoz+uQLHaXY4pNjs5J5NI3hxVTVY5yYqOZ8V1T/GLcSgzvIbz94S3sWTkVKtNGho1Ec35a5SazEOxOMye4/w5J6pPbNOclsWy3pM5uykKFBXFZid2/gZWDX6uxjyRaGjUFDTnr1Fqwnq0QvY2uR1XFYWgdo2wZOaiOBxVbtexn1Y5b0oXOHrFaic7JpHkLQer3B4NjZqM5vw1Sk3Tu4dgCPBG6OSiY7LJgG+DWqwe+jyza43jt+Cx7H1rZpXG3TOiTuIo8PBEoqpkH02oMjs0NK4ENOevUWoM/j6M3vkNjW4fiD7AB1NEEHWHdyc3NglLahaK1Y4tJ5/97//Ovnd+A0BVVRJW7WDjAx+w5dFPSd52qMLtCu3cHJ2HJxKAwLYNK3w+DY0rmRrbzKVr166qpup55bCgzX1kHY5zO6739+aO1IVsuu8D4hZtxp5nBkkgmwy0+8/tdHr17gqzwZqVy/wW92BOzYbCJw7ZqCekWwtG/PMZQogKm0tDo6YihNitqmrXy52nrfw1KoS8+BSPxx0FFs6s3X3e8QMoKo58Cwfe+52cU0kVZoMhwJdRO76m/pjeyF5GDAE+NJ80kiEr39Mcv4bGRWhFXhoVQmCbBqRuP+J23BDkR8KaXdjzLe4XSYLE1Ttp+fCoCrPDt34Eg+e/UWHjaWhcrWgrf40Kodt7k5C9jC7HZG8jXd97CIOfN0J2/6gJSSo2Rq+hoVG5aM5fo0KodV0Hhqx8j7CerdD7eRPYpiH9Z7xIs3uH0WTi9Uh62f0iVaX+mN5Vb6yGhoYW9tGoOGr1b8/ILV+6HQ9oHknP/01h2+QvEHoZgUBVFAbNfwODv081WKqhoaE5f40qofn9w2kwtg+Ja3cjG/TUGdIFvY9XdZuloXHNojl/jSrDGOxP4/EDq9sMNxSbHVVVkQ366jZFQ6PK0Jz/VYwtJ5+UndEYg/0I7tBES3e8iPwzaWye9DGJq3eBqhLRrx19vn8O/yZ1qts0DY1KR3P+FYA1K5eDn83n1PwNGPx9aPXETTS6bUC1OttDXy5k1/PfIxl0qHYHPvXCuGHle/g1rFVtNtUkFLuD5X2fJC8+GdXu1CFK2rCfZb0nc+vxWeh9Kz8k5bDaOPHbemIXbMIY4k/LR0YR1qNVpc+roQGa8y83trwClnZ/jLz4lCKly/R9x0nZdogenz5eLTYlbdzPrhe+x1FgwVHgzK/PPpbImmHPc/Phn7UnACBh5XYsqZlFjh8oKj47OftPmj94Y6XO77BYWXHd02QePOUsfhOCk/P+puu7D9H6iZsqdW4NDdBSPctNzIy15CWmuUgc2/PMRH+7jLxEz1Wvlc3h/y10EzhTFYX8xFTS98ZUi001jZyY0zgsdrfj9jwzmVUgAnfitz/PO34A1Xnj2fX8d1gycyt9fg0NzfmXk9Ord+LIN7sdlww6UrYdrgaLoCA500XW+BxClrGka41NAILaNUIyuD/46ny9COnYtNLnPzV/w3nHfwGSQUfypgOVPr+Ghub8y4l3ZJjH6lVVVfGqFVwNFkH90b3dqm3BmdUS2q1FNVhU86g9qBP+zeoiGc9n+Ai9jCk0gIbj+lX6/MYQf/AUflNV9AFa7YNG5aM5/3LS6rExLg4EnLIFXuFBhPduUy02tZg0Et/64S43AJ23iS7vPlApRVXm1CyiPv2DLY99RsyMNcQt3creab8SM3Mtdg9PRRVBwdl0dr34PUt7Ps7fd04jdVd0qa4XksTwvz6h+YMjMAT5ovf3psmd1zNy25dkx5wmbW+MW0OanJNnWDf2FWb4jGBWyFh2TJ2OvZiOZpejxcOjkL0Mbsd1ft7V9rnRuLbQJJ0rgLglW9h4/wcoVjuqQyGgZSSDF7yJb4OIarPJlltA9HfLiFu8GVN4IK2fuJla/dtX+Dxpe2NYOeBpFJvDubksCVAB4bzhyCYDN278nIAWkRU2Z15CCos7T8KWXYBitRVJRPef8SINby77qj0j6iTrx75CwdkMEAKdl5Hrfv8vdQZ1wpyWxYKW92LNyC1qUCObDET0b8/QVe+Xab6oz/5gz0s/OsNPKuh8TQxd/QFBbRuV+T1oaJRU0llz/hWEYneQefAUej8v/BpfO3niC9s/SGbUyeJPEIKQTk0ZvWt6hc25edLHHPt5tWumDmAKC2T86blIsgcdocvgsFiZE3k7ltQsl+M6byPjjs4gZuZa9r45syh76hyyl5FR278qs8O2pGdzdlMUhgAfwvu2LZPtGhoXUlLnr6V6VhCSTia4Q5PqNqNKMadkXr49oqqSEXUKc0omprDACpk3cfVON8cPYM8rIC/2bJluvvHLtqFYbG7HFYfCsRlrSNt11M3xg/PvnhF1sszO3xjsT/3RmridRtWjxfw1yozQ63DGeC5PRT5hGkMCPB5XHAqGQN9LXmsvsHB2cxQZB0+52GROzkTxcENRLDbyE1MJat8YyeQeo1cVBf/m9Ur5DjQ0qh/N+WuUGWOgL2G92njMdipCCALbNMQrPKjC5m377K3ofFz7AEgGHXWu74wx2L/Y6479sprfI8ax9sYXWdbjcRa1e6Cok1hEv3Yer9H5elFncGdaTBqJfFFqqGTQEdSuMaGdm5fzHWloVD2a879CsOXkk7ormvwzadVtigv9Z7yAT70wdL5e4CFzUdLLXDfrpQqds/Gdg2k95WZkkwF9gA+yl5HwXm3oP7P4eVJ3RbP1sc+x5xZgy87Hnm8m60g8q4dMRVVVgto2osHNfV1uKpJRT2DL+kSO7IV3rWBGbPycsF6tQRJIBh2Nbh/IkFXvVeh709CoKrQN3xqOqqrsfXMGBz6Yg6SXUSw26g7rTv9fX6wxksiKw8H+d39n39u/usXNJS8DIzd9QUinZhU+ryU9m4wDJ/GuF3ZZMbaN971PzMy1oLh+3nW+Xgxb9xFh3VuiKgrR3y9j1ws/YMvOd2bhCEGn1+6m/fN3FF2j2B0ISSAkbe2kUfPQGrhfJZyYtY6oD+fiKLBgy87HYbGRuHoHWx7+tLpNK0KSZey5BR43THGoJP2zv1LmNQb7U+u6DiVS4cw/k+7m+AGEJDAXZvgISSJh+XanVIeqolhsKGYr+976lVMLNmLNymXHs98wt8EdzG14J7tf+Qm7h01gDY0rgQpx/kKI/xNCJAshoop5XQghvhBCxAgh9gshOlfEvNcC+z+Y7VYo5TDbODV/A7bcgjKPqyoKsYs38+dtb/D3HdOcGTTleAo0RQQie9gQlQw6TKHFx+HLQ35SOn/e+jq/mIbyi2kof41/k4Kz6R7PjRzZE9nbverZYbER1qMl4CxWS1y72+0mZs83s//92SzrM4XDXy+m4Ewa+QkpHPx4blHYSEPjSqOiVv4/A8Mu8fpwoFnhv0nANxU071WPOTnL43EhCaxZZRMAU1WVfya8w4aJ7xD7xwZOzvmLP295ne1PurdgLClN7hzsMQwiyRL1b+pb5nGLw2G1sazXZOIWb0Gx2lGsdmIXbmJZ7ydQbO6Cbc3uG4ZvZLhLVa3Ox0SHlydiKswesqRlI+k859nnnTpDXlyyy43BYbaSvu84ZzdqWjwaVx4V4vxVVd0AeF5yORkDzFCdbAMChRC1K2Luq51aAzp4dKqGAB+8a4eUaczkzVHEL9vqIixmzzNz9McVZB6OLdOYXhHBDF4yDWNoAHo/L3S+XnjXCWHo2g8rZW8ibvEWLGnZLvn+qt2BOTWLuKVb3c7X+3gxasfXdHr9XsJ6tKLeiB4MnPcaHf87segcvyZ1kDx08xI6Ga/aIdg9PGkpVnuJpSVy486y+ZFP+KP53awY+AwJK7eX6DoNjcqgqoq86gLxF/ycUHjszIUnCSEm4XwyoH79+lVkWs2my7T7SVy9E3ue2enohED2MtDzf1PKvOGYsHKHR80dVVFJXL2LwFYNyjRunUGduP3MPNL2HCsqequsTdGsw7HY89ydsT3PTNbhOI/X6P28aTd1PO2mjvf4uqST6fnFZDY//AmOfGcsX9Lr0Pt502j8AHJiTrv93iSjHt8SNMjJjTvL4k6TsOUUoNod5MQk8ueOw3R68z7aPXvbZa/X0KhoalSFr6qq3wHfgTPbp5rNqRH4N63L2L3fs/+93zm7cT9+TevS/vnbCe9VdvEvfYAPkl7v1MW5AEkno/f3Lpe9kiwT1q1lucYoCQGtGqDz8XJbjet8TAS0KvvCocmE6/GpH07Uh3PIjU2m9qCOtJs6Hp2PiaiP5kKBKJLLFpKEwc+byJE9Lzvuvnd+K3L853AUWNk19VuS/t5H/5kvYrxMgZqGRkVSYameQoiGwDJVVdt6eO1b4G9VVX8v/DkaGKCq6pmLzz2HlupZeeTGJ7Og5b1ucgU6HxO3npiFZNCh9/ep0R2/HFYbC1reQ15CapFDFToZn8hwxh35GUlf8euajIOn2HD3e2QedGoZhXZrSf+ZL5aoNeb8FneTfSzR42tCpyOibxuG//lJhdqrcW1S07R9lgCThRCzgR5A1qUcv0bl4hsZTv8ZL7Dx3vfPV+eqENG/PXMb3IHqcOBdN4ze3zxF3aHdqtfYYpANekZu/ZJtU74kbvFmEIL6Y/rQ84vJl3T8trwC4hZvwZqZS53rOxPQvORqo0FtGjJm93TMaVkIWS7VSt27bmixzl+120nZfoTs46e15vEaVUaFOH8hxO/AACBUCJEAvAboAVRVnQ6sAEYAMUA+cF9FzKtRdhqO60/dYd1I+nsfkk4m+oflJKzYXtSOMvdUEuvHvcaIDZ/VWPmC7ONn8K4bSqspN9PkjkGXLSQ7u+Uga0e8gKqqqHYFUGn+4I30+OzxUj3lmIrRFroU7Z+/g5QdR4r2Ei5GMujIT0jRnL9GlaFV+F7FZB46xek/92IM9qP+mN7FZt0UnE1nXqMJLn2IARCChuP6MXDua5hTszi7OQpjkB8RfdtWe3Xrtie/5NiPK51FVkIgG/V0eOlOOrw80eP5is3O7Dq3YknLdjmu8zExYM6rRI7oUek2H5m+hO1PfYVidU9FlU0GxifMuaQ2kYZGSahpYR8NnIVVuaeS0Pt5V5i8scd5VJXNkz7mxG9/gqoi9DJbH/+coas/IKy7+2ZsbmwyklHv7vxVlbhlW1k95D8kbdyPbNQ72wz6+zB07YcEtqyejKzUXdEc/XHF+VW0quIosLDv7Vk0vnMwfo3cs4jPbo7ymP9/LsW1Kpx/y0dGU3d4DxZ3fAhbTn5RxbHOx0Srx8dojl+jStHkHaqIhJXbmVNvPAvbP8ic+rez6oapmFMyAacufsyMNRyftQ5LRvkbrMcu3MTJ2X/hKLDgMFux5xRgy8pj3eiX3VoTAvg3r+dZmgFQzDZOr3NWvdqy87HlFJB/Oo01w56vtsrW2EWb3W9UhcQv95w778nxnyPzcCyLOj7Ekm6PEv3dMo+/I0/jleS8i/FrEMHY/T/Q7N6heNcJJah9Y3p99SRd3n2o1GNpaJQHbeVfBWQeOsWft77hEu9N+mcfa4a/QMvHxrBt8hcInQQIVIdCv1+ep9Et1112XIfVhjUjB2NogEsHqKM/LHcp4Co6v8BK6o4jbmmixkBfWk4eS/TXS0rWc1dVsaTnkLrjCGE9Wl3+/ApGNukRsoSquDpfIUnOpxMPRPRpi+pQ3F+QBLknzhSFYrYfjiVxzS4G/fG6x3Gyjsaz+eFPSN4YhZAF9cf2pdfXT5ZqH8A3Mpy+P0y95DkOqw2H2Yrez7tGZ11pXLloK/8q4OAXC91W1qrdQebhOLY+/plzdZ5rxp5bgKPAwsZ73i96KvCE4nCw8/nv+C14DPMaTeD3iHFEf7/s/OseYsoACFBsnler3d6fRJf3HypxOEpIEtbsvBKdW9E0Gj/QowyDqig0GNvH4zU6bxP9fnkB2cvoVOsEJJMBIYTL78uRbyFx1Q5S9xx1G8OSkcOy3k9wdsMBVEVBsTmIW7SZlQOfqbCnIHu+mU0PfsSswNH8FnoT81vcw+k//62QsTU0LkRz/lVAzvHTHledqqIUZp1chIBTCzYWO96el3/k8FeLsOc7wzrW9By2P/01p+ZvAKDJxOvdmp04xxWE9fS8UhdC0PrxsQxa+KZTm/8yKDY74b3akLztEMv7TmGG7wjmNZlA9A/LKz0cFNCsHt0/eQzZZEDnY0Ln64XsZaTfjBcuefNqeHM/bj70Ex1enkjrJ2+m3ojuHv8uikMhefNBt+MxM9YUKX4WnWuzk3vqLEn/7KuQ9/b3HdM48dt6HGZrUSXw+tEvk3GpPskaGmVAc/5VQJ1BnVwExc6h2h2oiqebglpsTFux2Tn85WK3lEFHvoW9b84AoMnEGwjv0xadr/MGIBn1yN5Grpv1MrIH7ZoLCe/VGq+IoGKzeYQkIXsb6fHZY2QdjWfV9c+RvOUgjnwLuSeT2PHU1+x/7/dLzlERtHx4FLeenEXPL56g15dTGJ8wp0ShMt8GEXR85S56fPo4we2bIPTuTxCSQYdXrWC34xlRJz2maqqKcvlexiUgN+4sp9fudvvbOyw2Dnw0p9zja2hciBbzrwJaPDKKQ18uxGzPQi0Mu+i8TUSO6knc0q1uDkUAkSN7eRzLmpVX7EZjXnwK4JRpGLLiXU6v3U3i2l0YQwNoOvEGfOqFXdZWIQTD1n3EujH/JTsm0bmXIAka3zmY/PgUTOGBtHxkFKFdW7B25Es4ClwdlT3fzP53f6PN07eg8yDxXJF4RQTT7L5LickWz6n5G9j/3u9Ff48LkQ16Ike5//5Du7Tg5Oy/3PZThBAEtStbA/dzZB6O5dgvqz22xFQdCpmHPOsVaWiUFc35VwHGID/G7PmWvdN+JX7pVgyBvrR5chxN7x3K9ie/5NhPq7DnW0A4873bTR1fbLGPMdgPvZ83Fou71HNwxyZF/xeSRN2h3cpUoevbIIKxe78n61gCtux8gts39lg1m743xiUEUoSqUnA6Fb/GNbNgyZKezYa730Px8HTlUz+cG5a/6/HG1WTi9ex9a4YzJFMYLpKMeoLaNyasZ+sy2aI4HGy4+13iFm0BgccnC6HXEV5MuE5Do6xozr+K8IoIptf/ptDrf1Ncjvf4fDKNxg/k5Jy/EDqZJncOJrRri2LHEZJEtw8msXXyFy6OQvY20rWC0wUDmtW75Ov+zeqRf9q9p7CqKJgiKq5he0VhycjhzF97Sd4chZA8NRwWNBo/gKA2DT1er/d1ykLveHY68cu2Iut1NLl7CF3eeaDMGTlHf1hB/OKtbjpLRQiBzstAq8fHcOTbpSSu2YVv/XBaPjKagBYll6bQ0LgYzfmXkJxTSeycOp3E1bvQeRtpMWkkHf478bIx9MshhCCiT1si+rjp4blhN1uJW7iJvLhkWk+5mYSVO8iPTya4Y1O6vPOgxwKuyqTja3c7Qz8X3YRaPHRjjekvfI7o75ex/cmvkAw6FKvd856KiucN+AvwqRvGwNmvlNseW04++9+fTdSHc4qtQdD5elF7YEc6vHIX68a8Qn5iKvY8M0InE/3dcgbOeaXY8KCGxuXQnH8JMKdlsbT7o1jTc1EVBXtuAVEfzyN933GuXzytSmzIjU9mea/JWHPysecWOJul1A7h5uhfinLMc+OT2fPf/yNx1U70/t60euImWk8eW2lSDLUHdOS6X19i+9Nfk5+QguxtpPUTN9HpjXsrZb6ykhF1ku1PfY3DbC12Ix1A9jLQ8Jb+lW6PYrOzvO8Uso8lFO/4vU0M/ON1Qrs04/CXi8iLO4vD7EwXVu0OHHYHG+/7gNuT/nCp8dDQKCma8y8BR79bjj3P4pKZ4yiwcHrdHjKPxFWJzMHmhz6m4GxGUazZnlNArjmJnVO/pf6YPmQeiiXqwznYcvJRHQrmlEx2v/QDmVEn6fPds5VmV4Oxfak/pg+OAguyyVDtmj+eOPp/K916F3jCGORHSOdLi8NVBLGLNpNzMqnImXvCXmDhz5tfRXUoSAadx3MdFhuZB08R3L6JhxE0NC5Nzfum1kBSth/2GJOV9DIZByo//1qxOzizfo9bTrpisxPzy2o23v0ee179CWtmrss5jnwLx2euJS8xpVLtE0Kg8zbVSMcPYM3K9VzdexGW9BwOfjq/0u1J3nrQY0tI4PzvUFVx5FtQLDbsuZ6rrlWHA71f+ZrvaFy71Mxvaw0jsE1DJA+yAapDwb9p8RkteQkpbHzgA2bXvZUFbe/n6I8ryl4AVdyGouqMH1OMc5NMBtL3Hi/bnFcJDW/qV1TzcCkcBRaO/t+KSrfHt2EtZC+j23Ghkz1vlHv4zAhJIqBFpEcROw2NkqA5/xLQ8tHRyAbXCJlk0BPUrnGxGvIFyRks7vwwx2espeBMOlmHYtn+1FfseObrUs8v6WTqDO7sMQf8cig2e4l6zF7N1BvRg1r923uuer6IC9ssVhZNJgx2l6eQBKbQAAxBfh6vEXqds8Oanzc6Py98G0YweOFblW6rxtWL5vxLgE+9MIb99QkhnZshZAnJoKPBuH4MWflusdcc+mJhUfz9HPY8M9HfLqMgOaPUNvT5/lm8agej8/MCSTgd2WWyCyWDjpCOTYtNXbxWEJLE4MXT6Pfz8zS8bQDN7huGT/1wt/Nko57Gd15f6faYQgIY9ufH+Leoh2wyIBn1hHRqxoiNn1NncCfPVcc6mTF7v6fP989yw7J3GHd0Br4NIirdVo2rF62ZSymxF1iQdPJle8Qu7/ckyZuj3I7rA3wYNO816lzfpdRzO6w24hZtJutoAkHtGrHz+W/JOereGlDIEkKWqDe8B31/+g/GQF+STmdz8lgaIWE+NGsVdlUpRdpyCzg1fwMFSelE9G1HeO82l31/af8eY+WgZ1Fsdhz5FnS+Xvg1rs2Nm75AXwJto4pAVVXyElKQ9Dq8C+Uk8hJTWNThIWxZeUULB52PifYvT6DDC3dWiV1VRXJSDulp+UQ2CMTH1z0MplE2tGYulYTOQ6zWE/5N65Ky7ZD7Jq3V7nHVWRJkg55Gtw0o+tmnXhirBhc6sAIrOl8vfOqHM3jRm3jXCkHv64XiUPjm443s3haPrBOoKgSFePPiWzcQGHzlbxam7Y1h1aBnUewOHGYrslFPRL92XL942iVv0CGdmnHriVmc+G09ubFnCe/VhshRvTyqhVYWQgh8I10/Cz51w5zV4G/O4PS6f/GqFUS7qeNpOK7yU1Crivw8K1+8+zcxR1PR6STsNoWho1tyy8ROV9WipKajrfwrifT9x1nW+wmXAijJoCOsRytG/PNZhc1jTsvi+K/ryDlxhog+bWlwU18Xp7dm2RHmzdyD1XI+li1Jguatw3lx2pAKs6PRo2DnAAAgAElEQVQ6UFWV32vdguUi+WvZ20i3DybR6rGx1WSZxqX47J2/OLDnNPYLCuoMRh33PtqDPgMaV6NlVwfayr+aCW7fhIFzX2PLpI+xZDiLw+oO7Ua/n5+v0HlMIQG0eXJcsa+vXxnt4vgBFEUl5kgKOdlm/PwvvwlaU4n6aK6b4wdniuvRH1Zqzr8GkpdrcXP8AFaLnZWLDl2Rzt9mc7Bm6WE2rDuOqqr0GdCYYWNbYzTWbPdas627wokc0YPb4ueQl5CCwd8bQ4BvldtgNXuuIBWScLspXGlEfTKv2NdsuQXsmDod2aCn8Z2Dq2XTOzf2LFlH4vBvXk9LySwkP8+GJAvw8LHMzSlG36gGo6oqH72xnhNHU7Fand+npfOj+HdnAq++PwypDBl6VYXm/CsZT3HdkqCqKmfW7+H4b+sRQtDkrhuodV2HUsdEu/Sqz1+rjrqttAICvQgOvXJi/g6rzZlpVShloNgdmJOL73aWF3eWg5/MQ0gSBz/7g85vP0Dbp26pMls33PUu8Uu3Ihn1KBYbdYZ0ZcDsVypd5voclvRsFJsdrwj3vgTVSUiYDyaT3m3hIUmCdh1r5g1SVVVsNgW9XnL7/kUfSuZkTFqR4wewWR2cTshi/7+n6dj10uKI1UnNvS1dYTgsVk798Q+HvlhAyo4j5e5mteXRT1l/06vE/LyaYz+vZt2ol8tUIzDmtnYEBHlhKHwE1ekkjEYdk57sfUVsrmUcPMWyPk8w03sEM71H8Ped07Bk5iLpZExhxffNVax2p1CbQ8FRYGXPSz9WeqXzOf597Wfil23DYbZiy8rDYbZyes0udj3/XaXPnZeQwooBTzO7zq3MbXgnC9rcR+pu95aU1YUkCe55tAcGo1xUt6jTSXj76Bl7e4fqNc4DWzec5OkH5jNp/O88ftdcViw66PLdPnE0FbuHnhAWs53j0alVaWqp0TZ8K4Cso/Gs6P8U9gILitWOpJNLlHFSHKm7j7LiuqfctN1lLyOjdnxd6hCGucDG5r9PcPhAEhG1/Rg4tDmh4VUfgiotBckZzG9xD7bs/KIqV8mgI6hdI0bt+IYj05ewa+p3Lk3nhSx5lHKQvY30+PRxWjx0Y6XbPSt4DNbMXLfjOm8jE3OWV9pNV3E4mN/sbvLik11+B3o/b8Ydm4FXeM2R2T4Zk8bKRYdIOZtDy7a1GDq6FYFBNUsJds/2eL75eKPLqt5g1DF2fDtuvNmpwrv1n5P89M02LBeFVw1GmTvv78rAoc2r1GYo+YavtvKvAP667U3MKVnYcwqcWix5ZpI27OfQ/xaWabyEFds9CnmpdgcJK7aXejyTl57Bw1sw+T/Xcetdna8Ixw9w9McVzsb3F/bMtdrJOhJPyvbDtHxkNF3ffwhjaABIAq9awdQZ0hU8xFmFJJA8FE9VBhd3+io6XmD13Pymgjizbg/mtCyPGlDHflldafOWhUZNQ3jsuX689uEIxt/TucY5foD5s/a6OH5wbkwvmx+FUvg77tIzEr1ediu4lGWJHn0bVpGlZUNz/uUkNz7Z2b/1oi+1I9/C0R9XlmlMnY/Jo6MSernKCpBqAhkHTnqWYBaC7GOJCCFo9fhY7jg7n7vzVjD62K9sC26Ow0Pps+pQqT+6dxVYDeF92ng8Htq9ZaWK3+XGnvX41OMwWyukx/C1Rkqy+9MbgMXswFy40jcYdbz8zlDq1Q9Er5fRG2Rq1fXnxWlD8Papmv2dsqJt+JYT1e4oVnRNsdmL4oOledRvdNsA9rzyk4fJoMG4fmWys6ajqioOu4LugpteaNcWxC3Z4t7aUFFceuYKIZCNBhbM3ElsgQFzy840PrwHBKgIZAH9f30JY7B/lbyXHp9PZkXfJ3FYrChWO0KvQzbq6fXVlMtfXA5Cu3nuAKfz9SKib7tKnftqpHbdAE4dd+9U5+Wtx+R1XuixTmQAb38+ivTUPFTVual9JaA5/1KSn5ROZtRJfBvWwr9pXXwb1sK7djA5J864nCcZ9QhZ4hfjUADqj+lNry+nlCj7wqdeGP1++g8b7/vA+QRQuHF53W8v16i4bUWgKCrLF0SxYuFBCvJtBIf6cOf9XejaqwHN7h/OgfdnO0Nghb0UZJOBsJ6tCenY1G2srRtOYrcrJDZpQ0qdhoScTUCVJDLqNmDCiJ5V9p6C2zVmbNSPHPp8Pqk7ownu2JQ2T42r9HTPkE7NqNW/PUn/7C+SIJcMOrwigmg0fmClzn01ctvdnfjs7b8uivnL3DKxI5KHNqDBoVeG0z+HtuFbQlRFYevjn3Ps59XIJgOK1U547zYMXvAGmUfiWH39VKfEQIEF2ceEarWjKkrRY7jQyfhEhjPuyM8l3gS2Zudxeu1uEIK6Q7pWSMgnKzqenBOnCWrfGJ+6YeUer7ws+H0vKxcdckn9Mxhkprw4gHad6pAbd5Ydz35D4sqdSCY9ze4bRuc37/Mos/H4XXM95opLsmD6b7fX+KKbkmDLyefojyuIX7YNrzohtJ58k0v7TofVxsGP5xH9w3IcFhsNx/Wn02t3V9lTz9VG1N7TzPllD2cSsgkK8eKmOzrQ+7qaXYhW0g1fzfmXkIOfz2fPy//nklkiGfU0uLkfA2a97JRZmLWevLizqCoc/X65W8MOnZ8X/X95gQZj+5Z6/uzjp9n+1JecXrcH2WSg2b3D6PLOAyXWGrJm57F+zCuk7Dji7GNrsdH4jkH0/u6ZamsDaLc5eOyuuW6ZEgCNm4fy2gfDSzXeL9O388+6GBwX1DQIAc1bhfPSO0PLbW91Y83OY0nXR8lPTHWu7CWBbDLQ68spNLt3WHWbp1FD0LJ9KphDny9wcfwAisVG7IKN2M1Wp8zClJvp/tGj6H29PHZqcuRbyDocV+q5zalZLO3xGAkrd6BYbNiy8oj+dinrxvy3xGNseeRTkrcdwlFgKco9PzHnLw59vqDU9lQUublWFMXz4iP5THapx7tlYiciavlhMjlX+EaTDj9/Ew9OqZqN3vJSkJzBrpd+YEnXR1g/7jXObjno8vrhrxaRn5Byvquc4uz2tW3Kl9g9dJrT0LgUV/5zcAlQVbXcudXWrDzPLygqjnyzS+VmUJuG6DzcAGRvI4FlkBk4+v1y56bnBY7SYbaSvOUg6QdOENzu0o+hdrOV2AWb3PrYOvItHPrfAto+c2upbaoI/PyN6HQSNqt7kUzd+oGlHs/H18C0z0eyd2cCcacyCI/wo1vv+kUFbjWZ/KR0Fnd8CGtmHorVRtq/MSSu3knv6U/TdOINAMQu3OQx+0lIgrR/Y4jo7TnLqDgKkjM4s/5fdD4m6gzpWmXVxxo1g5r/rSgjDouV3S/9SPR3y7DnWwjt2pyeX04hrFvLy1/sgTqDOxG7YJNLE3cAn/rhbt2X6o/tg+n578gzW4s6Q53TbK83okep507dfdTjl16SZWcD78s4f0eBpdj8clt2vtsxVVE4vW4PCSu2YQwJoMldN+BXCd3AZFlizPj2LPhtr1vM/5YJnco8Zpee9enSs35FmVkl7H9nFtaMXBRbYQissIfv9in/o/H4gUh6HaYQzxXNql3BGFS62o2oj+ey55WfEHoZIQRCCG5Y8S7hvUp3A9E4j8OhsG75Ef5cfQyrxU7XXvUZc1t7fP1qZq+Cqzbss+GudzkyfYmz4EZVSd0ZzapBz5Id4978pCR0fe8h9AHeSAZnipeQJXTeJnp/+4zbU4Vs0DNy25c0HNcf2WRA9jLQ8LbruHHz/8qkFx/UvnGxPYQDWkRe9npDoK/HVo5Ckqhzg2toULE7WDf6Zf685TUOfbGQfW//ysI293NqwcbLzqOqKocPJLH0jwNs+vM45gL3QrWLGTa6FRMf7E5ouA86vUSDxsE888ogmrcuW8+Dyub0+j0s7f4YM/1HsqjDg8Qt3VIh4yau3nne8V+A4lDIKszRb/3kzei8XVVYhSzh16Q2ga0alHiulB1H2PPqzzjMVuw5Bdiy87Fm5bH2xpdwWDzUVWiUiOmfbOKPWXtJSswmPTWfP1ce5fXnVmCxeBZXrG4qZMNXCDEM+ByQgR9UVX3votfvBT4EznneL1VV/eFSY5Znwzc3PpkFLe5xWy0LnUzzB0bQ+5unyjRu/pk0Dn42n+QtBwloEUnbZ28t1ZeurOTGJvFH07vcCnhCOjdj9K7pJRojacN+1o54EYfVhmp3IBn16HxMjN75jUsK4vHf1rPl4U/cqlR1vl7ccXZ+sRvMdpuDj95cz4ljadisDvQGGVmWeHHaDdRvVLPExcpK4ppdrL/p1fMxd5yhvL4/TqVxOVMpi+v8Jhn13HpiFt61QwDY984s9k37FcmgQ3Uo+NQLY8jq9/GtX/KWjpsf+YSjP6xwCSMC6P29ue63/xJZhqfTa4ldW+NYviCKrEwzbdrXYsz49lgtDl59drlbCNNo1HHng10ZcIPnXt+VQZXp+QshZOAr4AYgAdgphFiiquqhi06do6rq5PLOVxJyYhKRjHo356/aHaTviynzuN61Q+j2/qTymldqYmasRehkV+cvnKs+xeEg+1gihgCfIgfhiVr92zN6z3QOfjafrCNxhPdpR+vJY9zqDo7PWudRnkBIgrObDlD3Bs+fqXUrojl+NLUofHMug+erDzfw3ldjrggRucux8z/fujh+cO6b7Jz6bbmdf9tnb2XD3hiX371k0BHRt53L37XDSxNo+cgoUnYcwRQW6OwrXcrfrS2nwM3xA6AWL02h4WTZgigWz9lf9Dnf9NcJdm2LZ+z4dh5z/y0WO0cOJFWp8y8pFRHz7w7EqKp6AkAIMRsYA1zs/KsM/+b1UDxtjOllQjrXvD/C5Tj2fyudGjcXojr70P4eMQ7FYkOxOwjr0YqBc14ptpAsoHkkvb++9FOP7CG8dG4+2VDMa8CG9TEe+wOkp+WTnJRLRG0/D1ddWWRFx3s8np+YimKzl0nE7xwNxval/UsT2PfmDBRFRbU7MIb40+3Dh93ONQb7U29Y9zLP1XBcf+KXbHFz9IrNjk9kuDPTaMN+jKEBtJs6nmb3Dbsqbt7lxWK2uTh+cBYpWsw2jhw860FUBHR6ifAa+tmviJh/XeDCb0VC4bGLGSeE2C+E+EMI4TFQLYSYJITYJYTYlZJSdvldn7phNBjXH/miEIVsNND22dvKPG51oTg8N11R7QrW9BzseWYUi43kLQdZM+LFcs3V/IER6Hzcu3tJBh3hfdoWf+Elo4c1s5aktPjUDfV43BDki6iA3r8RvduAJKE6HKCqmFOzWTngaTIPnSr32BdSf0xvIvq3P/93liRkbyPtnr+dNcP+Q9yizVjSssmOjmf7k1+y51UPUiPXIKcTspE9iAY6HCpJp7PxDzS5rf5lWaqRq36oug3fpUBDVVXbA2uBXzydpKrqd6qqdlVVtWtYWPmqT/v99B/aPH0LhiA/hE4mom87Rmz4rMo7Ktly8kndfZSCs+llut5eYMGvSR031UBPqHYH2dEJpO8/ftlz0/cd5+Tcv8mIOulyvN6IHjS7fziylwHZy4jOzwu9vzfXL5l2yc3qfoOaYDC4vx4Y5E14rZq58iktHV+7B9nbdUGh8zbR4aUJFbIy3vLop86wUmFIRrXZseUUsPM/35Z77AuRZJnrl0zjulkv0+SuG2j12Ghu3Pg5+Ymp2PNdM8PseWYOfjwPa3Yxqc7XEIHBXh61+wHCwv148e2hNG0Zhk4noTfIhEX48txrg2us7ENFhH0SgQtX8vU4v7ELgKqqF6oj/QB8UAHzXhJJr6PLtPvpMu3+yp7KI6qq8u8bvxD1wRxnRa3VTr0RPeg/4wW3jI3iUGx2VvR/yrnyu2DxLApXH54UHIVeJv90GsHtm3gc05ZXwNqRL5G6M7pI+z68VxuuX/wWOm8TQgh6fj6ZVpPHcmbdHgyBvkSO7oXe59LSEtePbMmenQnEnkjHYrZjMDo3fB+f2u+qCRk0vesG7LkF7Hn1J2w5+cheRtq/cAdtni5/hzBbXgHZxzxkoqkqSRsOlHt8lyEVBVSoP7q3i9Jp8paDRanJFyIZdGQfSyS0S9Vr09ckgoK9adWuFocOJGG3Xdh8XmbEzW0IDvHm5XeGkp1lxmZ1EBzqXaM/+xXh/HcCzYQQjXA6/duBOy88QQhRW1XVc8pno4HDFTBvjcBhtZGy7TCSQUdotxZFUgkxv6zh4EfzcJitRRvPCSu2s/Wxz0vcxD120WayouNwFFyUtSRJNHtwBDE/r3J7TbHYLrmvsePZ6aRsO+yyh5C8OYpdL/1Az8/O78cHNKtHQLOSt6DT62VenDaEQ/vPEBOdSmCQFz36NsDL++oqHGr56GhaPDwSa3Y+ej+vCpPGkI0GJL0Oh8N9r8oQUDErR2t2HtunfMmJOX+h2OyE92pD7+lPFzUH8m9Wl8zDcW41IYrVjncxIa9rjcee68d3n21h/7+JyLKETicx4YFutGxzPtvKP6Bki7vqptzOX1VVuxBiMrAaZ6rn/6mqelAI8SawS1XVJcAUIcRonG2b04F7yztvZZKy4whHvl5MQXIm9cf0pundQzymOMYv38Y/E99xfllUFZ2PicGLpxHWrSUHPpztJgdxTlKh19dPlmj1f3rdbuy5HjJv9DIBzethDPbHnJLpbFmIsw9Ay0dHF6v8qaoqx2eucds8dpitxPy0ip6fTUax2dn71kwOf7UYW04+4T1b0+OLyR5VNC9GkgRtO9ahbcc6lz33SkZIEsbAim2II+lkmtx9A8dnrHXJUpO9jbR+cly5x1dVlTXDnidtz7Giz0vyloMs7zuFcdG/4BUeRPsX7iRxzW7XVFaTgXojeuBd6+pI1y0NpxOy+GPmv0QfSsYvwMiNN7Wh76AmPPnSAHJzLOTmWAiL8PW4D3AlUCFWq6q6QlXV5qqqNlFV9e3CY68WOn5UVX1RVdU2qqp2UFV1oKqqRypi3sog+vtlrBz0DDEz15K4agc7nv2GZb0muzny3Phk/hr/JrasPGzZ+dhyCihIymDNkP9gzzcX21xcCIHVQ1WtJ3zqhRYVlV2IJMv4Na7NmD3f0urxsfg1qUNotxb0/vYZul4mFdVxcdbQueOFncM23v8BUR/Pw5qRg2p3cHbTAVb0f4qcE6dLZLNG2enx6ePUHdoN2WRAH+CDbNTTZOL1tH2m/GGltD3HyDhwssjxA6CqKBYb0d8tAyCsRysG/P5fvOuGIhn1SEY9jW4fSP+Z5UsiuBJJTsrhjakr2bMjntwcC2cSspnx3Q4Wzt4HgK+fkVp1/K9Yxw9XsbxDWbDlFrD96a9dmoc48i1kxyRy7OdVtHpsbNHx4zPXeIy5K4pC3JIt1OrfntjFm93yqQ1BfnhFlEyTv+m9wzjw/hxXTR4hkL0M1BvWHUmvo/vHj9L940dLNJ4Qglr92pO0Yb/ro70Q1B7UifzTqcT+scHtBuEwW4n6eC69vipbcZxGydB5GRm88E1y45PJPZlEQMvICuvfkBUdDx7y0B1mKxn7TxT9XH90byJH9cKckonez7vEqrFXG0vnHcBqsbt8TawWBysXHmL42DZ4eRWf9nylcOXetiqBlO2HkXTu90NHvoVTf2wAnK3y4pdvIys6wT33HmfGjSU9hy7vPoje1+t8CqAQyN5Gen45pcSbQL6R4Qxa+AamsAB0vl7ovE34N63L8L8+KXNOea+vn0Tv710kFyGbDBgCfOjx+eNkHU1A8iDupdodpO05Vqb5NEqPb2Q4tfq3L7Pjt2TkcObvvWQdPZ+BHdS2oefG9l4GQi/SuxJC4BUedM06foBj0SkeFWdlWSL5TE41WFTxaCv/CzAE+LgJtxW9FujH3xPeJm7hJmf1cIEFIUkez689sCMBzSMZ8+937H/vd5I3R+HXtC7tX7iD8J6tS2VT3Ru6Mv70PDIOnEQ2GQhoEVmuDILAVg0Yd+Rnor9bTtq/xwjp3IwWk0Y6v+zeJo83NKGTCepw+Zi/RvWiqip7XvuJgx/NQzLqUax2Qjo1ZfDitwhu34TwXm1I3hxVtKcgJKc+VfMHStc34VogorY/ZxLcZcVtdgdBwVdHH23N+V9ASJfmeIUHklMoBncO2duIIciXk3P+csneQQiETkItbB6i8zHReMLgIr0fv0a16fPtM+W2S5LlEm24lhSviGA6vnKX23GfemFEju5F/NKtLllEslFP22erR/ZZAyzp2ex8/jti/9gAkqDx7QPp8s6DGAJcN51Pzv2bQ5/Od/mMpu6KZt2YVzCF+JO2+6izgluAqqjUHdKVHp8+pnX58sCocW05tP+MSzWv3iDTsWs9/AOvDuevdfK6iKxjCay+YSqWjByEkFCsNjq9fg8HP59PwRn3Qi0hy0T0a4tsMtD8wRtpcFPfGp3bezkcVtt5Kew8c7mlsDXKh2Kzs7Dt/eSeOluk+ikZdAS0cD5ZCul85HZpj8dI3RnteSAhihY0Om8TrSaPoet7Va9TdSWxa1scM7/dQW6ucw+wZ79G3PNw9xrfH0Jr41gOVEUhedthrOnZhPdugzHYn5n+Iz125xKyxITMJZctgroSURXFxblczaSn5bN6ySGOHk6mdt0Aho9pTWTDitlsLQ+n/viHjQ98iD3nopagvl4MnPMK9YafV+Cc12QCuSeTSjSubDJw+5l5bk8PGq4oikpOthkvL32Nd/rn0No4lgMhSUT0bkPkyF5Fj8R1Bnf2mC0R2LpBlTr+3Phk8hLKrntUGq4Vx3/2TA4vT1nC2uXRnDiaxtZ/TvLm8yuJ2lv96a3p+0+4OX5wZumkX5ClA1BveA+EvmRFZ5JRX9QnQKN4JEkQEOh1xTj+0nBtfLsrgG4fPYIhwKcoS0boZXQ+zmYuVUH6/uMsaHMfC1rcw/zmd7Ow3QNkHDxV7PmqolBwNh27B3XTmozFbGPGt9t5+I7ZPHDrLD575y9Sk3Mrdc65M/ZQkG8ravyuKCpWi4Ofv9lOdT8Z+zeti87XfXGh8zLg39RVP7HDyxMwBvkhDJd3VIrFhk9kzWyYo1E1XJXOP33fcU4t2Ej28Ypbufk3qcPNh36i7XPjqT24M60eHcPYfd+XOnunLNhy8lk54BmyDscVbeZlHopl5XVPYctzXxXG/LqW2bVvZV6jCfwWMoatT3zhsUtUTUNVVT58fT3/rIvBXGDDblPYuyuR16euID+v8m5ihw8keexymZGWT15O9d48G97S31kNfuE+kiQwBPoS2r0lu1/5iZWDnmHr5M+x5RZw04EfCe3c3ONT6jlkk4F6N16bVbsAVquDpNPZFJSg09zVzFX1LGPJzGXt8BfIiDrpbHRitRM5qhfXzXq5TO0TL8YrIpgub91XAZaWjpNz/3Z33qqKw2ondv5Gmt49pOhw4uqdbHnkU5dCtWP/twrVoVxWy7+qOXo4mQWz9pIQn0Wt2n70uq4RcacyXESzVEXFYraz6c/jDBnVqlLs8PYxkJfrwckLp2hXdaLzNtHl3QfZ8vAnRaJrslFP57cfZHGnSUVy3mc3RRHz8xoGLXqT9H3HPTdrEU4NocZ3Dqbn/56o4ndS/aiqyvKFB1ky1ymUpzgU+g5swsRJ3dHprsp18CW5qpz/5kkfk/bvMZcS9vhl2zjwwWw6vDShGi0rH/mJqR47LDkKLOQnproc2/vWTBfHf+68mJ9X0+2Dh9F7CCFUB4f2n+HTaX9hLWx7l5Nl5kRMmkflaqvFwanjZZPELgnDRrdizow9rml9eomuvRqUKdZryy0gbfdRDEG+BLVrXK7sr5xTSWx74gsXtU2H2cbmBz9CtTuK6kxUuwO73cHWRz9DFLPqN4UHcdup35CNV5fYXknZ/PcJt2Ysm/85gd4oM+GBbpe9PjE+k61/n8TuUOjasz5NW5ZPdr66uWqcv91sJX7JFlftEpyO78g3S65o5x/avSU6Xy+3bCPZy0BoD9fVcM4pz9keQpacJftV7PwzMwpYNj+KA3sS8Q/0YvjY1nTuHsnvP+0ucvznOBdzvxiDQSayYWCl2ThoeAvOJGbzz9pj6PQydrtCyzYR3Pto6XvZHpm+hB3PTUfS6VAdDnzqhzNkxXv4Nih5j90LOfbTKneZZVV1lfy4gNy4s0jFxPyDOzS5Zh0/wNJ5UW7d5qwWB3+vOcb4uzujK9wsPxmTxp+rjpKbY6Frz/r06NuAP1cdZe7Mf3HYFRRFZf3KaPoObMzEB7txLDoVc76NZq3C8PG9cqqirxrnr1htqJ4edbny+5LWHdKVoLYNSd93vKj4SvYyENyxKbUHdnQ5N6xbC+KWbHWT5RWyVOWyvNmZBbzy1DLycq04HApJp3M4dTyNMbe1JzHOs/AdgCwLHA6n/UI4i2v6Da68CmNJEtw1qTtjxrfndHwWIWHehEWUvgHN2c1R7HhuOo58Cw6cT1/Z0QmsGfY8Nx36qUxPAPmn09wWNICzuY+nyI6QaPvMrRz85A+Xz73sbaTzG/eWev6riaxM9/0xAMWhYjbb8dXLrF8Zzeyfd2OzOlBVOLj3DKuXHiYxLhP7BYsTq8XBxvXH2bklDrPZjt3mPD8wyIv7Hu9Jx64ll0OvLq6aQJfB34eAFh66Q0oSdYdd/pGuJiMkiWHrP6bDyxPxa1oX/2b16Pjfuxi65kM3h9LpzfvQXdRtSvY20umt+y7Zg7cyWLXkMPl5Tsd/DqvFweI5+/ErRvPc20dPz34N0ekkhICWbSN49f3h+PpV/orKP8BEy7YRZXL8AIe+WODWX0FVFPISUkjfG1OmMesO6eox20dIksfWkcGdm9Lp9Xvp+sEkvOuFIhl0hHRtzpAV7xHWo3L2TK4UGjcL8Xjc19+Ij6+B/Dyr84nU4ihaO1ks9sKFivud1mZTyMm2FN0owPmk+7/3/2HnlthKehcVx1Wz8gfo+8NzrLphKorVhmK1I5sM6Hy96PreQ9VtWrnReRnp8NKEy4avgts1ZsTGz9n90g+k7ozGu3YIHXkL/mMAACAASURBVP47kUa3DagaQy/g4L4zLqulc9jtCl17RrJh/QmslvOrWoNR5sZxbRl5c1smPNiNE8fS8PM3ElHnymgDaU7OdHviAmcVuCXNXSemJDQY24eoj+aQcfBU0V6OzsdE5OjenJr7t9v5GXuPkxefTKtHx9Dq0TFlmvNqZfw9XXj7xdVYrefVOg1GmQkPdkMIwdHDyeh0EraLwpF2u1LsPoon7DaFOb/soVvvBhVpfoVzVTn/sB6tuOnAjxz+ahGZh2IJ79OGFpNGYgoJqG7TqpSQjk0ZsuK96jaD4BAfjxu1iqISezKD0be2Y9n8AygOFSEEQ0e3ZMTYNqxcfIj5s/ai00koikpQiDdTXxtMaHjNrkaNHNWLlB1HXJqhgDMkGdqtRZnGlPQ6hv/zGUe/W8bxWevQeZto8cgoLOk5xC3e7La5ryoqJ+f+Q7vnbivz+7haadA4mFfeH8bC2fs4FZNOeC1fxoxvT6t2tQDw8tIXX9dRynqPlLO5KIrq1tC9JnFVOX8A3wYRdPvg4eo2QwMYPrY1/+6M9/i9ORWTxuSp/Rk+phXZWWb8Akzo9TKHDySx4Le92KyOohXY2TM5fPzWn7zzxahSxc0TYjPY9OdxzGY7XXrWp23H2pWqu9Ri0kiiv11KXkLK+b0ZbyOd37qvXDIKOpOB1lNupvWUm4uORX0yr0hQ8EIUuwO7h9oPDSeRDYOY8sIAj681axmG0aTHXOC6x2Iwyoy6pR1L5x1ASAJVVVEcKqqqFu1NXYx/gKlGO364Cp2/RtWSmpzLb/+3iwP/nkavl+k7qAm3TOiIwaijeetw/ANMZGW6b7jLOpnsLDOBwd4Eh57vUbtm2RG3jAxVUUlLySM+NpP6JdTbWbcimjk/78Zud6AosOWfk7TvVIfHpvavtC+l3teL0bumc+TbpcQt2owpLJDWU26i9sBOFT5XvRE92PPKT27HZZOeyJG9Kny+awFJlpj62mA+eH0dVosdgcBuV7jpjg6MGNuGQcOa8++OBOx2Bx261mPX1rjCz5jrTVhvkBh9W7tqehclR3P+GmUmL9fK61NXkJttQVWdm7l/rowm7mQ6L7zlLDzr1rs+f60+5r5CUlVq1XUPx2Vnec7MkiRBXo7F42sXk5NtZvZPu7HZzt9ELGY7+/89zYE9p+nQte4lri4fej9v2j03nnbPja+0OQACW9an1eSxHP5qUdFThs7bSJO7biC0S3OXcy3p2RyZvpTT6/fg36QOrafcTFDbRmQejiX6++UUJKUTOaIHDW8bUOVJATWNyIZBfP7jOI4cPEt+vo2WrSPw9XcmG/j6Gek3uEnRuUNGtqRxsxBm/bCT2BMZKIqKl7eOsePbc/3/t3fe4VGV2R//vFPTSQIhhdBC7y1SRUGkK6hgX8uqq6661nWXn72vqGvXtbus7tqwgShFeu+dUNIgJCGkkJ5Muff9/TFDSJgZ0mcm5H6eJ09mbj1zMzn3vec953umNSzM500056/RYNYuT8ZSUbPVnc2mknI4j6OpBXROiOSy2QPYtPYoFeXWqhuAyaznmluGYjK5ZqskjujI0dQCl0k3RVE9Zmuczf7d2egNAttZqfCWSjtbNqQ3q/P3JhfMvZNOM0aT8uUypKKScP0lxIyrmfpbfqKABUPvwlpYilJpJWfNHlL+t5w+f7mSpLd/RLXZkXaFjIUb2f/WD0xb82ar7uAFjieAvgNj67Rt915RPP3qNFRVUllhIyDQ6PfhntOcN6meGt4nLTnfpVALHG0AM46eAiAiMogX3rqMS6b2Iio6mJBQE4oi+f5/u/j2ix3YbTX3HzelJ23bBWM8fWNwSixcd+swzAF1G5UajXrHjmfbpRPnnTpj9Jj+jP7XQ4z56BFixw9xmdPY/fx/qMwvqmruIhUVpdzCvle+RqmwVBWQ2csqKUw6yuHPfvP6Zzgf0OkEQcGmFuP4QRv5azSC+M7hGDfrXUbpADFxZ7pDRUQGcdms/qxfmUJFuQ0poazEytKFB8nOKOaBx8ZVbRsYaOTZf05j1dIj7Nx6nLDwACZO703PPnVXoOw/JA53edlGg46xl3RzWW61Kvz2437WrkhBVSWjLu7K5bP6E3AeNOnOWLQZaXP9+7grEFPKLaR9vZK+917R/IY1kLJSKyuXHGb39kzatgtm0uW9Sejh3eLF8wXN+Ws0mIsn9uDXH/c7YutOZ2Iw6IjtEEa3njX/IX//9RDWasUwADarwt5dWeRkFxMde+ZmERBoZMrMvkyZ2TDFVLPZwIOPjefNF1c6WhZKh4jXzOsGujgKh5Lo76Ql51fdxJb8nMSe7Zk8+9o0dPqW/XBsahNMWT22N4YFNZstZ6MqKhvWpLF6WTKqIrnwkgTGTujuUWSttMTCkw/9UlVYJQRs33yMW/88kjHjErxm9/mC5vzPgbW4jKxl20FK4iYlYgoLrn2nVkRYmwCeeHkKn7+3ieRDuej0OhJHdeLmu0a4hB/SjuTVUOs8jcGgIzOjqIbzbwr6DIjh7X/PZvf2LCyVdvoNjiEwyISqqDUc+qH9J13mGGw2hZPZJezansnQ4W6qxlsQfR+czea/vIO9vNpEukGH3mBAsdhq5K8bggPoffflXrPtX6+vY/e2TCzOQr9j6QVs3XCUex+9iIP7ctDrdfQdGFMVqlv88wGKCyursmtOJxl88eEWRozpXKXN428UFVawY3MGqioZnBhP2yj/8COtwvkrFivbH/uUw58swlZWSfuRfRn57v3nbIqe/sNa1tz8D3R6xxdKtSuMnfd3us6+2Ftmtwg6dAzniZenYLer6AQeR8odu0aQtC/HRbxNsas1QkRNiTnAyPAxndm28SjP/W0xRYUVGI16Lp3Wi1k3Dkav15F6JM9l3gGgstJO6uG8Fu/8e9w6mVO7Uzj44UL0ZhPSrhDerzPD37iXlbOfwV5WiUQibQq975nptTTRtOR8dm07XiOt12pROHTgJPffOt85bwMSyf1zxtFvUCw7tx53WzEugePHCunSrW4JAd5k/apUPn9/U1UL5a8+2841Nw9pNnny+tAqnP/qG17k+OItVSlxJzfs59eLHuSKPZ8Q2iXGZfuKnALW3PQSSoWV6m5h7c0vEz26H0FxWozxbGrTQ584rTcrfztcw/kbjTp69IkiLv5MyqeiqAghzjlxJqXk4L4cUo/kER4ZROKoTpg9TOQm7T3Bh2+sr5qYtih2li06iNWq8Ic7LqBtVDBGox5FcS3s8ZcRWmMQQjDizXsZMOd6CnYeISg+isgBjhDJNce+JnvlTix5xUSPHUBwvPckig/tz0F1UyB1+umwupN/66VVvPnZLI/6Toqi+qWaZuGpCj5/f5PLnNi3X+xkwNA4Yt2kOnuTlh3QrAMl6Sc4/tsWF8Et1WLjwJvfu90n7bs1uMsWAUj7dnVTm9gqaBsVzGMvTSahR1uHUqdRx+hxCTzwf+MAOJpawHN/+43bZ/+XP137Pz59dyOVbjotWa0K/3hiKW+8uJL5X+5i3gebefiO78nMcK8S+uNXu10ykqwWhdVLj2CptDFkeEeMZj1nF/4aDHpGju3SFB/dLwiKiSR+6ogqxw+gM+jpMDGRhOsv8arjBwgNC0Bf1wYqArZvymDyjD4uzXV0OkHHLhFERfuf9MeOzRluvYiqqGxe53vht/Pe+Rcfyqjqu1sd1WYnf+cRt/vYyyrctj1UbfYWLw/tSzonRPL0q9P4dP6NfPztDdx27yjMAUYK8sp46fElpBzOQ0rH6G/j6lTHhO1ZLFlwgNQj+Vgq7ajOLl+lpVbef22t23PmnChxu1zoBEWFlZhMep74xxQ6J0RiMOowGHV06NSGx16cRGBQ69W+b26GjexY57RIVXHk0A8d3pHLruqP0agnMMiIyawnvlM4D8zxz1Csoqjukqqc8hDue1d4k/M+7BPWqyOqxXUEqTMaaDu0p5s9oOP0kex67guUs5po6MxG4qfXv8GHRk30Z80LLP/tkMtksM2mknIkj+PHConvdKaRy9oVKa6ppRJyskooyCurIRUB0LlrJIWnMl1SGwUQ0daR2RITF8az/5xOUWEFUpWER3ov46W1EhBo5O/PTeStl1ZRXm5FCMco3mZVsJ2dGCBgwNA4AGZeO5BLp/ciLTmfNuGBdKyj3IcvGHJBPN/8e4fLcoNBz7CRnXxgUU3O+5F/aJcY4qeNQB9QcxSnDzDS78FZbveJ6N+VXn+ajiHY2ThbCAzBAfS4dco5J4l9iWK1UZycia2k3Nem1JtjaafcTuTp9TpOZJ0lhexJXFG4F16cdeNgl0pik1nP5dcMqJpUPE2b8EDN8XuRrt3b8vonV/H4S5OZ8/wk3p13NUNHdsIccGZMajI7JuirJwUEh5jpPzjOrx0/QLv2Icy6cRBGkx6dTiCEoyvdpZf1pnNCpK/NQ3iUMPUxiYmJctu2bU1yLMViZceTn3Poo1+wl1XSflQ/Rr7zFyIHuRb8nEZKyYnVu0n573KQKt1uvJSYcYPPqQqpWG3sfuFLDn28CKXCQofJF3DBq3cR0qlhLfzqyv63vmfnU/9GqqqjzP/GCYx674EWo9Pyw1e7+PWH/S4jPqNJzwtvXEZMhzP/+D9/s4eF8/fV0O0BiIsP4x/vutevTzmcy9f/3sHR1ALahAdw+dUDGHtJt2ZV+NRoGFJKdm/LZMPqNAwGHWMndKuSXPYnTvvNunyHsjKK2LQuDVWRJI7q5DErSUpJRvopigor6dq9bYMbGAkhtkspE2vdrjU4f2/x+4zHyVq+s0rPXeh1mCJCmXVoHuaI5mlIkvbtKtbd/mrNln2BZrrfMonR7z/YLOdsaooKK5hz789V1b/gcPz9BsXy0OPja2xrtdj5xxNLycooorLSjtlsQG/Q8X8vTKRTV9+PpryJVFVyNydhLSqj/ai+jZKN9ngOKanIOYUxJNDr/Z/9kcoKG199vp0Nq1Kx2RR694/m5rtG1MhYawinCsp57dnl5J4oRacX2G0ql8/uz8xrB9b7WJrz9zKFSUdZkPhnl0Ye+kAzQ565hQGPNo/K40+D/8SpPakuy/UBJm7I/6nFiHSdyCrmv59u5cCeE5jNBsZN7sGV1w1yCc2AoxnM3p1ZpB7OI6JdECPGdK7X5OzmdeksnL+PosIKeveLZtaNg5ut1qC5KDqUwZIpf8dSUIwQAtWmkDj3T/S978omO0fGr5vZcNfrWPKLkCp0umI0F378V4yhrTc09tJjS0ipXrAoICjIyNz3ZhIW7rg5Hks/xcF9JwhrE8CQ4R09piFX55m//srR1ALUan3IzWYDf37kQobUs9akrs7/vJ/w9RYFe1LRGfScXS6kVFjI3ZzUbOctz8r3uM5aVNZinH9MXBiPPDmhTtvqdIJBwzowaFj91Tm/+nwby389VBVi2rrxGHt3ZPHcG9NpH9My2kVKVWXJ5L9RlpFbY6Jj25yPaTu0J9Gj+zX6HPk7j7DymmdrdAo79vMGVhQ+y+TFcxt9/JbI0dQC0lLyayYnSLBZVVYuPcLlswfw0Zvr2b7pGFJK9AYd8z7YwpznJ54zxn/yRAnHjxXWcPzg6B+8ZGFSvZ1/XWmSCV8hxBQhxCEhRLIQYo6b9WYhxDfO9ZuFEF2a4rz+RFi3OKTqOmmpMxsJ79t8vTyjRvbBJUkdMIYGEtg+3M0erZPyMisvPraExT8n1ZhbkKrEYrGzcP4+H1pXP3I3J2E5VeIyw61UWDn4/s9Nco69r31bpQR6GtViI2fNHkrSTzTJOVoa2ZlFbtNTbTaFo6kFbFyTxo7Nx7A6M5YqK+yUl1l586WVnttD4hCrOzsD7jQlxXXrYdEQGj3yF0LogfeAicBxYKsQYoGU8kC1zW4HTkkpuwshrgPmAs3b7cLLtB3Wk/A+nSnYk4JqPVMjoDcZ6HXXZc123mEv3s6JlbuwV1jAOXLQB5kZ/vo9CF3LSOayVNo4uN/RPLtX3/YN1miRUnJo/0lOniihU9eIGhNrH7+9gZRDuW73U1XJvl1ZPPe338jMKKJd+2Bm3TCYoSP8R9pBtSskvfsjhz5a5NDmd5O+jJRU5hU1yflKjmRWfZ+qozMbKTt20m1lfEuktMRC4akK2keH1Cr3Hdcx3GV0Do75qS7d2rJq6REsFlepkLJSK8fSTnkc/cd3DndbDGYw6hjWjN/Bpgj7DAeSpZSpAEKIr4GZQHXnPxN4xvl6PvCuEEJIf51waABCCCYtfYUNd7/OsZ/WI1VJ5MAERn/0MMEdmq96MnJAApdvfo8dz8wjd1MSoV1jGPTEH+gwsdaQn1+wZX06H7+9wTHykaDTCx74v3H06le/DKniokpefmIp+bllSOnQhOnWM4qHn7wERVHZsz3TY79VgFP55RTkOdJkjx8t5F+vr22QWqTFYuebf29n3cpUbFaFPgOiufnOETUylhrCyqufIXPZdpeG7dUxBAXQ5aqxjTrPaaLHDnAZyIBj9B/er/meZL2F1arw2bsb2brxKAaDDqnCjGsHcNlV/T3u06lLBN16tiP5YF5VtpmjWl3PuEk92LX1uNv9hHAUfHnCaNRz013D+fe/HFIQUjpuKG3aBDB5RvNpADV6wlcIMRuYIqW8w/n+JmCElPK+atvsc25z3Pk+xblN3lnHuhO4E6BTp07Djh71fQl0Q1CsNlSbHWOwlh1xLnJzSnjsLwtd5BcCAg289dnseunpv/XSKnZvP17DwRtNeiZd3puJ03vz6F0/uaSHnkZ4qBEIjwjkzc9m1Ssl9OUnlpJ8KLcqtCQEBAaZmPv+TMLaBNT5ONXJ33mERWMfOKfj1weZadMznukb3sUQ0PjK5LLMXH4aeAfWonJwhjP1QWZ6/3kGw1+9u9HH9zWfvruBjWvSaxQMmsx6br9vFCPHdvW4n8Vi59t5O1i7IgW7TaHPgBhuunM4MXFhLP/tEF//e7tLD+qQUDPv/Ht2rfLgqUfyWPbLQQryyhk4LI7xk3sSFFz/v2WLnPCVUn4EfASObB8fm9Ng9CZji8mx9yXrV6WhuHmMRsKOLRmMvrhuo26bTWG3m5G9zaqw9vcUrv7DEELDzBTkuxbAGY06VFW6fSooLqrEalXqlK0BjiyPlCN5NecUpMOOVUuPMOPqhjX1zt1y0GNxW2j3DoR2jaHzVWPpfvOkJnH8AMEdopix7QO2P/Ep2ct3YooIpf/DV9PzjmlNcnxfYrHY2bA6zaWq3GpRWDh/3zmdv9ls4KY7h3PTncNd1l18aXe2rD9KWrJDfsRo1CF0gnv+OrZOfSESerTjrocurP8HaiBN4fwzgeqBqXjnMnfbHBdCGIA2gOc0FY1WQXmpxUXiGUBRJRXlZ2LaUkqSD+WSkV5I+5gQ+g6MrTHxpqrS44SazaYghOCP947knbmrsdtUVFWiNwjMZgPPvX4Zrz77OzlZrhpA5gCD21RTT2RlFHqcEExPafjXPbhDO7eZZPoAEz3vmMrAv13f4GOfi9CusYz77xPNcmxfUlFm9fg0V3SqosHHNRj1/P25iezdmcX+3dm0CQ9kzPgEwiP8MwLQFM5/K9BDCNEVh5O/DrjhrG0WALcAG4HZwIrzKd6v0TAGJcazalkylkpXEb3+gx0NtC2VNl59ZjnH0k6hSoleJwiPDOLxlyZV5VWbzQY6J0SSllzTwep0giEXxAMwcGgHnpo7lSULksjOKqZ3v2gmXd6bNuGBXHndID57b2ONx3WTWc/0q/rVqydrXHwb9xOCRn2jyvk7TL4AY2ggtrKKGpOwwqCnxy2TG3zc1kpYeCCBgUYXjSghqFe7UHc0Jg3Z2zQ6HURKaQfuA5YAScC3Usr9QojnhBAznJt9CrQVQiQDDwMu6aAarY++A2PoOzCmRljFbDZwyZSeVZ29fvjfbtJTCrBY7NisCpWVdnJzSvjs/U01jnX7faMIDDJWNX43mQ2EhQdw7S1Dq7bp2CWCO+4fzZMvT+Hqm4bQxnnzGHVRV264LZGQUDMGg46AQCOXzerPZbM8T/65o1PXSBJ6tMNgPPNvJQQYTTrGT+pxzn0ryq2s+T2ZhfP3cnB/To0nGZ3RwLQ1b9J2SA/0ASb0gWZCEmKZvPQVAqObtqq5JP0E2x//lNV/eJHDn/3myCI7z9DpBDfcnlhDHlqnE5gDDMz+wxAfWuZdtApfDZ+iKirbNmWwcXUqBqOeiy7tTv/BsVWP5ffe9C2lJa4OSK8XfPj19TXCMiXFlaz5PZmsjCISerZjzLiEek0aq6qkotxKYKCxwb17LZWO8v/1q1Kx21R694vmpruGn7P8Py05n7lPLUNVJDabHaPJQI/eUTz0xCUuTXLKs/JQrHZCOkc3uTZR1vIdLJ/5JKrdjmq1YwgOIDg+iss2vdss0hHepKLCxpKfD7Bl/VFMAQYundaLyLZBLPx+H7knSunRO4qZ1w6sU6V3eZmVvNwyotoH+6XstybvoHFecPcNX9eI/59GpxN8+NV1teZm+xIpZa0OuiKvkDenvYLhWCbloW3I7NoHS1AIJrOe624dxoSpvbxjq6ryTcdrqcguqLFcZzYy4NFrGfrcH93ul5NdzNJfDpKdWUyvvu2ZMKUXIWFNU1WuqrJeYTdPWK0KTz+8iNyc0qqML7NZz8ixXbntvrq3rVQVlf9+uo3Vy5LRG3Qoisr4ST24/rbEJrGzqWiR2T4aGmczdHhHNq5Nq9HyTwhHZoQ/O36oXfGx9FgOPw29m6jCMvSqgpqbRVz6IfaMmkRxZHtWL0v2mvMvPpKJrdg1G0q12Ej7dpVb539wXw7/fH45druKqkgO789h2aKDPPfP6S59FerDof05fPHxFjLSCwkINHLp9F5cdf0gj1WwtbF5bTr5eWU1Un0tFoUNq9OYPqs/0bHnlvWw21VWLTnMgu/2UlxU6cjgch5r1bIjhIUHcPnshmVy+ZKWUQKq0Wq55pahhEcEVmm8m8x6goJN3P4X7zQab062/d/H2IpK0asOR6KTKgbFTs/dG5xbeO+pXB9kRnooRDIEu9YnSCn59N0NWC1K1Y3ZZlMpK7Hy/f92NdiOY+mneO255WSkO9pyVlbYWLogiXkfbG7wMffvznKbVKDTC5I9VH2fRkrJGy+s4Jv/7KCosNKlHsRqUVj8c/NpdzUn/j100mj1hEcE8vJ7M9m8Np3UI3nExbdhzPgEv2zYXV8yF28FNw43qLSYQJ3C2AneaxwU0rE94f06U7AzpYZGlSEogN5/du2TUFJUWVURXR1Vdejx14XKChvpqQWEhpnp0NGhQ/XL/L0uWThWq8KGValcc9PQBoWUItsFO8I0Z6UVC0GtaZiHD5zkyMFcl8Kt6pSVWT2u82c056/h95jNBi66tDvDx3Rm3YoUPnpzPW2jgpkwrVeV02iJGIIDsZ4qdV0hoEuv9rVmCDU14797hsXjH8ZSUOyQyLArdLn6InreNsVlW5PZ4PG5JCCo9kn2pb8c5Lv/7KiKnUfHhvHwk5eQkV7ottraYNSTe7K0Qc5/3KQeLFt0EKXa4F8ICAo20af/uWVEDieddG0behadu/p3RzFPaM5fo0VQVmrlmb8uovBUBVaLgk4nWLs8hT8/MtavBNjqQ58/z2DXi1/WlG0w6Gk3bhi3vTS1WTqNHT96iqNpp2gfE0L3XlE1zhHaJYbZKV+SvWo35Zl5tB/Vl7Du7vPVAwKNDBragT07Mmu04DSZ9Uyc1gu7XSVp7wnKSi307h9TY4SdtPcE332xwyHr4XSsmccKef35FXROiCQ7qxh5Vr2E3abSPqZhGUftY0K5f844PnxznSNMpUpi4sK4f87FtWZ1tYkIxGjSuw0bnf68N95xQYPs8jWa89doESxZcICC/PKqknxVlVitCp+8s4F3Eq9u8GSgL+n/6LXk704hY8EGdCYD0q4SMaArE799vMkdv92m8Pbc1STtOYFOJ5BA++gQ/v78RELDzsT0hU5H3CV1y3W/4/5R/PO5FWQcPYVer8NuUxg+ujO9+kXz4G3zqyZFFbvKZbP6c8V1gwBYsjDJJYyiqpKc7GKuumEQ2zdnYLWccbYms56xE7o1KtQ3YEgcb382m6zjRZjMhjr3brhgdGf+96lr1qEQjiLFq64f5Bf9eBuC5vw1WgTbNh5z0WIBh1piZkYRnfy8mbc7dAY9479+kuKULE7tSSWkawxtBzdPnH/h9/s4sOdEjRBG1vEiPn13Iw8+Nv4ce3omOMTMU69M5Vj6KfJPltKpayQRkYE8eMcPLjr0i37cT69+0fQZEENxYaXb4+n1OoKDTcx5fiJffrKVoyn5BAabmDyjD5dd2fgGNTq9jvjO9fueBAYa+ftzE3n3ldWUFDk+U0ioiXv/djHderZrtE2+RHP+Gi0CT8U0iiIJrEchV1OSlpzP0bQComNC6dUvusG53mHd4gjrFtfE1tVk1ZIjLrFrRZHs2Z6F1WJvVNpspy4RVTffwwdOYql0rcuwWhRWLD5MnwExDErsQHpKvouYnmJX6ZwQSUCgkadfmdpge5qart3b8tqHV5J9vBiJJC6+TbOE5LyN5vw1WgQTL+vFsfSCGuECnU7QoWMboqK9W31qtdh5/YUVpBx2KJLrhCCibRCPvXhGb8jf8CRnDfKcWvP1xWKxe3SM5eWOrJiMo4Uujl/o4Oqbh9SrItubCCGI69i4Ju3+RssLlGq0SkZc2IXxk3piNDq0d8wBBqJiQrh/zjiv2/Lzt3tIPpiH1aJgtTj0hk6eKOHTdzd63Za6Mjgx3u2TSVzHNk0qUdCjd5RbpVaz2cDIC7uSnpLP7m2uTU8MBj2durTM2HlLRRv5a7QIhHCIcU29si8ph/MIDw+kW692Pnn8XrM8xWUkrSiSvTuzsVoVTKaGtaFsTq65eQj7d2dTXm7FalEwGnXoDTru+MvoJj1PQKCRm+8azn8+3ILdrqCqDmnsTl0jGHVRF5YuOohid83ldr1PLAAAHvVJREFUtFkV9u/JpnctqZcaTYfm/DVaFBGRQSSO7FRjWVmpha0bj1FZbqP/kDjiO9Ut9z/reBFJe08QEmpmyAXxdY572z2EUCQSVVGBpnH+drvK9k3H2LE5g5AwM+Mm9qBjAye2wyODePm9GaxdkUryoVziOoQxblIPwiODmsTW6oyd0J3O3dqyeulhSoqtDBvZkWEjO2Ew6AgJMWMw6lxCTUaTntDQ5inck1KyaukRFny7l6LCCmLj23DDbYn0GxTbLOdrKWjCbhotmn27snjrH6sQCBRFRacTjJ3QjZvuHO7xqUBKybwPNrNuZSrgUAjV6XT87dlL6dq9rdt9qvPRW+vZuKam3hDCMfF5/R+HEdk2uNE9e+02hblP/c7RtAIslXZ0Okdo5Oa7hnu18repKS+z8tAd31NZUTNv3mTW888Pr2yWOZPfftrPj1/twVI9fdSk55GnJpyXTxp1FXbTYv4aLRarVeGduWuwWhQsFjt2u4rVqrBuRSr7dmV73G/bxmNsWJWGzao4egRU2Ckvs/LGiyvdNmM5m2tuHkqb8DN6QwajDr1ekJVRxNsvr+bJh37hhTmL3UpR15WNa9I5mlpQVVykqo7P+5+PtlBZ4ZpN01IICjbxyFMTCA0zExBoICDQSFCwiQcfG98sjl9RVH7+dm8Nxw+Oazn/y51Nfr6WhBb20WixHNx3wu1yi8XO2uUpDBjiPn1y9bJkF2cADi3+tOQ8uvWMOud5wyMCmfveDDasTiP1SB6WSjs7txzHalWqql1Tk/P58I11PPLUhHp+Kgeb16W7tVGv13E46SQDh7pW3loqbezffQIpJf0Gxfpt5kzPPu15+/PZpBzJQ6qQ0LOdS9+Cc6Gqkv27s0k+mEt4ZCDDx3QhOMT9pHVpicVtfQg4wn6tGc35a7RYVFWCh/neUwVllJVa3FaFek57FB4dxdmYA4yMn9yT8ZN78uRDvzikCqqh2FUO7D1BabGlQXo0gR70caSUVFbYmP/lTk7mlNKnfzSjL+5K0r4c3n9trTPUJVFVyZ0PjOGC0Z3rfW5voNPr6NG7/i0TrVaFV55exrG0U1gq7ZjMer6Zt4O/PzfRbcguOMSMXi+wuXlYqk3K+XxHc/4aLQ67TWHT2nQ2rU3H6kFzJT2lgAf++D0zrxnA5VfX1FoffXFXUo/kuUgMCEGDqjbLSt2rOup0gvJyq4vzP7Anm2/m7SQ7s4i2UcHMunGwyyT2+Mk92LXtuIuNer2OT97eiKKo2O0qu7YcZ+H8fRQXVboUcX345nq69Yoism3TT+r6imWLDnI0paDqZuu4PgrvvbqGVz+4wmWex2DQMfXKfiz6YV+Na2k06erdpvN8Q4v5a7Qo7DaFlx5fyrwPN7N3Z1ZVjP7sHHarRcFmU1gwfy+7t9eUGB4zvhvde0WdidkbdJhMeu5++EIMxvpn6gwYEodO7/oIEhBgpF1UzaYm+3dn88YLK0lPycdSaScro4gP31jH+pUpNbbrOzCW6Vf2w2DUVcXGg0NNGAy6qvkNcIS4TuWXu82tR0q2rE+v9+fxZ9avSHF5ygIoKqzg5IkSt/vMvGYAV10/iBBnNpEQICW8/8+1fPD6OrfhtdaANvLXaFFsWpvO8aOFLiNiiUSnFzUzcHDcBJYuTGLQsDMxcoNBx6NPT2DPziz27cwitE0AF47vRtuohnWfuuK6gWzffIyKcht2m4rQCYwGHX+8Z6SLauQ383a4OC+rReGb/+xk9LiEGiPXK64bxLhJPUjal0NQsIno2FCefPAXl/N7mqS221UsFeeXY/NY1yHBUwxQCMGUmX3RG3R89dk2VJWq8N62jcdQFJV7H72oeQz2YzTnr9Gi2LrhmNuRmsmoR0qwKq6jQndZNzq9jsGJ8QxOjG+0TRGRQbz09gyWLTrIgT0naB8dwpSZfd2qPWZ7mGQscYZtzq41CI8MYtRFXQHH6Fb1lJrtCPXXwGjSM3CYe0lmf6S8zEpZqZW27YI8Si2PHNuFH77e7XKTj2wX5FHyWUrJR2860nPPvnw2m8LOLRkNnptpyWjOX6NFERxqqnpsr4G7ZYDRqPeK3n9YmwBm3TCYWTd43kZKSVCICWtBhcu6gEADxloqg9uEB9K1W1tSDue5jvYlNa6L2WxgxNgudapb8DWWShufvLORHVsy0OkEJpOBa24ZQmWFnf27somKDmbCtN6EhplZseSwi9a/OcDAvX+72ONTwe7tmWzfnOH2+wGgN+goLKzQnL+Ghj9zyZSebN1w1CXsExBoYvYNg/jik63YrApSOka+EZGBTJze20fW1uTrf2+npMhVzthk1nPZrP51kqq459GL+McTSykurKhqTHIaKR1zH0OGxzN+ck/6D24ZFaz/en0d+3ZmVYVirBaFz97dhMGgw253FO6t+T2F/kPiKHbTRzcgwHDOqu6Nq9M8NmMBx3Wrq77/+YTm/DVaFN17RTH7xsF898VODEY9UkrMZgOPPj2Bjl0i6NA5gmW/HORUQTmDEzswblKPJhUuayj5uWUs//WQi5olwNDhHZlWR736yLZBzH1vJhvXpPHpOxtc1gudICo6xGONQ3VsVjsL5+8j5Ug+nbqGM2P2AK9fq8KCcvbtzMLmJsX29KT26cY9O7e4H71XlNvIzSkhOtZ9VfW5Gv0YDDquvH6QX+oxNTea868jllMlJL37E8d/20xQhyj6PTSb6NGNbzChUX8mz+jLhZd049CBkwQFmejZJ6oqRtytZzu6PXyhjy105eC+HIeNbpycXi/qJVCn0wmCQ0yYzAYqymsmsCt2lWNpp2o9xomsYh67f2FVltC+nVks/imJp16dStdu3gsVnSqowGDUu3X+Z+MpbGOzq5gDPBe0jRmfwLaNrnNFQsCf7h/NSOecSmtDc/51oDK/iAVD76Iytwil0griIJm/bWbE23+h523+03SiNREcYmbo8JbTu/f0XIULAkLbBLhZcW7i4tvU6J17GoNBV6c4/6vP/u6SHqqqkleeXMa//nddve1pKLEdwhrdT0BAjR7BZ9N3YAzjJvdgxeLDSCnR63RIJPfPGVenJ6TzFc3514H9r8+n4mQhqsU5ypISe7mFzQ++R8INEzAE+D6soOHf9B8c5z78IGlQOmb7mFAGDoljz86sM8VdwjHPcWktcxxWq0JeTpnbdeXlNrIzi4jt4J3GJQGBRmZcPYAF3+11mcepjttJfifmWtRYhRDccFsi4yb1YO+OLAICDSSO6tSonsDnA5rzrwMZizadcfzVEDpB4b402iX28oFVGr6kIK+MJQuTSD6YS1zHcKZe0Ze4eM8O02DQ0X9wLJvXHXVZt25VKtfcMpSg4PoNIu56aAyfvruJXduOY7ep9O7fnhvvuKDWit7alHx3bc30mvMHuHz2ANrHhLLo+30UFVXSp38MQki2bjiG3uCY12kbFUxYmwAOHzhZY5JbrxeMHle3sE1cfJtz/o1aG5rzrwMBUe4zCVSbgjmy9WUJtHZOZBbzzKO/YrUqKHaV1CP5bFqbxiNPnlsiODPDfY6/waAjO7OoVkG56qQl5/PP55ZjsynodAK9XjDywi506Fh7LwOz2VEx7Ekd1Bcy7yMu7MKIC7tUvbdU2ph0eR/yc8uIaBtMQo+2nCqo4IW/L6aszILNqmA06omKCeHqm4Z43d7zAc3514F+D80md+N+7OVnioWEQU/EwARCE1pvzLC18vW/t1NZYasKQ6iqxGpR+Pxfm5j73kyP+8XEhXH8WKFLMZbdphDZru7VxTabwqvP/O6iKfTFx1vp2qNdnRq+3Hz3BXz0hmu2kMEgGDjUd99pq8XOvA82s2ldOkIIAoOM3HTncLr1bEdk2yBe+eAKdm07zsnsEjp2iaDfoFi37Sm9TX5uGbknS4mLb0NYA+ZwfIHm/OtAx2kjGPz0Lex8Zh46kwHVZie8T2cm/Picr03T8AFJ+3Lcxp9PniihosJGoAcp5WlX9mPPjsyaAmNGPf2HxBJRj45a+3dlu00ZtdsVVv+ezB/uuKDWY4y5uBt7t2exed3RqjCK0Si4aGJP4js3rFtYU/DRWxvYtTWjKuffZlX4+M31hIcH0rNvewwGnYsIni+xWOz867W17NuVjcGow25TuGhid/5wx3C/uCmdC83515EBj15Lr7suI3/HEQKjIwjv459SuRrNT1CQ+5CJTicwnkMYrlvPdtzzyFjmfbCZ0hILErhgdCdu/fOIep3fkd7p6vxVFY/iZu6466ELGT0ugQ2r0hDCkRLZFK0NK8qtbFqbTnZmMV27tSVxdKdzXpfTFBdVsrOa4z+N1aqwcP7eBvdGaE6++GgL+3ZlY7MpVVLha5enEBMbxqTL+/jYunOjOf96YAoLJnbcYF+boeFjLr2sNz99vfusEbyOEWO71tqUZMjwjgy+IJ6iwkoCg4y1Zqq4o/eAaLdpnuBQDc3JLvZY8FQdIQQDh3Zw2ximoWRnFvHCnMVYrQpWi4I5wMAPX+3i6Vem1SqfcCq/HINB77anwskTpU1mY1NhtylsXJPmerOyKCxekOT3zr9Rks5CiEghxDIhxBHnb7fPi0IIRQixy/mzoDHn1NDwNVNn9GHURV0xGvUEBhkxmvT0GRDDzXfWHm4Bh9MNjwhskOMHh5DcZA+ORbGrLPphf4OOWxeklGxYncrzcxbz5EO/sOiHfTWKpz5+ewNlpdaqG6Ol0k5+Xjnffbmj1mPHxIWiusn51+kEPfvUfTLcW9hsiovO0GnKy9z3ePAnGjvynwMsl1K+LISY43z/dzfbVUgptSGzxnmBTq/jtntHcdUNg8nKKCQqOoSoaO9mfQ0d0ZFliw66SltLSD2S12zn/fy9TWxae6bFZEb6KX776QBPvDyFiMhA0pLzXeZDFLvK1g3H+OM9o855bHOAkctm9+eX7880XhECTGaDS0MefyAg0EjbqGCXpxIhoHc//28M39hmLjOBec7X84ArGnk8DY0WQ3hEIH0HxtbJ8VssdtavSuXXH/dz5ODJRqdTtmsf4nbUKQTE1SHdsyGcyCpmw5q0GiN9KaGk2MITDywkI73QYyWWu2Y37phx9QD+eM9I4juFExpmZtjITjzz2lS/FF4TQvDHe0ZiMusRzsldvV4QEGjk2luH+ti62mnsyD9aSpntfH0C8HS7CxBCbAPswMtSyp8aeV4NjRZDRvop/vHEUux2FbtNwWDU07NPex58fHy9GpdXJzwikKEjOrJjy/Ea7RuNJn2ztSc8kpTrMYPFZlN57bnlHmS1dYwZl1CncwghGH1xAqMvrtv2vqbvwFiemjuV337aT9bxYrr3jmLqzL4NbgzkTWp1/kKI34EYN6ser/5GSimFEJ6GM52llJlCiARghRBir5Qy5eyNhBB3AncCdOrkP+lcGhoNRUrJO3NX18jJVxQ7h/bnsOK3Q42aFPzTA2P4+vPtrPk9GbtdpX1sKLfePYJOdcjzbwhh4QHu9YmcnC0yB44Rf8eukVx1/aBmsckf6Nglgjsf9D8xwdqo1flLKS/1tE4IkSOEiJVSZgshYoGTHo6R6fydKoRYBQwBXJy/lPIj4COAxMRE75cZamg0MSdPlHAqv9xl+en0xYmX9a6Xomd1jEY9N905nBtvT8RuV126gJ1GSomiyAY/ZZym/+BYzAEGKuuhRaTX63hq7pQGf0aN5qOxMf8FwC3O17cAP5+9gRAiQghhdr5uB4wBDjTyvBoaLQKp4qm1LMXFFn79sfGZOTq9zq3jVxSV+V/u5O4bvub2q//LnPt+Zv/ubDdHqBt6vY7/e2ESwfXQIFLsqub4/ZTGOv+XgYlCiCPApc73CCEShRCfOLfpA2wTQuwGVuKI+WvOX6NVEB0X6rncX8KvPzbfv8IXH21hycIkx0hdQvbxYt58cSVpyfkNPmZshza8+fks+g2KwWDQVaW6hoS6uSEIzql1pOFbhC9EnOpCYmKi3LZtm6/N0PAhuTmlbFqbhrXSzqAL4unWs12LHEWmHsnj2Ud/87j+8x/+0ORSAGWlVh7443euTVIEDLkgngcfG9/oc+TmlJB1vJjYDmHY7SrP/e037DYFm03FaNRhMOp56pWpmpKmlxFCbJdSJta2nVbhq+GXbFidymfvbUKqEkVRWbwwiZEXduG2+0a1uBtAQo92dIgPI/N4scu6mLjQZtGAKcgrQ29w0yFLQpYHddH6EhUdWiPNde77M1m5+DDpqQV0SYhk/JSetAn33GRFw7dozl/D7ygrtfLZe5tqpDBaLQqb1x9lxNgu9B/c8pRU/3DncN54YSXWap/JZNZzw211qwquL+2iQ9x2yBICOiVENss524QHcsV1529Wz/lGY2P+GhpNzr5dWejdFAVZKu1sWpPufYOagL4DY3n02UvpMyCGsDYB9OrbnkeenMCgxKbT1alOYKCRS6f1wmSuKahmNOmZ6YfVso0hN6eEhfP38t2XO0k+mOuTfgQtEW3kr+F3ONodujp/IUDfyHRFX9KzT3vmPD/Ra+e75uahtIkIZPFPBygtsdClW1tuuH1YnfT+ayM3pxRFUYmODfVpGG79qlQ+f38TqipRFZWlC5MYMaYLt/+l5YUHvY3m/DX8jv6DY1FV15CF0aSvc6WohkMQberMvkyd2bfJjnkis5i3567m5IkShICQUDN/fmQsPfu0b7Jz1JWyUiufv+8aHtyy4SgjL2qZ4UFv0nKHURrnLQGBRu599CJMZj0msx6DUYfRpGfi9N707Ot9J6PhwG5TeOnxJWRlFGJzSjYX5JXz2rPLKSqs8Lo9+3dnO58Sa9KSw4PeRBv5a/glgxPjeePjWWzbfAxrpZ2BQzsQ06F2jXqN5mPPjiwsFruLfo+qSNatSGH6Vc2jKeQJT1lSQtRdSK41ozl/Db8lJMzMuIk9fG1Gk1FcWEHhqQqi48IarOXvS04VlLttH2mzKeTnuUpYNDf9B8e6ndyVwPGjhRzan0OvFiCt7Cu0sI+GRjOgKGqVY7JY7LwzdzUP/ekHXnxsCffd/C2/fL/PK3ZUVtg4nHSSnGzXGoP60r1XlFthN3OAwSf69QGBRu7960UYTbqa2WESUg7n8dqzy9m8Lt3rdrUUWt7wQ0PDjzl84CT/+XAzx48VYjIZGDe5B4UFFezelondpla1/Pv52z1ERYcw4sIuzWbL4gUH+P7LXegNOhS7SscuETz42DjCGlh41TkhkgFD4ti7M6uq2YrRqCM6NpShIzo2pel1JiomhIBAI6XFFpd1VqvClx9v5YLRnf2+mbov0Eb+GhpNxPFjhbz67O9kHC1ESseIf8Xiw2xZn17V3Ps0VovComYc/e/dmcX3/92F1apQUW7DalVIT8nn7ZdXN+q49z56Edfd6kgXjY0P4/LZA3jiH5MbrRjaEKSUvPXSKkqKLZ56yFBRYaOwwPshqZaANvLX0Ggifv1hn4ucQvU0xLMpLKxsNlt++2m/S4tHRZGkpxaQm1NKVHRIg46r1+uYMLUXE6b2agozG0V2ZjEF+WWOIL8HpJQE1UOFtDWhjfw1NJqIjPRCjw29z0boRLPGyYs83Fj0eh2lJa4hkpaIzaqgO0chl9GoZ/iYzgQEGr1oVctBc/4aGk1El+5t3caW9XqB0XTmX02nEwSYDcy6sfl0cAYN64DB6PrvLaWkQ6fm6fHrbTp2Dsdg1Ltdp9MJBl3QgVv/PNLLVrUcNOevodFETL+qH0ZTTWdkMuu5aEJ3/vrUpQwYGkdMXBgXXtKN59+cTnRs89UtTL2iLyGh5ho3AJNZz/V/HIbJ5N5htjR0eh13P3yhoxDQOedgMuuJ7RDGKx9cwV/+dnGLTKn1Fpqev4ZGE3I0tYD/frqNlEO5BAWbmHR5b6Zf2Q+dm0rU5qa02MLihUns3ZFJRNsgpszs65OUzOYm72Qpa35P5lR+Of0Gx5I4qrNPJqD9hbrq+WvOX0NDQ+M8oq7Ov/XeHjU0WhGWShsH9+VwNLVAkzzWALRUTw2N857Vy47w5Sdb0et1qKokPCKQR56aQHRsaO07a5y3aCN/DY3zmNQjeXz58VasFkexl6XSzskTJbz6zO/aE0ArR3P+GhrnMct/PeRSXSwlFBdVknI4z0dWafgDmvPX0DiPKSqsdCt9oNOJ86bYS6NhaM5fQ+M8ZsjweJc+vgB2m0r3XlE+sEjDX9Ccv4bGecyFl3Qjqn1IjcIuk1nPzGsHEhJq9qFlGr5Gy/bR0DiPMZsNPP3qVFYtS2bbxmMEh5iYOL03/QbF+to0DR+jOX8NjfMcc4CRyZf3YfLlfXxtioYfoYV9NDQ0NFohmvPX0NDQaIVoYR8NDQ2vYLHYWf7rITavS8ccYGDC1F4MH9MZcQ5Nfo3mQ3P+GhoazY7NpvD83xdzIqu4qrtZenIBhw6c5OY7h/vYutaJFvbR0NBodrasO8rJEyU12lpaLHbWLEsmN6fEh5a1XjTnr6Gh0ezs3ZmJpdLuslynFxxOyvWBRRqa89fQ0Gh2ItoGode7xvaFgLA2AT6wSENz/hoaGs3OuEk90J/VzUwICAg00m9gjI+sat00yvkLIa4WQuwXQqhCCI+dY4QQU4QQh4QQyUKIOY05p4aGRssjOjaMe/46lqBgEwGBBkxmPdFxYfzf85N80uJSo/HZPvuAq4APPW0ghNAD7wETgePAViHEAinlgUaeW0NDowUxZHhH3pl3NRnppzCbDcTGh2lpnj6kUc5fSpkE1PYHHA4kSylTndt+DcwENOevodHKMBh0dO3e1tdmaOCdmH8HIKPa++POZRoaGhoaPqLWkb8Q4nfA3YzM41LKn5vSGCHEncCdAJ06dWrKQ2toaGhoVKNW5y+lvLSR58gEOlZ7H+9c5u5cHwEfASQmJmoNRjU0NDSaCW+EfbYCPYQQXYUQJuA6YIEXzquhoaGh4YHGpnpeKYQ4DowCFgkhljiXxwkhfgWQUtqB+4AlQBLwrZRyf+PM1tDQ0NBoDI3N9vkR+NHN8ixgWrX3vwK/NuZcGhoaGhpNh5DSP0PrQohc4Gi1Re2APB+ZUx80O5sWzc6mRbOzafFHOztLKaNq28hvnf/ZCCG2SSk9VhH7C5qdTYtmZ9Oi2dm0tBQ73aHVVWtoaGi0QjTnr6GhodEKaUnO/yNfG1BHNDubFs3OpkWzs2lpKXa60GJi/hoaGhoaTUdLGvlraGhoaDQRmvPX0NDQaIX4rfOvR6OYdCHEXiHELiHENm/a6Dx/i2hoI4SIFEIsE0Iccf6O8LCd4ryWu4QQXpPhqO36CCHMQohvnOs3CyG6eMu2s+yozc5bhRC51a7hHT6w8TMhxEkhxD4P64UQ4m3nZ9gjhBjqbRuddtRm5zghRFG1a/mUt2102tFRCLFSCHHA+b/+gJtt/OKa1gsppV/+AH2AXsAqIPEc26UD7fzZTkAPpAAJgAnYDfT1sp2vAHOcr+cAcz1sV+qDa1jr9QHuAT5wvr4O+MZP7bwVeNfbtp1lw0XAUGCfh/XTgN8AAYwENvupneOAX3x5LZ12xAJDna9DgcNu/u5+cU3r8+O3I38pZZKU8pCv7aiNOtpZ1dBGSmkFTje08SYzgXnO1/OAK7x8/nNRl+tT3f75wATh/TZQ/vB3rBUp5Rqg4BybzAT+Ix1sAsKFELHese4MdbDTL5BSZkspdzhfl+DQKDu7J4lfXNP64LfOvx5IYKkQYruzH4A/4g8NbaKllNnO1yeAaA/bBQghtgkhNgkhvHWDqMv1qdpGOsQCiwBvt4Sq699xlvPRf74QoqOb9b7GH76PdWWUEGK3EOI3IUQ/XxvjDDcOATaftaolXVOg8T18G0UTNYq5UEqZKYRoDywTQhx0jiiaDG82tGkM57Kz+hsppRRCeMrx7ey8ngnACiHEXillSlPbeh6zEPhKSmkRQtyF42nlEh/b1FLZgeP7WCqEmAb8BPTwlTFCiBDge+BBKWWxr+xoKnzq/GXjG8Ugpcx0/j4phPgRx6N5kzr/JrCzzg1tGsO57BRC5AghYqWU2c7H0ZMejnH6eqYKIVbhGOU0t/Ovy/U5vc1xIYQBaAPkN7NdZ1OrnVLK6jZ9gmOuxd/wyvexsVR3sFLKX4UQ7wsh2kkpvS6kJoQw4nD8/5VS/uBmkxZxTavTosM+QohgIUTo6dfAJMBt5oCP8YeGNguAW5yvbwFcnliEEBFCCLPzdTtgDHDAC7bV5fpUt382sEI6Z9q8SK12nhXnnYEjPuxvLABudmaojASKqoUE/QYhRMzpeR0hxHAc/srbN3ycNnwKJEkpX/ewWYu4pjXw9Yyzpx/gShxxMwuQAyxxLo8DfnW+TsCRcbEb2I8jDON3dsoz2QCHcYyifWFnW2A5cAT4HYh0Lk8EPnG+Hg3sdV7PvcDtXrTP5foAzwEznK8DgO+AZGALkOCj72Vtdv7D+V3cDawEevvAxq+AbMDm/G7eDtwN3O1cL4D3nJ9hL+fIpvOxnfdVu5abgNE+svNCHHOLe4Bdzp9p/nhN6/OjyTtoaGhotEJadNhHQ0NDQ6NhaM5fQ0NDoxWiOX8NDQ2NVojm/DU0NDRaIZrz19DQ0GiFaM5fQ0NDoxWiOX8NDQ2NVsj/A/NNv9z9zL1nAAAAAElFTkSuQmCC\n",
- "text/plain": [
- "<Figure size 432x288 with 1 Axes>"
- ]
- },
- "metadata": {
- "needs_background": "light"
- },
- "output_type": "display_data"
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEICAYAAAC3Y/QeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzsnXd4VNXWh999pqaTTgu99yodQZQmTVBRsRdsiJXPXq5dr/3aywXxggIC0jsqvUsJJRBaGpCE9DL17O+PCSHDTCA9Ac77PD6SM+fsvTKZWWeftdf6LSGlRENDQ0Pj6kKpbgM0NDQ0NKoezflraGhoXIVozl9DQ0PjKkRz/hoaGhpXIZrz19DQ0LgK0Zy/hoaGxlWI5vw1NC6BEGKaEOLtgn/3E0LEVNG8UgjRrCrm0rj60Jy/hkYpkFKul1K2vNR5Qoh7hRAbqsImDY2yoDl/jasKIYS+um3Q0KgJaM5f44pACHFCCPGiEOKAECJdCDFVCGEWQgwQQiQIIZ4XQpwGphacP0IIsVsIkSGE2CSE6FBkrM5CiF1CiGwhxCzAXOS1AUKIhCI/Rwkh5gkhUoQQZ4UQXwohWgPfAr2EEDlCiIyCc01CiI+EEHFCiDNCiG+FED5FxpoihDglhEgSQtxf+e+axtWM5vw1riQmAEOApkAL4JWC47WBEKAhMFEI0Rn4L/AwEAp8BywscM5G4A/gl4Jr5gDjvE0mhNABi4GTQCOgHvCblPIg8AiwWUrpL6WsVXDJ+wV2dQKaFZz/WsFYQ4HngBuA5sD15X87NDSKR3P+GlcSX0op46WUacA7wO0Fx1XgdSmlVUqZD0wEvpNSbpVSOqWUPwNWoGfBfwbgMymlXUr5O7C9mPmuAeoCU6SUuVJKi5TSa5xfCCEK5n1aSpkmpcwG3gVuKzjlVmCqlDJaSpkLvFGud0JD4xJo8U+NK4n4Iv8+icsxA6RIKS1FXmsI3COEeKLIMWPB+RJIlO6KhyeLmS8KOCmldJTAtnDAF9jpug8AIABdwb/rAjtLMKeGRoWgrfw1riSiivy7AZBU8O8LpWvjgXeklLWK/OcrpfwVOAXUE0U8dMFY3ogHGhSziXzhnKlAPtC2yJxBUkr/gtdPebFfQ6PS0Jy/xpXE40KI+kKIEOBlYFYx5/0APCKE6CFc+AkhbhRCBACbAQcwWQhhEEKMxRXe8cY2XE77/YIxzEKIPgWvnQHqF+whIKVUC+b9VAgRASCEqCeEGFJw/mzgXiFEGyGEL/B6ed4IDY1LoTl/jSuJmcBK4BhwFHjb20lSyh3AQ8CXQDoQC9xb8JoNGFvwcxowHphXzDhOYCSuzds4IKHgfIC1wH7gtBAiteDY8wVzbRFCZAGrgZYFYy0DPiu4Lrbg/xoalYbQmrloXAkIIU4AD0opV1e3LRoalwPayl9DQ0PjKkRz/hoaGhpXIVrYR0NDQ+MqRFv5a2hoaFyF1Ngir7CwMNmoUaPqNkNDQ0PjsmLnzp2pUsrwS51XY51/o0aN2LFjR3WboaGhoXFZIYQoUXW4FvbR0NDQuArRnL+GhobGVYjm/DU0NDSuQjTnr6GhoXEVojl/DQ0NjasQzflrlAt7bj5Oq626zdDQ0CglNTbVU6Nmk7bnKBse/Ii0PUcRQlB/eA/6/PAs5rCg6jZNQ0OjBGgrf41Sk5+cztJrn+LszsNIhxPV7iBh6VaWD3qWmiIXojqdSFWtbjM0NGosmvPXKDWHf1qKanPvXKjaHWQfP03yxuhqsspFZkw8S699ip9NQ5juM4y/JryDNT27Wm3S0KiJaM5fo9RkHDiJ0+I9zp997FQVW3Mey9lMFveexJkN0aBKVLuDk3PXsXzQczXmiURDo6agOX+NUhPeozU6X7PHcamqBLdvjDUjB9XprHK7jkxd7ropFXH0qs1BVmwiyZv2V7k9Gho1Gc35a5SaZncPxhjki9DrCo/pzEb8G9ZmxZDn+a32OGaGjGH3W79Uadw9Pfo4znwvTyRSknU4ocrs0NC4HNCcv0apMQb6MWr7NzS+bSCGID/MkcHUG3YNOSdPY03NRLU5sGfnsfeDX9nz7kwApJQkLN/G+gc+ZNOjn5K85UCF2xXWpQV6L08kALXaNarw+TQ0LmdqbDOXbt26SU3V8/JhXtv7yDwY53HcEOjL7anz2XDfh8T9sRFHrgUUgc5spP3/3Ubn1+6uMBtsmTnMbXkPltQsKHji0JkMhHZvyfC/P0MIUWFzaWjUVIQQO6WU3S51nrby16gQcuNTvB535ls5tWrneccPoEqceVb2vf8r2SdOV5gNxiB/Rm77mgaje6PzMWEM8qPFxBEMXva+5vg1NC5AK/LSqBBqtW1I6tZDHseNwQEkrNyBI8/qeZEiSFyxnVYPj6wwO/wbRDJo7r8qbDwNjSsVbeWvUSF0f38iOh+T2zGdr4lu7z+EMcAXofP8qAlFKTZGr6GhUblozl+jQqh9bUcGL3uf8J6tMQT4UqttI/pPf5Hm9w6l6Z3Xoxh0nhdJSYPRvaveWA0NDS3so1Fx1O7fgRGbvvQ4HtQiip7/mcyWSV8gDDoEAqmqXDf3XxgD/arBUg0NDc35a1QJLe4fRsMxfUhctROd0UDdwV0x+PlUt1kaGlctmvPXqDJMIYE0GT+wus3wQLU7kFKiMxqq2xQNjSpDc/5XMPbsPFK2x2AKCSCkY1Mt3fEC8k6dZePEj0lcsQOkJLJfe/r88ByBTetWt2kaGpWO5vwrAFtmDvs/m8uJueswBvrR+ombaHzrgGp1tge+nM+O539AMeqRDid+9cO5Ydn7BDSqXW021SRUh5MlfZ8kNz4Z6XDpEJ1et5fFvSdxy9EZGPwrPyTltNk5NnMNJ+dtwBQaSKtHRhLeo3Wlz6uhAZrzLzf23HwWXfMYufEphUqXaXuOkrLlAD0+fbxabDq9fi87XvgBZ74VZ74rvz7rSCIrhz7P2IPTtCcAIGHZVqypGYWOHygsPjv+21paPHhjpc7vtNpYeu3TZOw/4Sp+E4Ljc/6i23sP0eaJmyp1bg0N0FI9y03s9FXkJp51kzh25FqI+W4xuYneq14rm4P/me8hcCZVlbzEVNJ2x1aLTTWN7NgknFaHx3FHroWMKhCBOzZz7XnHDyBdN54dz3+PNSOn0ufX0NCcfzlJWrEdZ57F47hi1JOy5WA1WAT5yRlussbnEDod1jStsQlAcPvGKEbPB1+9vw+hnZpV+vwn5q477/iLoBj1JG/YV+nza2hozr+c+EaFe61elVLiUzukGiyCBqN6e1TbgiurJax7y2qwqOZR57rOBDavh2I6n+EjDDrMYUE0Gtev0uc3hQaCt/CblBiCtNoHjcpHc/7lpPVjo90cCLhkC3wigono3bZabGo5cQT+DSLcbgB6XzNd33ugUoqqLKmZRH/6O5se+4zY6SuJW7SZ3W//j9hfVuHw8lRUEeSfSWPHiz+wqOfj/HXH26TuiCnV9UJRGPbnJ7R4cDjGYH8Mgb40veN6Rmz5kqzYJM7ujvVoSJN9/BSrx7zKdL/hzAgdw7Yp3+IopqPZpWj58Eh0PkaP4/oA32r73GhcXWiSzhVA3MJNrL//Q1SbA+lUCWoVxaB5b+LfMLLabLLn5BPz/WLiFmzEHFGLNk+MpXb/DhU+z9ndsSwb8DSq3enaXFYESEC4bjg6s5Eb139OUMuoCpszNyGFBV0mYs/KR7XZCyWi+09/kUZjy75qT48+zpoxr5J/Jh2EQO9j4tpfX6HudZ2xnM1kXqt7saXnFDao0ZmNRPbvwJDlH5RpvujPfmfXSz+5wk8S9P5mhqz4kOB2jcv8O2holFTSWXP+FYTqcJKx/wSGAB8Cmlw9eeLzOzxIRvTx4k8QgtDOzRi149sKm3PjxI85Mm2Fe6YOYA6vxfik2Sg6LzpCl8BptTEr6jasqZlux/W+JsYdnk7sL6vY/eYvhdlT59D5mBi59asyO2xrWhZnNkRjDPIjom+7MtmuoVGUkjp/LdWzglD0OkI6Nq1uM6oUS0rGpdsjSkl69AksKRmYw2tVyLyJK7Z7OH4AR24+uSfPlOnmG794C6rV7nFcdaocmb6SszsOezh+cP3d06OPl9n5m0ICaTBKE7fTqHq0mL9GmREGPa4Yz6WpyCdMU2iQ1+OqU8VYy/+i1zryrZzZGE36/hNuNlmSM1C93FBUq528xFSCOzRBMXvG6KWqEtiifil/Aw2N6kdz/hplxlTLn/Bebb1mOxUiBLXaNsInIrjC5m337C3o/dz7AChGPXWv74IpJLDY6478vIJfI8ex6sYXWdzjcf5o/0BhJ7HIfu29XqP396HuoC60nDgC3QWpoYpRT3D7JoR1aVHO30hDo+rRnP9lgj07j9QdMeSdOlvdprjRf/oL+NUPR+/vA14yFxWDjmtnvFShcza5YxBtJo9FZzZiCPJD52Mioldb+v9S/DypO2LY/NjnOHLysWfl4cizkHkonhWDpyClJLhdYxqO7et2U1FMBmq1akDUiF741g5h+PrPCe/VBhSBYtTT+LaBDF7+foX+bhoaVYW24VvDkVKy+83p7PtwFopBh2q1U2/oNfT/34s1RhJZdTrZ+96v7Hnnfx5xc8XHyIgNXxDauXmFz2tNyyJ933F864dfUoxt/X0fEPvLKlDdP+96fx+Grv6I8GtaIVWVmB8Ws+OFH7Fn5bmycISg8+t30+H52wuvUR1OhCIQirZ20qh5aA3crxCOzVhN9L9n48y3Ys/Kw2m1k7hiG5se/rS6TStE0elw5OR73TDFKTn9995KmdcUEkjtazuWSIUz71Sah+MHEIrAUpDhIxSFhCVbXVIdUqJa7agWG3ve+h8n5q3HlpnDtme/YXbD25nd6A52vjoVh5dNYA2Ny4EKcf5CiP8KIZKFENHFvC6EEF8IIWKFEHuFEF0qYt6rgb0f/uZRKOW02Dkxdx32nPwyjytVlZMLNrL21n/x1+1vuzJoyvEUaI6shc7Lhqhi1GMOKz4OXx7yTqex9pY3+Nk8hJ/NQ/hz/Jvkn0nzem7UiJ7ofD2rnp1WO+E9WgGuYrXEVTs9bmKOPAt7P/iNxX0mc/DrBeSfOkteQgr7P55dGDbS0LjcqKiV/zRg6EVeHwY0L/hvIvBNBc17xWNJzvR6XCgCW2bZBMCklPw94V3W3fkuJ39fx/FZf7L25jfY+qRnC8aS0vSOQV7DIIpOocFNfcs8bnE4bXYW95pE3IJNqDYHqs3ByfkbWNz7CVS7p2Bb8/uG4h8V4VZVq/cz0/HlOzEXZA9Zz2ah6L3n2eeeOEVuXLLbjcFpsZG25yhn1mtaPBqXHxXi/KWU6wDvSy4Xo4Hp0sUWoJYQok5FzH2lU3tAR69O1Rjkh2+d0DKNmbwxmvjFm92ExRy5Fg7/tJSMgyfLNKZPZAiDFr6NKSwIQ4APen8ffOuGMmTVvytlbyJuwSasZ7Pc8v2lw4klNZO4RZs9zjf4+TBy29d0fuNewnu0pv7wHgyc8zqdXrmz8JyApnVRvHTzEnodPnVCcXh50lJtjhJLS+TEnWHjI5/we4u7WTrwGRKWbS3RdRoalUFVFXnVA+KL/JxQcOxU0ZOEEBNxPRnQoEGDKjKtZtP17ftJXLEdR67F5eiEQOdjpOd/Jpd5wzFh2TavmjtSlSSu2EGt1g3LNG7d6zpz26k5nN11pLDorbI2RTMPnsSR6+mMHbkWMg/Geb3GEOBL+ynjaT9lvNfXFb2Onl9MYuPDn+DMc8XyFYMeQ4AvjccPIDs2yeN9U0wG/EvQICcn7gwLOk/Enp2PdDjJjk1k7baDdH7zPto/e+slr9fQqGhqVIWvlPJ74HtwZftUszk1gsBm9Riz+wf2vv8rZ9bvJaBZPTo8fxsRvcou/mUI8kMxGFy6OEVQ9DoMgb7lslfR6Qjv3qpcY5SEoNYN0fv5eKzG9X5mglqXfeHQdML1+DWIIPrfs8g5mUyd6zrRfsp49H5moj+aDfmiUC5bKArGAF+iRvS85Lh73p1Z6PjP4cy3sWPKd5z+aw/9f3kR0yUK1DQ0KpIKS/UUQjQCFksp23l57TvgLynlrwU/xwADpJSnLjz3HFqqZ+WRE5/MvFb3esgV6P3M3HJsBopRjyHQr0Z3/HLa7MxrdQ+5CamFDlXodfhFRTDu0DQUQ8Wva9L3n2Dd3e+Tsd+lZRTWvRX9f3mxRK0x57a8m6wjiV5fE3o9kX3bMmztJxVqr8bVSU3T9lkITBJC/Ab0ADIv5vg1Khf/qAj6T3+B9fd+cL46V0Jk/w7Mbng70unEt144vb95inpDulevscWgMxoYsflLtkz+krgFG0EIGozuQ88vJl3U8dtz84lbsAlbRg51r+9CUIuSq40Gt23E6J3fYjmbidDpSrVS960XVqzzlw4HKVsPkXU0SWser1FlVIjzF0L8CgwAwoQQCcDrgAFASvktsBQYDsQCecB9FTGvRtlpNK4/9YZ25/Rfe1D0OmJ+XELC0q2F7ShzTpxmzbjXGb7usxorX5B19BS+9cJoPXksTW+/7pKFZGc27WfV8BeQUiIdKiBp8eCN9Pjs8VI95ZiL0Ra6GB2ev52UbYcK9xIuRDHqyUtI0Zy/RpWhVfhewWQcOEHS2t2YQgJoMLp3sVk3+WfSmNN4glsfYgCEoNG4fgyc/TqW1EzObIzGFBxAZN921V7duuXJLzny0zJXkZUQ6EwGOr50Bx1fvtPr+ardwW91b8F6NsvtuN7PzIBZrxE1vEel23zo24VsfeorVJtnKqrObGR8wqyLahNpaJSEmhb20cBVWJVz4jSGAN8Kkzf2Oo+UbJz4McdmrgUpEQYdmx//nCErPiT8Gs/N2JyTySgmg6fzl5K4xZtZMfj/OL1+LzqTwdVmMNCPIav+Ta1W1ZORlbojhsM/LT2/ipYSZ76VPe/MoMkdgwho7JlFfGZjtNf8/3MprlXh/Fs9Mop6w3qwoNND2LPzCiuO9X5mWj8+WnP8GlWKJu9QRSQs28qs+uOZ3+FBZjW4jeU3TMGSkgG4dPFjp6/k6IzVWNPL32D95PwNHP/tT5z5VpwWG47sfOyZuawe9bJHa0KAwBb1vUszAKrFTtJqV9WrPSsPe3Y+eUlnWTn0+WqrbD35x0bPG1UB8Uu85857c/znyDh4kj86PcTC7o8S8/1ir++Rt/FKct6FBDSMZMzeH2l+7xB864YR3KEJvb56kq7vPVTqsTQ0yoO28q8CMg6cYO0t/3KL957+ew8rh71Aq8dGs2XSFwi9AgikU6Xfz8/T+OZrLzmu02bHlp6NKSzIrQPU4R+XuBVwFZ6fbyN12yGPNFFTLX9aTRpDzNcLS9ZzV0qsadmkbjtEeI/Wlz6/gtGZDQidglTdna9QFNfTiRci+7RDOlXPFxRBzrFThaGYrQdPkrhyB9f9/obXcTIPx7Px4U9IXh+N0AkajOlLr6+fLNU+gH9UBH1/nHLRc5w2O06LDUOAb43OutK4fNFW/lXA/i/me6yspcNJxsE4Nj/+mWt1nmPBkZOPM9/K+ns+KHwq8IbqdLL9+e+ZGTKaOY0n8GvkOGJ+WHz+dS8xZQAEqHbvq9XuH0yk6wcPlTgcJRQFW1Zuic6taBqPH+hVhkGqKg3H9PF6jd7XTL+fX0DnY3KpdQKK2YgQwu39cuZZSVy+jdRdhz3GsKZns7j3E5xZtw+pqqh2J3F/bGTZwGcq7CnIkWdhw4MfMaPWKGaG3cTclveQtPafChlbQ6MomvOvArKPJnlddUpVLcg6uQABJ+atL3a8XS//xMGv/sCR5wrr2NKy2fr015yYuw6Apnde79HsxDWuILyn95W6EII2j4/huvlvurT5L4FqdxDRqy3JWw6wpO9kpvsPZ07TCcT8uKTSw0FBzetzzSePoTMb0fuZ0fv7oPMx0W/6Cxe9eTUa24+xB6bS8eU7afPkWOoPv8br30V1qiRv3O9xPHb6ykLFz8Jz7Q5yTpzh9N97KuR3++v2tzk2cw1Oi62wEnjNqJdJv1ifZA2NMqA5/yqg7nWd3QTFziEdTqTq7aYgi41pq3YHB79c4JEy6MyzsvvN6QA0vfMGIvq0Q+/vugEoJgM6XxPXzngZnRftmqJE9GqDT2Rwsdk8QlHQ+Zro8dljZB6OZ/n1z5G8aT/OPCs5x0+z7amv2fv+rxedoyJo9fBIbjk+g55fPEGvLyczPmFWiUJl/g0j6fTqXfT49HFCOjRFGDyfIBSjHp/aIR7H06OPe03VlKp66V7GJSAn7gxJq3Z6/O2dVjv7PppV7vE1NIqixfyrgJaPjOTAl/OxODKRBWEXva+ZqJE9iVu02cOhCCBqRC+vY9kyc4vdaMyNTwFcMg2Dl75H0qqdJK7agSksiGZ33oBf/fBL2iqEYOjqj1g9+hWyYhNdewmKoMkdg8iLT8EcUYtWj4wkrFtLVo14CWe+u6Ny5FnY+95M2j59M3ovEs8ViU9kCM3vu5iYbPGcmLuOve//Wvj3KIrOaCBqpOf7H9a1Jcd/+9NjP0UIQXD7sjVwP0fGwZMc+XmF15aY0qmSccC7XpGGRlnRnH8VYAoOYPSu79j99v+IX7QZYy1/2j45jmb3DmHrk19yZOpyHHlWEK587/ZTxhdb7GMKCcAQ4IvV6in1HNKpaeG/haJQb0j3MlXo+jeMZMzuH8g8koA9K4+QDk28Vs2m7Y51C4EUIiX5SakENKmZBUvWtCzW3f0+qpenK78GEdyw5D2vN66md17P7remu0IyBeEixWQguEMTwnu2KZMtqtPJurvfI+6PTSDw+mQhDHoiignXaWiUFc35VxE+kSH0+s9kev1nstvxHp9PovH4gRyf9SdCr6PpHYMI69ay2HGEotD9w4lsnvSFm6PQ+ZroVsHpgkHN61/09cDm9clL8uwpLFUVc2TFNWyvKKzp2Zz6czfJG6MRireGw4LG4wcQ3LaR1+sN/i5Z6G3Pfkv84s3oDHqa3j2Yru8+UOaMnMM/LiV+wWYPnaVChEDvY6T146M59N0iElfuwL9BBK0eGUVQy5JLU2hoXIjm/EtI9onTbJ/yLYkrdqD3NdFy4gg6vnLnJWPol0IIQWSfdkT28dDD88BhsRE3fwO5ccm0mTyWhGXbyItPJqRTM7q++6DXAq7KpNPrd7tCPxfchFo+dGON6S98jpgfFrP1ya9QjHpUm8P7norE+wZ8EfzqhTPwt1fLbY89O4+9H/xG9L9nFVuDoPf3oc7ATnR89S5Wj36VvMRUHLkWhF5HzPdLGDjr1WLDgxoal0Jz/iXAcjaTRdc8ii0tB6mqOHLyif54Dml7jnL9grerxIac+GSW9JqELTsPR06+q1lKnVDGxvxcmGOeE5/Mrlf+S+Ly7RgCfWn9xE20mTSm0qQY6gzoxLX/e4mtT39NXkIKOl8TbZ64ic7/urdS5isr6dHH2frU1zgttmI30gF0PkYa3dy/0u1R7Q6W9J1M1pGE4h2/r5mBv79BWNfmHPzyD3LjzuC0uNKFpcOJ0+Fk/X0fctvp391qPDQ0Sorm/EvA4e+X4Mi1umXmOPOtJK3eRcahuCqROdj40Mfkn0kvjDU7svPJsZxm+5TvaDC6DxkHThL971nYs/OQThVLSgY7X/qRjOjj9Pn+2Uqzq+GYvjQY3QdnvhWd2Vjtmj/eOPzfZR69C7xhCg4gtMvFxeEqgpN/bCT7+OlCZ+4NR76VtWNfQzpVFKPe67lOq52M/ScI6dDUywgaGhen5n1TayApWw96jckqBh3p+yo//1p1ODm1ZpdHTrpqdxD78wrW3/0+u16bii0jx+0cZ56Vo7+sIjcxpVLtE0Kg9zXXSMcPYMvM8V7dewHWtGz2fzq30u1J3rzfa0tI4Px7KCXOPCuq1Y4jx3vVtXQ6MQSUr/mOxtVLzfy21jBqtW2E4kU2QDpVApsVn9GSm5DC+gc+5Ld6tzCv3f0c/mlp2QugittQlK74McU4N8VsJG330bLNeYXQ6KZ+hTUPF8OZb+Xwf5dWuj3+jWqj8zF5HBd6nfeNci+fGaEoBLWM8ipip6FREjTnXwJaPToKndE9QqYYDQS3b1Kshnx+cjoLujzM0emryD+VRuaBk2x96iu2PfN1qedX9DrqDuriNQf8Uqh2R4l6zF7J1B/eg9r9O3iver6Aom0WK4umEwZ5ylMoAnNYEMbgAK/XCIPe1WEtwBd9gA/+jSIZNP+tSrdV48pFc/4lwK9+OEP//ITQLs0ROgXFqKfhuH4MXvZesdcc+GJ+Yfz9HI5cCzHfLSY/Ob3UNvT54Vl86oSgD/ABRbgc2SWyCxWjntBOzYpNXbxaEIrCoAVv02/a8zS6dQDN7xuKX4MIj/N0JgNN7ri+0u0xhwYxdO3HBLasj85sRDEZCO3cnOHrP6fuoM7eq471Okbv/oE+PzzLDYvfZdzh6fg3jKx0WzWuXLRmLqXEkW9F0esu2SN2Sb8nSd4Y7XHcEOTHdXNep+71XUs9t9NmJ+6PjWQeTiC4fWO2P/8d2Yc9WwMKnYLQKdQf1oO+U/8PUy1/Mo8kkLo9Bv8GEUT0aXdFKUXac/I5MXcd+afTiOzbnojebS/5+5395wjLrnsW1e7AmWdF7+9DQJM63LjhCwwl0DaqCKSU5CakoBj0+BbISeQmpvBHx4ewZ+YWLhz0fmY6vDyBji/cUSV2VRXZx5LITUgluH1jTMU88WiUHq2ZSyWh9xKr9UZgs3qkbDnguUlrc3hddZYEndFA41sHFP7sVz+c5YMKHFi+Db2/D34NIhj0x5v41g7F4O+D6nTy14R3iJu/AcWgQ0pXP9lhaz/Gt05omeyoSZzdHcvy655FdThxWmzoTAYi+7Xn+gVvX/QGHdq5Obccm8GxmWvIOXmGiF5tiRrZy6taaGUhhMA/yv2z4Fcv3FUN/uZ0klb/g0/tYNpPGU+jcZWfglpV2DJzWHPTa6RsOYhiMqBa7bR5ahxd3yl7sZxG6dFW/pVE2t6jLO79hFsBlGLUE96jNcP//qzC5rGczeTo/1aTfewUkX3a0fCmvm5O78B/5rHjxR/d7BB6HZF92zFs7ScVZkd1IKXk19o3Y71A/lrna6L7hxNp/diYarJM42KsHvMqicu3u6Xf6v3M9P7WABy9AAAgAElEQVTmKZreeUM1WnZloK38q5mQDk0ZOPt1Nk38GGu6qzis3pDu9Jv2fIXOYw4Nou2T44p9/eDXCz30YqTDSfLmA1hSMzGHlb4ZeU0h+qPZHo4fXCmuh39cpjn/Gog1PZvEFds96i4cuRb2fTznsnT+druTlYsOsm71UaSU9BnQhKFj2mAy1Wz3WrOtu8yJGt6DW+NnkZuQgjHQF2OQf5Xb4K2jF7hCDo7i9GQuE6I/mVPsa/acfLZN+Rad0UCTOwZVy6Z3zskzZB6KI7BFfS0lswBbZi6KTsFbYrI11VOssKYjpeSjf63h2OFUbDZXptiiudH8sz2B1z4YilKGDL2qQnP+lYy3uG5JkFJyas0ujs5cgxCCpnfdQO1rO5Y6Jtrwpr7EfLfIo7uXT52QEkk81xScNrsr06pAykB1OLEkF9/tLDfuDPs/mYNQFPZ/9jtd3nmAdk/dXGW2rrvrPeIXbS6Madcd3I0Bv71a6TLX57CmZaHaHfhEevYlqE78G0Sg9/dxqdgWQeh11BtyyUhFtSClxG5XMRgUj+9fzIFkjseeLXT8AHabk6SETPb+k0SnbhcXR6xOau5t6TLDabVx4ve/OfDFPFK2HSp3N6tNj37KmpteI3baCo5MW8HqkS+XqUag06t34VM7BL1vQWMXox69n5l+056/LDbX0vefYHGfJ/jFdzi/+A7nrzvexpqRg6LXYQ4vPmSl2hwuoTanijPfxq6Xfqr0Sudz/PP6NOIXb8FpsWHPzMVpsZG0cgc7nv++0ufOTUhh6YCn+a3uLcxudAfz2t5H6k7PlpTVhVAUen3zNDpfU2HhomI0YAzyo9Pr91SzdZ5sXnecpx+Yy8Txv/L4XbNZ+sd+t+/2scOpOLz0hLBaHByNSa1KU0uNtuFbAWQejmdp/6dw5FtRbQ4Uva5EGSfFkbrzMEuvfcojVq/zMTFy29elDmHYc/KJnb6S03/tJqBZPVo9PPKyyBHPT05nbst7sGflFVa5KkY9we0bM3LbNxz6diE7pnzv1nRe6BSvUg46XxM9Pn2clg/dWOl2zwgZjS0jx+O43tfEndlLKu2mqzqdzG1+N7nxyW7vgSHAl3FHpuMTUXNktlN3Hib649lkH02i9oBOtH365sJ015rCrq3xfPPxerdVvdGkZ8z49tw41qXCu/nv40z9ZgtWi/uTtdGk4477uzFwSIsqtRlKvuGrrfwrgD9vfRNLSiaO7HyXFkuuhdPr9nLgP/PLNF7C0q1ehbykw0nC0q2lHs/g70Prx0YzcPbrdHv3wcvC8QMc/mmpq/F90Z65NgeZh+JJ2XqQVo+MotsHD2EKCwJF4FM7hLqDu4EXrX6hCBQvxVOVQXH7LI58m/fmNxXEqdW7sJzN9KoBdeTnFZU2b1kI69qCATNfYeTWr+n+wcQa5/gB5s7Y7eb4AWxWB4vnRqMWvMdde0ZhMOg8Ci51OoUefRtVkaVlQ3P+5SQnPtnVv/WCL7Uzz8rhn5aVaUy9n9mroxIGXZUVINUE0vcd9y7BLARZRxIRQtD68THcfmYud+cu5aaDU8k+mgSqp4OVTkmDUb2rwGqI6NPW6/Gwa1pVqvhdzskzXp96nBZbhfQYvtpISfZ8egOwWpxYClb6RpOel98dQv0GtTAYdBiMOmrXC+TFtwfj61c1+ztlRdvwLSfS4SxWdE21Owrjg6V51G986wB2vTrVy2TQcFy/MtlZ05FSotodbs1xwrq1JG7hJs/Whqrq1jNXCIHOZGT7/31PzskznoMrgv7/ewlTSGBlme9Gj88nsbTvkzitNlSbA2HQozMZ6PXV5EtfXA7CunvvAKf39yGyb/tKnftKpE69IE4c9exU5+NrwOxz/nNaNyqIdz4fSVpqLlJCaLhfVZpZZrSVfynJO51G0uqdZMW6ZBX8G9XGt47nI6tiMiB0Cj+bhvCzaQhrb3mD/DNpJZrDr344/ab+HzofE4ZAX5eYl6+ZAb++UqPithWBVFX2vDeTmaFjmO47jNmNbufEvPUANL9/mKsjWJHVss5sJLxnG0I7NfMY69iva11hogsRgvpVmEkS0r4JY6J/ovWkMUT2a0+rR0YyZs8PhHWp3PhvaOfm1O7fwU0xVDHq8YkMpvH4gZU695XIrXd3xmh0fwI3mnTcfGcnFC+hxZAwv8vG8YO24VtipKqy+fHPOTJtBTqzEdXmIKJ3WwbN+xcZh+JYcf0Ul8RAvhWdnxlpcyBVtfAxXOh1+EVFMO7QtBJvAtuycklatROEoN7gbhUS8smMiSf7WBLBHZrgV6/6Uz13vTGN/R/Ncdu01fmaGDTvTeoN7kZO3Bm2PfsNicu2o5gNNL9vKF3evM+rzMbM8Juwns3yOC70Ou7MWFiY8XQ5Y8/O4/BPS4lfvAWfuqG0mXSTW/tOp83O/o/nEPPjEpxWO43G9afz63dX2VPPlUb07iRm/byLUwlZBIf6cNPtHel9bZPqNuuilHTDV3P+JWT/53PZ9fJ/3ZyUYjLQcGw/Bsx42SWzMGMNuXFnkBIO/7DEo2GHPsCH/j+/QMMxfUs9f9bRJLY+9SVJq3ehMxtpfu9Qur77QIm1hmxZuawZ/Sop2w65+tha7TS5/Tp6f/9MtbUBdNrszAwb47VZSViPVozc/FWpxtv8+Gcc/mmZe02DIojs257hf31aXnOrHVtWLgu7PUpeYqqruZAi0JmN9PpyMs3vHVrd5mnUELRsnwrmwOfz3Bw/gGq1c3LeehwWm0tmYfJYrvnoUQz+Pl47NTnzrGQejCv13JbUTBb1eIyEZdtQrXbsmbnEfLeI1aNfKfEYmx75lOQtB3DmWwtzz4/N+pMDn88rtT0VhTUtu9iG6dmxSaUer8s7DxLQtC76gickvb8P5rAg+v13SrnsrCryk9PZ8dKPLOz2CGvGvc6ZTfvdXj/41R/kJaSc7yqnurp9bZn85WVfra1R9VwVG75SynLnVtsyc72/oEqceRa3ys3gto1cVYwX3AB0viZqlUFm4PAPS1ybnkWyWJwWG8mb9pO27xgh7S/+GOqw2Dg5b4OHnoozz8qB/8yj3TO3lNqmisAcFoRiMnjN6CnL+2Sq5c+YPT8Sv3gzaXuOEdCkDo1u7l/ip6PqJO90Ggs6PYQtIxfVZufsP7EkrthO72+fplmB3s3J+Ru8vldCEZz9J5bI3t6zjIojPzmdU2v+Qe9npu7gblVWfaxRM7hinb/TamPnSz8R8/1iHHlWwrq1oOeXkwnv3urSF3uh7qDOnJy3wa2JO4BfgwiP7ksNxvTB/Pz35FpshZ2hzmm21x/eo9Rzp+487PVLr+h0rgbel3D+znxrsfnl9qw8j2NSVUlavYuEpVswhQbR9K4bCKiEbmCKXkenV+/in9emecT8u759f5nHbDimb5lCa9XJ3ndnYEvPQbUXhKwKevhunfwfmowfiGLQYw71XtEsHSqm4NLpRkV/PJtdr05FGHQIIRBCcMPS94joVbobiMZ5nE6V1UsOsXbFEWxWB916NWD0rR3wD6iZi48rNuyz7q73OPTtQlfBjZSkbo9h+XXPFmbplJZu7z+EIcgXpSAVUegU9L5men/3jMdThc5oYMSWL2k0rj86sxGdj5FGt17LjRv/Uya9+OAOTYrtIRzUMuqS1xtr+Xtt5SgUhbo3uIcGVYeT1aNeZu3Nr3Pgi/nseed/zG97f2EGzsWQUnLqr93sfW8mR35egb2YJuVFafv0zfT44nH8G9VGMRkI6dKcGxa9U2NTE5PW7GLRNY/xS+AI/uj4IHGLNlXIuIkrtp93/EVQnSqZBTn6bZ4c67FpLXQKAU3rUKt1wxLPlbLtELtem4bTYsORnY89Kw9bZi6rbnwJp9VLXYVGifj2kw38PmM3pxOzSEvNY+2yw7zx3FKsVs+/a02gQjZ8hRBDgc8BHfCjlPL9C16/F/g3cM7zfiml/PFiY5ZnwzcnPpl5Le/xWC0LvY4WDwyn9zdPlWncvFNn2f/ZXJI37SeoZRTtnr2lVF+6spJz8jS/N7vLo4AntEtzRu34tkRjnF63l1XDX8RpsyMdThSTAb2fmVHbv3FTnDw6cw2bHv7Eo0pV7+/D7WfmFhtCcdrsrBz2AqnbDrmaqvgYUfR6hv35CSEdm5byN66ZJK7cwZqbXjsfc8f1lNL3pyk0KWcqZXGd3xSTgVuOzShsvLPn3Rnseft/KEY90qniVz+cwSs+wL9Byau2Nz7yCYd/XOpRDGcI9OXama8QVYan06uJHZvjWDIvmswMC2071Gb0+A7YrE5ee3YJ9gsqgk0mPXc82I0BN3jv9V0ZVJmevxBCB3wF3AAkANuFEAullAcuOHWWlHJSeecrCdmxiV5jydLhJG1PbJnH9a0TSvcPJpbXvFITO30VQq9zd/7CtepTnU6yjiRiDPK7aGeu2v07MGrXt+z/bC6Zh+KI6NOeNpNGe6g+Hp2x2qs8gVAEZzbso94N3j9TB7/8g5StBwsLss5l8Pw5/k3GHpx2WYjIXYrt//edm+MH177J9infldv5t3v2FtbtjnV77xWjnsi+7d3+rh1fmkCrR0aSsu0Q5vBarr7SpXxv7dn5XqugkcVLU2i4WDwvmgWz9mKzupz8hj+PsWNLPGPGt/ea+2+1Oji073SVOv+SUhEx/2uAWCnlMQAhxG/AaOBC519lBLaoj+ptY8ygI7RLzfsjXIoj/13mWbwkXX1of40ch2q1ozqchPdozcBZrxYr4xvUIoreX1/8qUfnJbx0br6i1bceNk5d7lmJi0tlMvvYKQKb1r3ovJcDmTHxXo/nJaai2h1lEvE7R8Mxfenw0gT2vDkdVZVIhxNTaCDd//2wx7mmkEDqD72mzHM1Gtef+IWbPBy9anfgFxXhyjRatxdTWBDtp4yn+X1Dr4ibd3mxWuxujh9AVSVWi51D+89cKO8DgN6gEFGnZvYnroiYfz2g6LcioeDYhYwTQuwVQvwuhPAaqBZCTBRC7BBC7EhJKbv8rl+9cBqO6+9W6QigMxlp9+ytZR63ulCdnpKx4Nros6Vl48i1oFrtJG/az8rhL5ZrrhYPDEfv51kMpRj1RPRpV/yFFwsf1tBaktLiVy/M63FjsD+iAnr/RvZuC4qCdDpBSiypWSwb8DQZB06Ue+yiNBjdm8j+Hc7/nRUFna+J9s/fxsqh/0fcHxuxns0iKyaerU9+ya7XvEiNXIUkJWSh89KcxemUnE7KIrCW2WP1r9MpNXLVD1W34bsIaCSl7ACsAn72dpKU8nspZTcpZbfw8PJVn/ab+n+0ffpmjMEBBT1r2zN83WdV3lHJnp1H6s7DJZZ2uBBHvpWApnU9VAO9IR1OsmISSNt79JLnpu05yvHZf5EefdzteP3hPWh+/zB0PkZ0Pib0AT4YAn25fuHbF92sbnbvEI+bLYBv3VCX/VcAnV6/x6VDXwS9r5mOL02okJXxpkc/dYWVCkIy0u7Anp3P9v/7rtxjF0XR6bh+4dtcO+Nlmt51A60fG8WN6z8nLzHV1WSlyM3akWth/8dzsGUVk+p8FVErxMerdj9AeEQAL74zhGatwtHrFQxGHeGR/jz3+iBCwmqm5ENFhH0SgaIr+fqc39gFQEpZVB3pR+DDCpj3oigGPV3fvr/MKYPlRUrJP//6megPZ7kqam0O6g/vQf/pL5RYZkC1O1ja/ynXyq/I4lkUrD68KTgKg468pLOEdPC+yWrPzWfViJdI3R5TqH0f0ast1y94C72vGSEEPT+fROtJYzi1ehfGWv5Ejerl0ti5CG2euIn4RZs5+08sjpx89H5mhF7HgN9evWJCBs3uugFHTj67XpuKPTsPnY+JDi/cTtuny98hzJ6bT9YRL5loUnJ63b5yj+82pKqChAajerspnSZv2l+YmlwUxagn60giYV2rXpu+JhEc4kvr9rU5sO80Dvv5757RpGP42LaEhPry8rtDyMq0YLc5CQnzrdGf/Ypw/tuB5kKIxric/m3AHUVPEELUkVKeKvhxFHCwAuatEThtdlK2HEQx6gnr3rJQKiH255Xs/2gOToutcOM5YelWNj/2eYmbuJ/8YyOZMXE48y/IWlIUmj84nNhpyz1eU632i+5rbHv2W1K2HHTbQ0jeGM2Ol36k52fn9+ODmtcnqHnJW9DpTEaG/fkJSWt2kbL5AD51Qmk8fgDGwJq56ikrrR4dRcuHR2DLysMQ4FNh0hg6kxHFoMfp9NyrMgZVzHtoy8pl6+QvOTbrT1S7g4heben97dOFzYECm9cj42CcR5hOtTnwLSbkdbXx2HP9+P6zTez9JxGdTkGvV5jwQHdatT2fbRUYdHloSJXb+UspHUKIScAKXKme/5VS7hdCvAnskFIuBCYLIUYBDiANuLe881YmKdsOcejrBeQnZ9BgdG+a3T3Ya4pj/JIt/H3nu64vi5To/cwMWvA24d1bse/fv3nIQZyTVOj19ZMlWv0nrd7pVfdGGHQEtaiPKSQQS0pGoZaN3s9Mq0dHFav8KaXk6C8rPTaPnRYbsVOX0/OzSah2B7vf+oWDXy3Anp1HRM829PhiklcVTQ+7FIV6N3QrNiPoSkEoCqZapSuquhSKXkfTu2/g6PRVbllqOl8TbZ4cV+7xpZSsHPo8Z3cdKfy8JG/az5K+kxkX8zM+EcF0eOEOElfudE9lNRupP7xHjWy2UtkkJWTy+y//EHMgmYAgEzfe1Ja+1zXlyZcGkJNtJSfbSnikv9d9gMuBCrFaSrlUStlCStlUSvlOwbHXChw/UsoXpZRtpZQdpZQDpZSHKmLeyiDmh8Usu+4ZYn9ZReLybWx79hsW95rk4chz4pP5c/yb2DNzsWflYc/OJ/90OisH/x+OPEuxzcWFENi8VNV6w69+WGFRWVEUnY6AJnUYves7Wj8+hoCmdQnr3pLe3z1Dt0ukojq9SR5DYeew9fd/SPTHc7ClZyMdTs5s2MfS/k+Rfaz0WjsapaPHp49Tb0h3dGYjhiA/dCYDTe+8nnbPlD+sdHbXEdL3HXcXvZMS1Won5vvFAIT3aM2AX1/Bt14YismAYjLQ+LaB9P+lfEkElyPJp7P515Rl7NoWT062lVMJWUz/fhvzf9sDgH+Aidp1Ay9bxw9XsLxDWbDn5LP16a/dUhadeVayYhM5Mm05rR8bU3j86C8rvcbcVVUlbuEmavfvwMkFGz3yqY3BAfhElkyTv9m9Q9n3wSx3TR4h0PkYqT/0GhSDnms+fpRrPn60ROMJIajdrwOn1+11f7QXgjrXdSYvKZWTv6/zuEE4LTaiP55Nr6/KVhynUTL0PiYGzX+TnPhkco6fJqhVVIX1b8iMiffa3tJpsZG+91jhzw1G9SZqZC8sKRmuPhKXgS5SZbBozj5sVofb18RmdbJs/gGGjWmLj0/xac+XC5fvbasSSNl6EEXveT905lk58fs6wNUqL37JFjJjErw2DpEOJ9a0bLq+9yAGf5/zKYBCoPM10fPLySXeBPKPiuC6+f/CHB6E3t8Hva+ZwGb1GPbnJ2XOKe/19ZMYAn0L5SJ0ZiPGID96fP44mYcTULyIe0mHk7O7jpRpPo3S4x8VQe3+Hcrs+K3p2Zz6azeZh89nYAe3a+S9sb2PkbAL9K6EEPhEBF+1jh/gSEwKqpdCOJ1OIflUdjVYVPFoK/8iGIP8PITbCl+rFcBfE94hbv4GV/VwvhWhKF7PrzOwE0Etohj9z/fsff9XkjdGE9CsHh1euJ2Inm1KZVO9G7oxPmkO6fuOozMbCWoZVa4MglqtGzLu0DRivl/C2X+OENqlOS0njnB92X3NXm9oQq8juOOlY/4a1YuUkl2vT2X/R3NQTAZUm4PQzs0YtOAtQjo0JaJXW5I3RhfuKQjFpU/V4oFh1Wx5zSOyTiCnEjwbA9kdToJDrow+2przL0Jo1xb4RNQiu0AM7hw6XxPGYH+Oz/rTLXsHIRB6pVCTXu9npsmEQYV6PwGN69Dnu2fKbZei05Vow7Wk+ESG0OnVuzyO+9UPJ2pUL+IXbXbLItKZDLR7tnpknzXAmpbF9ue/5+Tv60ARNLltIF3ffRBjkPum8/HZf3Hg07lun9HUHTGsHv0q5tBAzu487KrgFiBVSb3B3ejx6WNaly8vjBzXjgN7T7lV8xqMOjp1q09grSvD+WudvC4g80gCK26YgjU9GyEUVJudzm/cw/7P55J/yrNQS+h0RPZrh85spMWDN9Lwpr41Orf3Ujht9vNS2LmWcktha5QP1e5gfrv7yTlxplD1UzHqCWrperIURfobL+rxGKnbY7wPJEThgkbva6b1pNF0e7/qdaouJ3ZsieOX77aRk+PaA+zZrzH3PHwNRlPNXjNrbRzLgVRVkrccxJaWRUTvtphCAvklcITX7lxCpzAhY+Eli6AuR6SqujmXK5m0s3msWHiAwweTqVMviGGj2xDVqGI2W8vDid//Zv0D/8aRfUFLUH8fBs56lfrDzitwzmk6gZzjp0s0rs5s5LZTczyeHjTcUVVJdpYFHx9DjXf659DaOJYDoShE9m5L1IhehY/EdQd18ZotUatNwyp1/DnxyeQmlF33qDRcLY7/zKlsXp68kFVLYjh2+Cyb/z7Om88vI3p39ae3pu095uH4wZWlk1YkSweg/rAeCEPJis4Uk6GwT4BG8SiKIKiWz2Xj+EvD1fHtrgC6f/QIxiC/wiwZYdCh93M1c6kK0vYeZV7b+5jX8h7mtrib+e0fIH3/iWLPl6pK/pk0HF7UTWsyVoud6d9t5eHbf+OBW2bw2bt/kpqcU6lzzp6+i/w8O86CvRtVldisTqZ9s5XqfjIObFavsCdxUfQ+RgKbuesndnx5AqbgAITx0o5Ktdrxi4qoMDs1Lj+uSOeftucoJ+atJ+toxa3cApvWZeyBqbR7bjx1BnWh9aOjGbPnh1Jn75QFe3YeywY8Q+bBuMLNvIwDJ1l27VPYcz1XhbH/W8VvdW5hTuMJzAwdzeYnvvDaJaqmIaXk32+s4e/VsVjy7TjsKrt3JPLGlKXk5VbeTezgvtNehUfTz+aRm129N89GN/d3VYMX3UdSBMZa/oRd04qdr05l2XXPsHnS59hz8rlp30+EdWnh9Sn1HDqzkfo3Xp1VuwA2m5PTSVnk53sveLxauKKeZawZOawa9gLp0cddjU5sDqJG9uLaGS+XqX3ihfhEhtD1rfsqwNLScXz2X57OW0qcNgcn566n2d2DCw8nrtjOpkc+dStUO/Lf5Uinekkt/6rm8MFk5s3YTUJ8JrXrBNDr2sbEnUh3E82SqsRqcbBh7VEGj2xdKXb4+hnJzfHi5IVLtKs60fua6freg2x6+JNC0TWdyUCXdx5kQeeJhXLeZzZEEzttJdf98SZpe456b9YiXBpCTe4YRM//PFHFv0n1I6Vkyfz9LJztEspTnSp9BzblzonXoNdfkevgi3JFOf+NEz/m7D9H3ErY4xdvYd+Hv9HxpQnVaFn5yEtM9dphyZlvJS8x1e3Y7rd+8Wiq4sy3EjttBd0/fBiDlxBCdXBg7yk+fftPbAVt77IzLRyLPetVudpmdXLiaNkksUvC0FGtmTV9l3tan0GhW6+GZYr12nPyObvzMMZgf4LbNylX9lf2idNseeILN7VNp8XOxgc/QjqchXUm0uHE4XCy+dHPEMWs+s0Rwdx6YiY6k2ch39XAxr+OeTRj2fj3MQwmHRMe6H7J6xPjM9j813EcTpVuPRvQrFX5ZOermyvG+TssNuIXbnLXLsHl+A59s/Cydv5h17RC7+/jkW2k8zES1sN9NZx9wnu2h9AprpL9Knb+Gen5LJ4bzb5diQTW8mHYmDZ0uSaKX6fuLHT85zgXc78Qo1FHVKNalWbjdcNacioxi79XHUFv0OFwqLRqG8m9j5a+l+2hbxey7blvUfR6pNOJX4MIBi99H/+GJe+xW5QjU5d7yixL6S75UYScuDMoxcT8Qzo2vWodP8CiOdFujh9cC4u/Vh5h/N1d0Bdslh+PPcva5YfJybbSrWcDevRtyNrlh5n9yz84HSqqKlmzLIa+A5tw54PdORKTiiXPTvPW4fj5Xz5V0VeM81dtdqS3R10u/76k9QZ3I7hdI9L2HC0svtL5GAnp1Iw6Azu5nRvevSVxCzd7yPIKnVLlsrxZGfm8+tRicnNsOJ0qp5OyOXH0LKNv7UBinHfhOwCdTuB0uuwXwlVc029Q5VUYK4rgronXMHp8B5LiMwkN9yU8svSt985sjGbbc9/izLPixPX0lRWTwMqhz3PTgallegLISzrrsaABXM19vEV2hEK7Z25h/ye/u33udb4muvzr3lLPfyWRmeG5PwagOiUWiwN/g441y2L4bdpO7DYnUsL+3adYseggiXEZOIosTmxWJ+vXHGX7pjgsFgcOu+v8WsE+3Pd4Tzp1K7kcenVxxQS6jIF+BLX00h1SUag39NKPdDUZoSgMXfMxHV++k4Bm9QhsXp9Or9zFkJX/9nAond+8D/0F3aZ0viY6v3XfRXvwVgbLFx4kL9fl+M9hszpZMGsvAcVonvv6GejZrxF6vYIQ0KpdJK99MAz/gMpfUQUGmWnVLrJMjh/gwBfzPPorSFUlNyGFtN2xZRqz3uBuXrN9hKJ4bR0Z0qUZnd+4l24fTsS3fhiKUU9otxYMXvo+4T0qZ8/kcqFJ81Cvx/0DTfj5G8nLtbmeSK3OwrWT1eooWKh43mntdpXsLGvhjQJcT7r/+eBvtm86WUm/RcVxxaz8Afr++BzLb5iCarOj2hzozEb0/j50e/+h6jat3Oh9THR8acIlw1ch7ZswfP3n7HzpR1K3x+BbJ5SOr9xJ41sHVI2hRdi/55TbaukcDodKt55RrFtzDJv1/KrWaNJx47h2jBjbjgkPdufYkbMEBJqIrFszG2BfiCU5w2u/YqHTYT3rqRNTEhqO6UP0R7NI33+icC9H72cmalRvTsz+y+P89N1HyY1PpnD+Zj4AACAASURBVPWjo2n96OgyzXmlMv6errzz4gpstvNqnUaTjgkPdkcIweGDyej1CvYLwpEOh1rsPoo3HHaVWT/vonvvhhVpfoVzRTn/8B6tuWnfTxz86g8yDpwkok9bWk4cgTk0qLpNq1JCOzVj8NL3q9sMQkL9vG7Uqqrk5PF0Rt3SnsVz96E6JUIIhoxqxfAxbVm24ABzZ+xGr1dQVUlwqC9TXh9EWETNrkaNGtmLlG2H3JqhgCskGda9ZZnGVAx6hv39GYe/X8zRGavR+5pp+chIrGnZxC3Y6LG5L1XJ8dl/0/65W8v8e1ypNGwSwqsfDGX+b3s4EZtGRG1/Ro/vQOv2tQHw8TEUX9dRynqPlDM5qKr0aOhek7iinD+Af8NIun/4cHWboQEMG9OGf7bHe/3enIg9y6Qp/Rk2ujVZmRYCgswYDDoO7jvNvJm7sduchSuwM6ey+fittbz7xchSxc0TTqazYe1RLBYHXXs2oF2nOpWqu9Ry4ghivltEbkLK+b0ZXxNd3rqvXDIKerORNpPH0mby2MJj0Z/MKRQULIrqcOLwUvuh4SKqUTCTXxjg9bXmrcIxmQ1Y8t33WIwmHSNvbs+iOfsQikBKieqUSCkL96YuJDDIXKMdP1yBzl+jaklNzmHmf3ew758kDAYdfa9rys0TOmE06WnRJoLAIDOZGZ4b7jq9jqxMC7VCfAkJO9+jduXiQx4ZGVKVnE3JJf5kBg1KqLezemkMs6btxOFwoqqw6e/jdOhcl8em9K+0L6XB34dRO77l0HeLiPtjI+bwWrSZfBN1Bnau8LnqD+/BrlenehzXmQ1EjehV4fNdDSg6hSmvD+LDN1ZjszoQCBwOlZtu78jwMW25bmgL/tmWgMPhpGO3+uzYHFfwGXO/CRuMCqNubV9Nv0XJ0Zy/RpnJzbHxxpSl5GRZkdK1mbt2WQxxx9N44S1X4Vn33g34c8URzxWSlNSu5xmOy8r0npmlKILcbKvX1y4kO8vCb1N3Yrefv4lYLQ72/pPEvl1JdOxW7yJXlw9DgC/tnxtP++fGV9ocALVaNaD1pDEc/OqPwqcMva+JpnfdQFjXFm7nWtOyOPTtIpLW7CKwaV3aTB5LcLvGZBw8ScwPS8g/nUbU8B40unVAlScF1DSiGgXz+U/jOLT/DHl5dlq1icQ/0JVs4B9got+gpoXnDh7RiibNQ5nx43ZOHktHVSU+vnrGjO/A9cPLFuarSjTnr1Fm1q+JxZrv3urOblc5ejiVk8fSaNgkhBE3t2fL+pPk59kKbwBGk45b7+mC0eiZrdKtRxQnj6V5bLo5nWqx2RoXsn/PKXR6gf2CVHirxcG2TScq1flXJd0/mEiDUb05+r9V/9/eeYdHVaZ9+H6nppNCSCG00HsxUkVBpFpQQdeyllVXd9W1rJ8u69p1XVHXrqvYltVdGzYQFZCO9N5CSYNACiG9Tjnzfn9MCAkzQ/rMhLz3deViMnPmnGcOk+e85ym/B6k5SLz+YmIn1C39rcgpYOGIu7AWlaFVWclds5vU/y2n/5+uIvmNb3HY7Ei7RuaiDex7/RtmrHmtXU/wAucdwIAhcQ3atlffaJ58aQYOh6Sq0kZAoNHvwz2nOGdKPRXeJz0l36VRC5xjADOPFAIQERnEc69fxsXT+xIdE0xIqAlNk3z9v518+cl27La6758wrQ9RHYMxnrowVEssXHfreZgDGrYqNRr1zjeeaZdOnHPqjDHjBjH2Xw8ybt5DxE0c7pLT2PXsf6jKL64Z7iI1B1qFhb0vfo5WaalpILOXV1GUfIRDH/3k9c9wLqDTCYKCTW3G8YNa+SuaQUK3cIyb9C6rdIDY+NPToSIig7hs1iB+XZlKZYUNKaG81MrSRQfIzizh/kcn1GwbGGjk6X/OYNXSw+zYcoyw8AAmX9qPPv0brkA5aHg87uqyjQYd4y/u6fK81arx07f7WLsiFYdDMuaiHlw+axAB58CQ7szFm5A21/8fdw1iWoWF9M9XMuCeK1vfsCZSXmZl5ZJD7Np2nKiOwUy5vB+Jvb3bvHiuoJy/oslcNLk3P367zxlbr3YmBoOOuM5h9OxT9w/ylx8PYq3VDANgs2rs2ZlFbnYJMXGnLxYBgUamzRzAtJlNU0w1mw088OhEXvv7SufIQukU8Zp53RAXR+FUEv2F9JT8movYku+T2b3tOE+/PAOdvm3fHJs6BFPeiO2NYUGtZsuZODQH69eks3pZCg5NcsHFiYyf1MujyFpZqYXHH/yhprFKCNi26Si3/nE04yYkes3ucwXl/M+CtaScrGXbQEripyRhCguu/03tiLAOATz2wjQ+fnsjKQfz0Ol1JI3pys13jXIJP6QfPllHrfMUBoOO45nFdZx/S9B/cCxv/Hs2u7ZlYamyM3BYLIFBJhyao45DP7jvhEuOwWbTOJFdys5txxkx0k3XeBtiwAOz2fSnN7FX1EqkG3ToDQY0i61O/bohOIB+f7jca7b965V17Np6HEt1o9/RjAK2rD/CPQ9fyIG9uej1OgYMia0J1f38/X5KiqpqqmtOFRl88t5mRo3rVqPN428UF1WyfVMmDodkWFICUdH+4UfahfPXLFa2Pfohhz5YjK28ik6jBzD6rfvOOhQ945u1rLn5H+j0zi+Uw64xfv5f6DH7Im+Z3Sbo3CWcx16Yht3uQCfwuFLu0iOC5L25LuJtmt1RJ0TUkpgDjIwc142tG47wzCM/U1xUidGo55IZfZl14zD0eh1ph0+65B0AqqrspB062eadf+9bp1K4K5UD7y1CbzYh7RrhA7sx8tV7WDn7KezlVUgk0qbR7+6ZXisTTU/JZ+fWY3XKeq0WjYP7T3DfrQuq8zYgkdw3ZwIDh8axY8sxtx3jEjh2tIjuPRtWEOBNfl2VxsfvbKwZofzZR9u49ubhrSZP3hjahfNffcPfOfbz5pqSuBPr9/HjhQ9w5e4PCO0e67J9ZW4Ba256Hq3SSm23sPbmF4gZO5CgeBVjPJP69NAnz+jHyp8O1XH+RqOO3v2jiU84XfKpaQ6EEGdNnEkpObA3l7TDJwmPDCJpTFfMHhK5yXtyeO/VX2sS0xbNzrLFB7BaNX57x/lERQdjNOrRNNfGHn9ZoTUHIQSjXruHwXOup2DHYYISookc7AyRXHv0c7JX7sBysoSY8YMJTvCeRPHBfbk43DRInbo7rO3kX39+Fa99NMujvpOmOfxSTbOosJKP39nokhP78pMdDB4RT5ybUmdv0rYDmg2gNCOHYz9tdhHcclhs7H/ta7fvSf9qDe6qRQDSv1zd0ia2C6Kig3n0+akk9o5yKnUadYydkMj9f50AwJG0Ap555Cdun/1ffv+b//HhWxuocjNpyWrV+MdjS3n17ytZ8OlO5r+7iT/f8TXHM92rhH772S6XiiSrRWP10sNYqmwMH9kFo1nPmY2/BoOe0eO7t8RH9wuCYiNJmD6qxvED6Ax6Ok9OIvH6i73q+AFCwwLQN3SAioBtGzOZekV/l+E6Op2gS/cIomP8T/pj+6ZMt17EoTnYtM73wm/nvPMvOZhZM3e3Ng6bnfwdh92+x15e6XbsocNmb/Py0L6kW2IkT740gw8X3Mj7X97AbfeMwRxgpOBkOc//bQmph04ipXP1t2F1mjNhewZLFu4n7XA+lio7juopX2VlVt55ea3bY+bmlLp9XugExUVVmEx6HvvHNLolRmIw6jAYdXTu2oFH/z6FwKD2q33f2pw3ukuDyyIdmrOGfsTILlx29SCMRj2BQUZMZj0JXcO5f45/hmI1zeGuqKpaHsL97Apvcs6HfcL6dsFhcV1B6owGokb0cfMO6HLpaHY+8wnaGUM0dGYjCZc2fsCHoi76M/ICy3866JIMttkcpB4+ybGjRSR0PT3IZe2KVNfSUgm5WaUUnCyvIxUB0K1HJEWFx11KGwUQEeWsbImND+Ppf15KcVEl0iEJj/RexUt7JSDQyF+emczrz6+iosKKEM5VvM2qYTuzMEDA4BHxAMz8zRAuubQv6Sn5dAgPpEsD5T58wfDzE/ji39tdnjcY9Jw3uqsPLKrLOb/yD+0eS8KMUegD6q7i9AFGBj4wy+17Igb1oO/vL8UQXD04WwgMwQH0vnXaWZPEvkSz2ihJOY6ttMLXpjSao+mFbhN5er2OnKwzpJA9iSsK98KLs24c5tJJbDLrufzawTVJxVN0CA9Ujt+L9OgVxSsfXM3fnp/KnGen8Nb8axgxuivmgNNrUpPZmaCvXRQQHGJm0LB4v3b8AB07hTDrxqEYTXp0OoEQzql0l1zWj26Jkb42D+FRwtTHJCUlya1bt7bIvjSLle2Pf8zBeT9gL6+i05iBjH7zT0QOdW34OYWUkpzVu0j973KQDnreeAmxE4adVRVSs9rY9dynHHx/MVqlhc5Tz+f8l+4ipGvTRvg1lH2vf82OJ/6NdDicbf43TmLM2/e3GZ2Wbz7byY/f7HNZ8RlNep579TJiO5/+w//+i90sWrC3jm4PQHxCGP94y71+feqhPD7/93aOpBXQITyAy68ZzPiLe7aqwqeiaUgp2bX1OOtXp2Mw6Bg/qWeN5LI/ccpvNuQ7lJVZzMZ16Tg0SdKYrh6rkqSUZGYUUlxURY9eUU0eYCSE2CalTKp3u/bg/L3FL1f8jazlO2r03IVehykilFkH52OOaJ2BJOlfrmLd7S/VHdkXaKbXLVMY+84DrXLMlqa4qJI593xf0/0LTsc/cGgcD/5tYp1trRY7/3hsKVmZxVRV2TGbDegNOv763GS69vD9asqbSIeDvE3JWIvL6TRmQLNkoz0eQ0qKi6oICDCcEx3PzaWq0sZnH29j/ao0bDaNfoNiuPmuUXUq1ppCYUEFLz+9nLycMnR6gd3m4PLZg5j5myGN3pdy/l6mKPkIC5P+6DLIQx9oZvhTtzD44dZRefxu2O8p3J3m8rw+wMQN+d+1GZGunKwS/vvhFvbvzsFsNjBham+uum6oS2gGnMNg9uzIIu3QSSI6BjFqXLdGJWc3rctg0YK9FBdV0m9gDLNuHNZqvQatRfHBTJZM+wuWghKEEDhsGklzf8+Ae69qsWPs2nqcj/+1kbKSKqSEEaO6cNu9YwhsxxeB5x9dQmrthkUBQUFG5r49k7Bw57jNoxmFHNibQ1iHAIaP7OKxDLk2T/3fjxxJK8BRaw652Wzgjw9dwPBG9po01Pmf8wlfb1GwOw2dQc+Z7UJapYW8TcmtdtyKrHyPr1mLy9uM84+ND+Ohxyc1aFudTjD0vM4MPa/x6pyffbyV5T8erAkxbdlwlD3bs3jm1UvpFNs2xkVKh4MlUx+hPDOvTqJj65z3iRrRh5ixA5t9jCNpBbz10uo6TVjbN2dSMdfKw09d0uz9t0WOpBWQnppftzhBgs3qYOXSw1w+ezDzXvuVbRuPIqVEb9Ax/93NzHl28llj/CdySjl2tKiO4wfn/OAli5Ib7fwbSoskfIUQ04QQB4UQKUKIOW5eNwshvqh+fZMQontLHNefCOsZj3S4Ji11ZiPhA1pvlmf06P64FKkDxtBAAjuFu3lH+6Si3MrfH13Cz98n18ktSIfEYrGzaMFeH1rXOPI2JWMpLHXJcGuVVg68832LHOPHb/e5zrK1OTi4/wR5uWUtcoy2RvbxYrflqTabxpG0AjasSWf7pqNYqyuWqirtVJRbee35lZ7HQ+IUqzuzAu4UpSUNm2HRFJq98hdC6IG3gcnAMWCLEGKhlHJ/rc1uBwqllL2EENcBc4HWnXbhZaLO60N4/24U7E7FYT3dI6A3Geh712Wtdtzz/n47OSt3Yq+0QPXKQR9kZuQrdyN0baOYy1Jl48A+5/DsvgM6NVmjRUrJwX0nOJFTStceEXUSa++/sZ7Ug3lu3+dwSPbuzOKZR37ieGYxHTsFM+uGYYwY5T/SDg67RvJb33Jw3mKnNr+b8mWkpOpkcYscLze71G31lMGgI/9kuV82VTWFslILRYWVdIoJqVfuO75LuMvqHJz5qe49o1i19DAWi6tUSHmZlaPphR5X/wndwt02gxmMOs5rxe9gS4R9RgIpUso0ACHE58BMoLbznwk8Vf14AfCWEEJIf004NAEhBFOWvsj6P7zC0e9+RTokkUMSGTvvzwR3br3uycjBiVy+6W22PzWfvI3JhPaIZehjv6Xz5HpDfn7B5l8zeP+N9c6VjwSdXnD/XyfQd2DjKqRKiqt44bGl5OeVI6VTE6Znn2j+/PjFaJqD3duOe5y3ClCYX0HBSWeZ7LEjRfzrlbVNUou0WOx88e9trFuZhs2q0X9wDDffOapOxVJTWHnNUxxfts1lYHttDEEBdL96fLOOc4q+AzpxNKPQRYvJbnOQ0KXt31FarRofvbWBLRuOYDDokA644jeDuezqQR7f07V7BD37dCTlwMmaajNnt7qeCVN6s3PLMbfvE8LZ8OUJo1HPTXeN5N//ckpBSOm8oHToEMDUK1pPA6glnH9nILPW78eAMzuharaRUtqFEMVAFHCy9kZCiDuBOwG6dvV9E0RjMYeHMPHzJ9CsNhw2O8bgQK8cN3xAdy7+8kmvHKslycst5f3X11fLL5xeMb3y3Ape/2h2o6pLPn57IzlZJXUcfMrBPL77YheTL+131pI84aZHwGrR+HL+dsZe1KNRJaGvPruClIN5NaGl/btzePqRn5j7zkzCOgQ0eD+1yd9xuF7Hrw8yE9anMz1vntKkY5zJ1JkDWLM8lUrNWnNuTGY9F0/rUzPWsC3zybxNbN14FLvNURPD//6L3XSMDmb0+B4e3/fgYxfz5fztrF2Rit2m0X9wLDfdOZKwDgGMm5hI5pFClxnUBoOe7vXU9Y+bkEhc5zCW/XCAgpMVDDkvnolT+xAU3Hpd5n6V8JVSzgPmgbPax8fmNBm9ydhmaux9ya+r0tHc3EYjncnFsRc1bNVts2nscrOyt1k11v6SyjW/HU5omJmCfNcGOKNRh8Mh3d4VlBRXYbVqDarWAGeVR+rhk3VzCtJpx6qlh7nimqYN9c7bfMBjc1tor86E9oil29Xj6XXzFAwBLeMsIqOCeOaVGSz4dCf7d+cQHGJi2sz+XDS5d4vs35dYLHbWr0536Sq3WjQWLdh7VudvNhu46c6R3HTnSJfXLrqkF5t/PUJ6ilN+xGjUIXSCu/9vfIPmQiT27shdD17Q+A/URFrC+R8HagemEqqfc7fNMSGEAegAeC5TUbQLKsosLmEFAM0hqaw4HdOWUpJyMI/MjCI6xYYwYEhcncSbwyE9JtRsNg0hBL+7ZzRvzl2N3ebA4ZDoDQKz2cAzr1zGS0//Qm6WqwaQOcDgttTUE1mZRR4TghmpTf+6B3fu6LaSTB9gos8d0xnyyPVN3vfZiI4J5Y8PtUwYyZ+oLLd6vJsrLqxs8n4NRj1/eWYye3ZksW9XNh3CAxk3MZHwCO9EABpLSzj/LUBvIUQPnE7+OuCGM7ZZCNwCbABmAyvOpXi/omkMTUpg1bIULFWuInqDhjkHaFuqbLz01HKOphfikBK9ThAeGcTfnp9SU1dtNhvolhhJekpdB6vTCYafnwDAkBGdeWLudJYsTCY7q4R+A2OYcnk/OoQHctV1Q/no7Q11btdNZj2XXj2wUTNZ4xM6uE8IGvXNaufvPPV8jKGB2Mora5L6AMKgp/ctU5u83/ZKWHgggYFGl2omIWjUuFB3NKcM2ds0uxxESmkH7gWWAMnAl1LKfUKIZ4QQV1Rv9iEQJYRIAf4MuJSDKtofA4bEMmBIbJ2witls4OJpfWome33zv11kpBZgsdixWTWqquzk5Zby0Tsb6+zr9nvHEBhkrBn8bjIbCAsP4De3jKjZpkv3CO64byyPvzCNa24aTofqi8eYC3tww21JhISaMRh0BAQauWzWIC6b5Tn5546uPSJJ7N0Rg/H0n5UQYDTpmDjl7OGSygora35JYdGCPRzYl1vnTkZnNDBjzWtEDe+NPsCEPtBMSGIcU5e+SGBMy3Y15+WW8dWnO3j3lbWs+SUFq8X1wtzW0ekEN9yeVEceWqcTmAMMzP7tcB9a5l1Uh6/Cpzg0B1s3ZrJhdRoGo54LL+nFoGFxNbfl99z0JWWlrolOvV7w3ufX1wnLlJZUseaXFLIyi0ns05FxExIblTR2OCSVFVYCA41Nnt1rqXK2//+6Kg27zUG/gTHcdNfIs7b/p6fkM/eJZTg0ic1mx2gy0LtfNA8+drHLkJyKrJNoVjsh3WJaXJto365sXnt+JZom0ewOzAEGIqOCeOLF6a2aePQGlZU2lny/n82/HsEUYOCSGX2JjApi0dd7ycspo3e/aGb+ZkiDOr0ryq2czCsnulOwX8p+K3kHxTnBH274vE78/xQ6neC9z66rtzbbl0gp63XQpcVVPHL3d1SU1/2MJrOe6249j0nT+7amiTU4HJIHbv/aJeZtMOqYcdVAZt0wzO37crNLWPrDAbKPl9B3QCcmTevbYtVADodsVNjNE1arxpN/XkxebllNiabZrGf0+B7cdm/Dx1Y6NAf//XArq5eloDfo0DQHE6f05vrbklrEzpZCyTsozglGjOzChrXpdUb+CeGsjPBnxw/1Kz7m55Xz+IM/uDh+qJ42tizFa84/N7uEKjcXWbvNweZ1R9w6/wN7c/nns8ux2x04NMmhfbksW3yAZ/55qctchcZwcF8un7y/mcyMIgICjVxyaV+uvn6oxy7Y+ti0NoP8k+V1lGAtFo31q9O5dNYgYuLOLuthtztYteQQC7/aQ0mxU+fo1L5WLTtMWHgAl89uWiWXL2kbLaCKdsu1t4wgPCKwRuPdZNYTFGzi9j95Z9B4a/Llf7ZTUW49yxbeuys3mQxuk9VAHX39U0gp+fCt9VgtWs2F2WZzUF5q5ev/7WyyHUczCnn5meVkZjjHclZV2li6MJn5725q8j737cpyW1Sg0wtSPHR9n0JKyavPreCL/2ynuKjKbT/Iz9+3nnZXa+LfSydFuyc8IpAX3p7JprUZpB0+SXxCB8ZNTPTLgd2NZff2LLcSCuBMEo+f5L3BQVHRwXTu2oEj6YXIWhcBk1nPxdNdJ96VFlfVdETXxuFw6vE3hKpKGxlpBYSGmelc3TX8w4I9LlU4VqvG+lVpXHvTiCaFlCI7BjvDNGeUFQtBvWWYh/af4PCBPJfGrdqUn/UC7r8o56/we8xmAxde0ouR47qxbkUq8177lajoYCbN6FvjNNoi5gCDx5V/Yu+O9VYItTT3PnIRLzy2lLIyC1I6HfnIsd240M1FyGQ2eLwvCQiqP8m+9IcDfPWf7TWx85i4MP78+MVkZhS51xQy6sk7UdYk5z9hSm+WLT6AVmvxLwQEBZvoP+jsMiKHkk+4jg09g249/HuimCeU81e0CcrLrDz1f4spKqzEatHQ6QRrl6fyx4fG+5UAW2OYNL0PC7/cUy1v4USnE/TuH81fn5vSKpPGjh0p5Eh6IZ1iQ+jVN7rOMaJjQnjpvas4sDeHwvxKevXrWFNyeyYBgUaGjujM7u3H64zgNJn1TJ7RF7vdQfKeHMrLLPQbFFtnhZ28J4evPtnu/NzVn/340SJeeXYF3RIjyc4qqXP3Ac7cQ6fYponJdYoN5b45E3jvtXXOMJVDEhsfxn1zLqq3qqtDRCBGk95t2OjU573xjvObZJevUc5f0SZYsnA/BfkVNS35DofEatX44M31vJl0TZOTgb5kxlUDOZpeyI7NxzAYdGgOB126RXD/Xye2uOO32zTemLua5N056HQCCXSKCeEvz04mNOy05pBOJxgwJK5B+7zjvjH885kVZB4pRK/XYbdpjBzbjb4DY3jgtgU1SVHN7uCyWYO48rqhACxZlOwSRnE4JLnZJVx9w1C2bcqs019gMusZP6lns0J9g4fH88ZHs8k6VozJbGjw7Ibzx3bjfx+6Vh0K4WxSvPr6oX4xj7cpKOevaBNs3XDURYsFnGqJxzOL6ernw7zdodfruOfhC8nNLiXzSCHRnUJazZEs+nov+3fn1AlhZB0r5sO3NvDAoxPP8k7PBIeYeeLF6RzNKCT/RBlde0QSERnIA3d846JDv/jbffQdGEP/wbGUFFW53Z9eryM42MScZyfz6QdbOJKaT2CwialX9Oeyq5o/oEan15HQrXHfk8BAI395ZjJvvbia0mLnZwoJNXHPIxfRs0/HZtvkS5TzV7QJPDXTaJr02VjB9JR8jqQXEBMbSt+BMU2u9Y6JC6233LC5rFpy2CV2rWmS3duysFrszSqb7do9oubie2j/CSxV7ktXV/x8iP6DYxma1JmM1HwXMT3N7qBbYiQBgUaefHF6k+1paXr0iuLl964i+1gJEkl8QodWCcl5G+X8FW2CyZf15WhGQZ1wgU4n6Nylg9cHi1gtdl55bgWph5yK5DohiIgK4tG/n9Yb8jdq17jXRZ5Va76xWCx2j46xosKZ3M48UuTi+IUOrrl5uN8OiRdCEN+leUPa/Y22FyhVtEtGXdCdiVP6YDQ6tXfMAQaiY0O4b84Er9vy/Ze7STlwEqtFw2px6g2dyCnlw7c2eN2WhjIsKcHtnUl8lw4tKlHQu1+0W6VWs9nA6At6kJGaz66trkNPDAY9Xbu3zdh5W0Wt/BVtAiGcYlzTrxpA6qGThIcH0rNvR5/cfq9ZnuqyktY0yZ4d2VitGiZT08ZQtibX3jycfbuyqaiwYrVoGI069AYdd/xpbIseJyDQyM13jeQ/723GbtdwOJwlrV17RDDmwu4sXXwAze5ay2mzauzbnU2/ekovFS2Hcv6KNkVEZBBJo+tOeSsvs7Blw1GqKmwMGh5PQteG1f5nHSsmeU8OIaFmhp+f0OC4t91DCEUicWgOoGWcv93uYNvGo2zflElImJkJk3vTpYmJ7fDIIF54+wrWrkgj5WAe8Z3DmDClN+GRQS1ia23GT+pFt55RrF56iNISK+eN7sJ5o7tiMOgICTFjMOpcQk1GPJMIFwAAHkRJREFUk57Q0NZp3JNSsmrpYRZ+uYfiokriEjpww21JDBzasKqmcxUl7KZo0+zdmcXr/1iFQKBpDnQ6wfhJPbnpzpEe7wqklMx/dxPrVqYBToVQnU7HI09fQo9eUW7fU5t5r//KhjV19YYQzsTn9b87j8io4GbP7LXbNOY+8QtH0guwVNnR6ZyhkZvvGunVzt+WpqLcyoN3fE1VZd26eZNZzz/fu6pVciY/fbePbz/bjaV2+ahJz0NPTDon7zQaKuymYv6KNovVqvHm3DVYLRoWix273YHVqrFuRRp7d2Z7fN/WDUdZvyodm1VzzgiotFNRbuXVv6/0qG9Tm2tvHkGH8NN6QwajDr1ekJVZzBsvrObxB3/guTk/u5Wibigb1mRwJK2gprnI4XB+3v/M20xVpWs1TVshKNjEQ09MIjTMTECggYBAI0HBJh54dGKrOH5Nc/D9l3vqOH5wnssFn+5o8eO1JVTYR9FmObA3x+3zFoudtctTGTw83u3rq5eluDgDcGrxp6ecpGef6LMeNzwikLlvX8H61emkHT6JpcrOjs3HsFq1mm7XtJR83nt1HQ89MamRn8rJpnUZbm3U63UcSj7BkBGuk6IsVTb27cpBSsnAoXF+WznTp38n3vh4NqmHTyIdkNino8vcgrPhcEj27com5UAe4ZGBjBzXneAQ90nrslKL2/4QcIb92jPK+SvaLA6HBA/53sKCcsrLLG67Qj2XPQqPjuJMzAFGJk7tw8SpfXj8wR/qSDSAs2Z9/54cykosTdKjCfSgjyOlpKrSxoJPd3Ait4z+g2IYe1EPkvfm8s7La6tDXRKHQ3Ln/eM4f2y3Rh/bG+j0Onr3a/zIRKtV48Unl3E0vRBLlR2TWc8X87fzl2cmuw3ZBYeY0esFNjc3S63dW+HvKOevaHPYbRob12awcW0GVg+aKxmpBdz/u6+Zee1gLr+mrtb62It6kHb4pIvEgBA0qWuzvMy9OJtOJ6iosLo4//27s/li/g6yjxcTFR3MrBuHuSSxJ07tzc6tx1xs1Ot1fPDGBjTNgd3uYOfmYyxasJeS4iqXJq73XvuVnn2jiYxq+aSur1i2+ABHUgtqLrbO86Px9ktreOndK13yPAaDjulXDWTxN3vrnEujSdfoMZ3nGirmr2hT2G0az/9tKfPf28SeHVk1Mfoza9itFg2bTWPhgj3s2lZXYnjcxJ706ht9OmZv0GEy6fnDny/AYGx8pc7g4fHo9K63IAEBRjpG1x1qsm9XNq8+t5KM1HwsVXayMot579V1/Loytc52A4bEcelVAzEYdTWx8eBQEwaDria/Ac4QV2F+hdvaeqRk868Zjf48/syvK1Jd7rIAiosqOZFT6vY9M68dzNXXDyWkuppICJAS3vnnWt59ZZ3b8Fp7QK38FW2KjWszOHakyGVFLJHo9KJuBQ7Oi8DSRckMPe90jNxg0PHwk5PYvSOLvTuyCO0QwAUTexIV3bTpU1deN4Rtm45SWWHDbnMgdAKjQcfv7h7tohr5xfztLs7LatH44j87GDshsc7K9crrhjJhSm+S9+YSFGwiJi6Uxx/4weX4npLUdrsDS+W55dg89nVI8BQDFEIwbeYA9AYdn320FYeDmvDe1g1H0TQH9zx8YesY7Mco569oU2xZf9TtSs1k1CMlWDXXVaG7qhudXsewpASGJSU026aIyCCef+MKli0+wP7dOXSKCWHazAFuRdqyPSQZS6vDNmf2GoRHBjHmwh6Ac3Xr8FSa7Qz118Fo0jPkPNfEsL9SUW6lvMxKVMcgj1LLo8d355vPd7lc5CM7BnmUfJZSMu81Z3numafPZtPYsTmzybmZtoxy/oo2RXCoqea2vQ7ungOMRr1X9P7DOgQw64ZhzLrB8zZSSoJCTFgLKl1eCwg0YKynM7hDeCA9ekaReuik62pfUue8mM0GRo3v3qC+BV9jqbLxwZsb2L45E51OYDIZuPaW4VRV2tm3M5vomGAmzehHaJiZFUsOuWj9mwMM3PPIRR7vCnZtO862TZkep6bpDTqKiiqV81co/JmLp/Vhy/ojLmGfgEATs28YyicfbMFm1ZDSufKNiAxk8qX9fGRtXT7/9zZKi13ljE1mPZfNGtQgqYq7H76Qfzy2lJKiyprBJKeQ0pn7GD4ygYlT+zBoWNvoYP3XK+vYuyOrJhRjtWh89NZGDAYddruzcW/NL6kMGh5PiZs5ugEBhrN2dW9Yne5xGAs4z1tD9f3PJZTzV7QpevWNZvaNw/jqkx0YjHqklJjNBh5+chJdukfQuVsEy344QGFBBcOSOjNhSu8WFS5rKvl55Sz/8aCLmiXAiJFdmNFAvfrIqCDmvj2TDWvS+fDN9S6vC50gOibEY49DbWxWO4sW7CX1cD5de4RzxezBXj9XRQUV7N2Rhc1Nie2ppPapwT07NrtfvVdW2MjLLfU4dexsg34MBh1XXT/UL/WYWhvl/BuIpbCU5Le+49hPmwjqHM3AB2cTM7b5AyYUjWfqFQO44OKeHNx/gqAgE336R9fEiHv26UjPP1/gYwtdObA312mjGyen14tGCdTpdILgEBMms4HKiroF7JrdwdH0wnr3kZNVwqP3LaqpEtq7I4ufv0vmiZem06On90JFhQWVGIx6t87/TDyFbWx2B+YAzw1t4yYmsnWDa65ICPj9fWMZXZ1TaW8o598AqvKLWTjiLqryitGqrCAOcPynTYx640/0uc1/hk60J4JDzIwY2XZm957KVbggILRDgJsXzk58Qoc6s3NPYTDoGhTnf+npX1zKQx0OyYuPL+Nf/7uu0fY0lbjOYc2eJyCgzozgMxkwJJYJU3uz4udDSCnR63RIJPfNmdCgO6RzFeX8G8C+VxZQeaIIh6V6lSUl9goLmx54m8QbJmEI8H1YQeHfDBoW7z78IGlSOWan2FCGDI9n946s081dwpnnuKSeHIfVqnEyt9ztaxUVNrKPFxPX2TuDSwICjVxxzWAWfrXHJY9TG7dJ/mrM9aixCiG44bYkJkzpzZ7tWQQEGkga07VZM4HPBZTzbwCZizeedvy1EDpB0d50Oib19YFVCl9ScLKcJYuSSTmQR3yXcKZfOYD4BM8O02DQMWhYHJvWHXF5bd2qNK69ZQRBwY1bRNz14Dg+fGsjO7cew25z0G9QJ2684/x6O3rrU/LdueW415w/wOWzB9MpNpTFX++luLiK/oNiEUKyZf1R9AZnXicqOpiwDgEc2n+iTpJbrxeMndCwsE18Qoez/h+1N5TzbwAB0e4rCRw2DXNk+6sSaO/kHC/hqYd/xGrV0OwO0g7ns3FtOg89fnaJ4OOZ7mv8DQYd2ceL6xWUq016Sj7/fGY5NpuGTifQ6wWjL+hO5y71zzIwm50dw57UQX0h8z7qgu6MuqB7ze+WKhtTLu9Pfl45EVHBJPaOorCgkuf+8jPl5RZsVg2jUU90bAjX3DTc6/aeCyjn3wAGPjibvA37sFecbhYSBj0RQxIJTWy/McP2yuf/3kZVpa0mDOFwSKwWjY//tZG5b8/0+L7Y+DCOHS1yacay2zQiOza8u9hm03jpqV9cNIU+eX8LPXp3bNDAl5v/cD7zXnWtFjIYBENG+O47bbXYmf/uJjauy0AIQWCQkZvuHEnPPh2JjArixXevZOfWY5zILqVL9wgGDo1zO57S2+TnlZN3ooz4hA6ENSGH4wuU828AXWaMYtiTt7DjqfnoTAYcNjvh/bsx6dtnfG2awgck7811G38+kVNKZaWNQA9SyjOuGsju7cfrCowZ9QwaHkdEIyZq7duZ7bZk1G7XWP1LCr+94/x69zHuop7s2ZbFpnVHasIoRqPgwsl9SOjWtGlhLcG819ezc0tmTc2/zarx/mu/Eh4eSJ8BnTAYdC4ieL7EYrHzr5fXsndnNgajDrtN48LJvfjtHSP94qJ0NpTzbyCDH/4Nfe+6jPzthwmMiSC8v39K5Span6Ag9yETnU5gPIswXM8+Hbn7ofHMf3cTZaUWJHD+2K7c+sdRjTq+s7zT1fk7HHgUN3PHXQ9ewNgJiaxflY4QzpLIlhhtWFlhZePaDLKPl9CjZxRJY7ue9bycoqS4ih21HP8prFaNRQv2NHk2QmvyybzN7N2Zjc2m1UiFr12eSmxcGFMu7+9j686Ocv6NwBQWTNyEYb42Q+FjLrmsH999vuuMFbyOUeN71DuUZPjILgw7P4HioioCg4z1Vqq4o9/gGLdlnuBUDc3NLvHY8FQbIQRDRnR2OximqWQfL+a5OT9jtWpYLRrmAAPffLaTJ1+cUa98QmF+BQaD3u1MhRM5ZS1mY0tht2lsWJPuerGyaPy8MNnvnX+zJJ2FEJFCiGVCiMPV/7q9XxRCaEKIndU/C5tzTIXC10y/oj9jLuyB0agnMMiI0aSn/+BYbr6z/nALOJ1ueERgkxw/OIXkpnpwLJrdweJv9jVpvw1BSsn61Wk8O+dnHn/wBxZ/s7dO89T7b6ynvMxac2G0VNnJP1nBV59ur3ffsfGhONzU/Ot0gj79G54M9xY2m+aiM3SKinL3Mx78ieau/OcAy6WULwgh5lT//hc321VKKdWSWXFOoNPruO2eMVx9wzCyMouIjgkhOsa7VV8jRnVh2eIDrtLWEtIOn2y143789kY2rj09YjIzo5CfvtvPYy9MIyIykPSUfJd8iGZ3sGX9UX5395iz7tscYOSy2YP44evTg1eEAJPZ4DKQxx8ICDQSFR3sclciBPQb6P+D4Zs7zGUmML/68XzgymbuT6FoM4RHBDJgSFyDHL/FYufXVWn8+O0+Dh840exyyo6dQtyuOoWA+AaUezaFnKwS1q9Jr7PSlxJKSyw8dv8iMjOKPHZiuRt2444rrhnM7+4eTULXcELDzJw3uitPvTzdL4XXhBD87u7RmMx6RHVyV68XBAQa+c2tI3xsXf00d+UfI6XMrn6cA3i63AUIIbYCduAFKeV3zTyuQtFmyMwo5B+PLcVud2C3aRiMevr078QDf5vYqMHltQmPCGTEqC5s33yszvhGo0nfauMJDyfneaxgsdkcvPzMcg+y2jrGTUhs0DGEEIy9KJGxFzVse18zYEgcT8ydzk/f7SPrWAm9+kUzfeaAJg8G8ib1On8hxC9ArJuX/lb7FymlFEJ4Ws50k1IeF0IkAiuEEHuklKlnbiSEuBO4E6BrV/8p51IomoqUkjfnrq5Tk69pdg7uy2XFTweblRT8/f3j+Pzjbaz5JQW73UGnuFBu/cMoujagzr8phIUHuNcnquZMkTlwrvi79Ijk6uuHtopN/kCX7hHc+YD/iQnWR73OX0p5iafXhBC5Qog4KWW2ECIOOOFhH8er/00TQqwChgMuzl9KOQ+YB5CUlOT9NkOFooU5kVNKYX6Fy/OnyhcnX9avUYqetTEa9dx050huvD0Ju93hMgXsFFJKNE02+S7jFIOGxWEOMFDVCC0ivV7HE3OnNfkzKlqP5sb8FwK3VD++Bfj+zA2EEBFCCHP1447AOGB/M4+rULQJpANPo2UpKbHw47fNr8zR6XVuHb+mOVjw6Q7+cMPn3H7Nf5lz7/fs25XtZg8NQ6/X8dfnphDcCA0ize5Qjt9Paa7zfwGYLIQ4DFxS/TtCiCQhxAfV2/QHtgohdgErccb8lfNXtAti4kM9t/tL+PHb1vtT+GTeZpYsSnau1CVkHyvhtb+vJD0lv8n7jOvcgdc+nsXAobEYDLqaUteQUDcXBMFZtY4UvkX4QsSpISQlJcmtW7f62gyFD8nLLWPj2nSsVXaGnp9Azz4d2+QqMu3wSZ5++CePr3/8zW9bXAqgvMzK/b/7ynVIioDh5yfwwKMTm32MvNxSso6VENc5DLvdwTOP/ITdpmGzOTAadRiMep54cbpS0vQyQohtUsqk+rZTHb4Kv2T96jQ+ensj0iHRNAc/L0pm9AXdue3eMW3uApDYuyOdE8I4fqzE5bXY+NBW0YApOFmO3uBmQpaELA/qoo0lOia0Tpnr3HdmsvLnQ2SkFdA9MZKJ0/rQIdzzkBWFb1HOX+F3lJdZ+ejtjXVKGK0WjU2/HmHU+O4MGtb2lFR/e+dIXn1uJdZan8lk1nPDbQ3rCm4sHWNC3E7IEgK6Jka2yjE7hAdy5XXnblXPuUZzY/4KRYuzd2cWejdNQZYqOxvXZHjfoBZgwJA4Hn76EvoPjiWsQwB9B3TioccnMTSp5XR1ahMYaOSSGX0xmesKqhlNemb6Ybdsc8jLLWXRgj189ekOUg7k+WQeQVtErfwVfodz3KGr8xcC9M0sV/Qlffp3Ys6zk712vGtvHkGHiEB+/m4/ZaUWuveM4obbz2uQ3n995OWWoWkOYuJCfRqG+3VVGh+/sxGHQ+LQHCxdlMyocd25/U9tLzzobZTzV/gdg4bF4XC4hiyMJn2DO0UVTkG06TMHMH3mgBbbZ87xEt6Yu5oTOaUIASGhZv740Hj69O/UYsdoKOVlVj5+xzU8uHn9EUZf2DbDg96k7S6jFOcsAYFG7nn4QkxmPSazHoNRh9GkZ/Kl/egzwPtORuHEbtN4/m9LyMoswlYt2VxwsoKXn15OcVGl1+3Ztyu7+i6xLm05POhN1Mpf4ZcMS0rg1fdnsXXTUaxVdoaM6Exs5/o16hWtx+7tWVgsdhf9HocmWbcilUuvbh1NIU94qpISouFCcu0Z5fwVfktImJkJk3v72owWo6SokqLCSmLiw5qs5e9LCgsq3I6PtNk08k+6Sli0NoOGxblN7krg2JEiDu7LpW8bkFb2FSrso1C0AprmqHFMFoudN+eu5sHff8PfH13CvTd/yQ9f7/WKHVWVNg4lnyA327XHoLH06hvtVtjNHGDwiX59QKCRe/7vQowmXd3qMAmph07y8tPL2bQuw+t2tRXa3vJDofBjDu0/wX/e28Sxo0WYTAYmTO1NUUElu7Yex25z1Iz8+/7L3UTHhDDqgu6tZsvPC/fz9ac70Rt0aHYHXbpH8MCjEwhrYuNVt8RIBg+PZ8+OrJphK0ajjpi4UEaM6tKSpjeY6NgQAgKNlJVYXF6zWjU+fX8L54/t5vfD1H2BWvkrFC3EsaNFvPT0L2QeKUJK54p/xc+H2PxrRs1w71NYLRqLW3H1v2dHFl//dydWq0ZlhQ2rVSMjNZ83XljdrP3e8/CFXHers1w0LiGMy2cP5rF/TG22YmhTkFLy+vOrKC2xeJohQ2WljaIC74ek2gJq5a9QtBA/frPXRU6hdhnimRQVVbWaLT99t89lxKOmSTLSCsjLLSM6JqRJ+9XrdUya3pdJ0/u2hJnNIvt4CQX55c4gvweklAQ1QoW0PaFW/gpFC5GZUeRxoPeZCJ1o1Th5sYcLi16vo6zUNUTSFrFZNXRnaeQyGvWMHNeNgECjF61qOyjnr1C0EN17RbmNLev1AqPp9J+aTicIMBuYdWPr6eAMPa8zBqPrn7eUks5dW2fGr7fp0i0cg1Hv9jWdTjD0/M7c+sfRXraq7aCcv0LRQlx69UCMprrOyGTWc+GkXvzfE5cweEQ8sfFhXHBxT5597VJi4lqvb2H6lQMICTXXuQCYzHqu/915mEzuHWZbQ6fX8Yc/X+BsBKzOOZjMeuI6h/Hiu1fyp0cuapMltd5C6fkrFC3IkbQC/vvhVlIP5hEUbGLK5f249KqB6Nx0orY2ZSUWfl6UzJ7tx4mICmLazAE+KclsbU6eKGPNLykU5lcwcFgcSWO6+SQB7S80VM9fOX+FQqE4h2io82+/l0eFoh1hqbJxYG8uR9IKlOSxAlClngrFOc/qZYf59IMt6PU6HA5JeEQgDz0xiZi40PrfrDhnUSt/heIcJu3wST59fwtWi7PZy1Jl50ROKS899Yu6A2jnKOevUJzDLP/xoEt3sZRQUlxF6qGTPrJK4Q8o569QnMMUF1W5lT7Q6cQ50+ylaBrK+SsU5zDDRya4zPEFsNsc9Oob7QOLFP6Ccv4KxTnMBRf3JLpTSJ3GLpNZz8zfDCEk1OxDyxS+RlX7KBTnMGazgSdfms6qZSls3XCU4BATky/tx8Chcb42TeFjlPNXKM5xzAFGpl7en6mX9/e1KQo/QoV9FAqFoh2inL9CoVC0Q1TYR6FQeAWLxc7yHw+yaV0G5gADk6b3ZeS4boizaPIrWg/l/BUKRatjs2k8+5efyckqqZlulpFSwMH9J7j5zpE+tq59osI+CoWi1dm87ggnckrrjLW0WOysWZZCXm6pDy1rvyjnr1AoWp09O45jqbK7PK/TCw4l5/nAIoVy/gqFotWJiApCr3eN7QsBYR0CfGCRQjl/hULR6kyY0hv9GdPMhICAQCMDh8T6yKr2TbOcvxDiGiHEPiGEQwjhcXKMEGKaEOKgECJFCDGnOcdUKBRtj5i4MO7+v/EEBZsICDRgMuuJiQ/jr89O8cmIS0Xzq332AlcD73naQAihB94GJgPHgC1CiIVSyv3NPLZCoWhDDB/ZhTfnX0NmRiFms4G4hDBV5ulDmuX8pZTJQH3/gSOBFCllWvW2nwMzAeX8FYp2hsGgo0evKF+bocA7Mf/OQGat349VP6dQKBQKH1Hvyl8I8QvgLiPzNynl9y1pjBDiTuBOgK5du7bkrhUKhUJRi3qdv5TykmYe4zjQpdbvCdXPuTvWPGAeQFJSkhowqlAoFK2EN8I+W4DeQogeQggTcB2w0AvHVSgUCoUHmlvqeZUQ4hgwBlgshFhS/Xy8EOJHACmlHbgXWAIkA19KKfc1z2yFQqFQNIfmVvt8C3zr5vksYEat338EfmzOsRQKhULRcggp/TO0LoTIA47UeqojcNJH5jQGZWfLouxsWZSdLYs/2tlNShld30Z+6/zPRAixVUrpsYvYX1B2tizKzpZF2dmytBU73aH6qhUKhaIdopy/QqFQtEPakvOf52sDGoiys2VRdrYsys6Wpa3Y6UKbifkrFAqFouVoSyt/hUKhULQQyvkrFApFO8RvnX8jBsVkCCH2CCF2CiG2etPG6uO3iYE2QohIIcQyIcTh6n8jPGynVZ/LnUIIr8lw1Hd+hBBmIcQX1a9vEkJ095ZtZ9hRn523CiHyap3DO3xg40dCiBNCiL0eXhdCiDeqP8NuIcQIb9tYbUd9dk4QQhTXOpdPeNvGaju6CCFWCiH2V/+t3+9mG784p41CSumXP0B/oC+wCkg6y3YZQEd/thPQA6lAImACdgEDvGzni8Cc6sdzgLketivzwTms9/wAdwPvVj++DvjCT+28FXjL27adYcOFwAhgr4fXZwA/AQIYDWzyUzsnAD/48lxW2xEHjKh+HAoccvP/7hfntDE/frvyl1ImSykP+tqO+mignTUDbaSUVuDUQBtvMhOYX/14PnCll49/NhpyfmrbvwCYJLw/Bsof/h/rRUq5Big4yyYzgf9IJxuBcCFEnHesO00D7PQLpJTZUsrt1Y9LcWqUnTmTxC/OaWPwW+ffCCSwVAixrXoegD/iDwNtYqSU2dWPc4AYD9sFCCG2CiE2CiG8dYFoyPmp2UY6xQKLAW+PhGro/+Os6lv/BUKILm5e9zX+8H1sKGOEELuEED8JIQb62pjqcONwYNMZL7Wlcwo0f4Zvs2ihQTEXSCmPCyE6AcuEEAeqVxQthjcH2jSHs9lZ+xcppRRCeKrx7VZ9PhOBFUKIPVLK1Ja29RxmEfCZlNIihLgL593KxT62qa2yHef3sUwIMQP4DujtK2OEECHA18ADUsoSX9nRUvjU+cvmD4pBSnm8+t8TQohvcd6at6jzbwE7GzzQpjmczU4hRK4QIk5KmV19O3rCwz5Onc80IcQqnKuc1nb+DTk/p7Y5JoQwAB2A/Fa260zqtVNKWdumD3DmWvwNr3wfm0ttByul/FEI8Y4QoqOU0utCakIII07H/18p5TduNmkT57Q2bTrsI4QIFkKEnnoMTAHcVg74GH8YaLMQuKX68S2Ayx2LECJCCGGuftwRGAfs94JtDTk/te2fDayQ1Zk2L1KvnWfEea/AGR/2NxYCN1dXqIwGimuFBP0GIUTsqbyOEGIkTn/l7Qs+1TZ8CCRLKV/xsFmbOKd18HXG2dMPcBXOuJkFyAWWVD8fD/xY/TgRZ8XFLmAfzjCM39kpT1cDHMK5ivaFnVHAcuAw8AsQWf18EvBB9eOxwJ7q87kHuN2L9rmcH+AZ4IrqxwHAV0AKsBlI9NH3sj47/1H9XdwFrAT6+cDGz4BswFb93bwd+APwh+rXBfB29WfYw1mq6Xxs5721zuVGYKyP7LwAZ25xN7Cz+meGP57TxvwoeQeFQqFoh7TpsI9CoVAomoZy/gqFQtEOUc5foVAo2iHK+SsUCkU7RDl/hUKhaIco569QKBTtEOX8FQqFoh3y/4BdptgaU4I4AAAAAElFTkSuQmCC\n",
- "text/plain": [
- "<Figure size 432x288 with 1 Axes>"
- ]
- },
- "metadata": {
- "needs_background": "light"
- },
- "output_type": "display_data"
- }
- ],
- "source": [
- "# predict results & plot results\n",
- "y_res = nn.forward(X)\n",
- "y_pred = np.argmax(y_res, axis=1)\n",
- "\n",
- "# plot data\n",
- "plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Spectral)\n",
- "plt.title(\"ground truth\")\n",
- "plt.show()\n",
- "\n",
- "plt.scatter(X[:, 0], X[:, 1], c=y_pred, cmap=plt.cm.Spectral)\n",
- "plt.title(\"predicted\")\n",
- "plt.show()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## 9. In-depth analysis and problems"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "[[0.03154963 0.97354996]\n",
- " [0.30242346 0.68475421]\n",
- " [0.84429554 0.17625119]\n",
- " [0.04812804 0.95826417]\n",
- " [0.04183504 0.96405488]\n",
- " [0.80767817 0.17874873]\n",
- " [0.05463129 0.94906635]\n",
- " [0.83768873 0.14807047]\n",
- " [0.05043638 0.95552076]]\n"
- ]
- }
- ],
- "source": [
- "# print some results\n",
- "\n",
- "print(y_res[1:10, :])"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "**问题**\n",
- "1. We want to get the probability of each of these categories\n",
- "2. How to do multiple classification problem?\n",
- "3. How can you make neural network faster training good?\n",
- "4. How to better construct the class definition of the network so that the class of the neural network supports more types of processing layer?"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## References\n",
- "* 反向传播算法\n",
- " * [零基础入门深度学习(3) - 神经网络和反向传播算法](https://www.zybuluo.com/hanbingtao/note/476663)\n",
- " * [Neural Network Using Python and Numpy](https://www.python-course.eu/neural_networks_with_python_numpy.php)\n",
- " * http://www.cedar.buffalo.edu/%7Esrihari/CSE574/Chap5/Chap5.3-BackProp.pdf\n",
- " * https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/\n"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.6.8"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 2
- }
|