|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238 |
- import torch
- import numpy as np
- from torch import nn
- from torch.autograd import Variable
- import torch.nn.functional as F
- import matplotlib.pyplot as plt
-
- #%matplotlib inline
- np.random.seed(1)
- m = 400 # 样本数量
- N = int(m/2) # 每一类的点的个数
- D = 2 # 维度
- x = np.zeros((m, D))
- y = np.zeros((m, 1), dtype='uint8') # label 向量, 0 表示红色, 1 表示蓝色
- a = 4
-
- # 生成两类数据
- for j in range(2):
- ix = range(N*j,N*(j+1))
- t = np.linspace(j*3.12,(j+1)*3.12,N) + np.random.randn(N)*0.2 # theta
- r = a*np.sin(4*t) + np.random.randn(N)*0.2 # radius
- x[ix] = np.c_[r*np.sin(t), r*np.cos(t)]
- y[ix] = j
-
- plt.ylabel("x2")
- plt.xlabel("x1")
- # 绘出生成的数据
- for i in range(m):
- if y[i] == 0:
- plt.scatter(x[i, 0], x[i, 1], marker='8',c=0, s=40, cmap=plt.cm.Spectral)
- else:
- plt.scatter(x[i, 0], x[i, 1], marker='^',c=1, s=40)
- plt.savefig('fig-res-8.2.pdf')
- plt.show()
- # #尝试用逻辑回归解决
- # x = torch.from_numpy(x).float()
- # y = torch.from_numpy(y).float()
-
- # w = nn.Parameter(torch.randn(2, 1))
- # b = nn.Parameter(torch.zeros(1))
-
- # # [w,b]是模型的参数; 1e-1是学习速率
- # optimizer = torch.optim.SGD([w, b], 1e-1)
- # criterion = nn.BCEWithLogitsLoss()
- # def logistic_regression(x):
- # return torch.mm(x, w) + b
-
-
- # for e in range(100):
- # # 模型正向计算
- # out = logistic_regression(Variable(x))
- # # 计算误差
- # loss = criterion(out, Variable(y))
- # # 误差反传和参数更新
- # optimizer.zero_grad()
- # loss.backward()
- # optimizer.step()
- # if (e + 1) % 20 == 0:
- # print('epoch:{}, loss:{}'.format(e+1, loss.item()))
-
-
- # def plot_decision_boundary(model, x, y):
- # # Set min and max values and give it some padding
- # x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1
- # y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1
- # h = 0.01
- # # Generate a grid of points with distance h between them
- # xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min,y_max, h))
-
- # # Predict the function value for the whole grid .c_ 按行连接两个矩阵,左右相加。
- # Z = model(np.c_[xx.ravel(), yy.ravel()])
- # Z = Z.reshape(xx.shape)
- # # Plot the contour and training examples
- # plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)
- # plt.ylabel("x2")
- # plt.xlabel("x1")
- # plt.scatter(x[:, 0], x[:, 1], c=y.reshape(-1), s=40, cmap=plt.cm.Spectral)
-
- # def plot_logistic(x):
- # x = Variable(torch.from_numpy(x).float())
- # out = F.sigmoid(logistic_regression(x))
- # out = (out > 0.5) * 1
- # return out.data.numpy()
-
- # plot_decision_boundary(lambda x: plot_logistic(x), x.numpy(), y.numpy())
- # plt.title('logistic regression')
- # plt.savefig('fig-res-8.3.pdf')
-
-
- # # 定义两层神经网络的参数
- # w1 = nn.Parameter(torch.randn(2, 4) * 0.01) # 输入维度为2, 隐藏层神经元个数4
- # b1 = nn.Parameter(torch.zeros(4))
- # w2 = nn.Parameter(torch.randn(4, 1) * 0.01) # 隐层神经元为4, 输出单元为1
- # b2 = nn.Parameter(torch.zeros(1))
-
- # def mlp_network(x):
- # x1 = torch.mm(x, w1) + b1
- # x1 = F.tanh(x1) # 使用 PyTorch 自带的 tanh 激活函数
- # x2 = torch.mm(x1, w2) + b2
- # return x2
-
- # # 定义优化器和损失函数
- # optimizer = torch.optim.SGD([w1, w2, b1, b2], 1.)
- # criterion = nn.BCEWithLogitsLoss()
-
- # for e in range(10000):
- # # 正向计算
- # out = mlp_network(Variable(x))
- # # 计算误差
- # loss = criterion(out, Variable(y))
- # # 计算梯度并更新权重
- # optimizer.zero_grad()
- # loss.backward()
- # optimizer.step()
- # if (e + 1) % 1000 == 0:
- # print('epoch: {}, loss: {}'.format(e+1, loss.item()))
-
- # def plot_network(x):
- # x = Variable(torch.from_numpy(x).float())
- # x1 = torch.mm(x, w1) + b1
- # x1 = F.tanh(x1)
- # x2 = torch.mm(x1, w2) + b2
- # out = F.sigmoid(x2)
- # out = (out > 0.5) * 1
- # return out.data.numpy()
-
- # plot_decision_boundary(lambda x: plot_network(x), x.numpy(), y.numpy())
- # plt.title('2 layer network')
- # plt.savefig('fig-res-8.4.pdf')
-
- # # Sequential
- # seq_net = nn.Sequential(
- # nn.Linear(2, 4), # PyTorch 中的线性层, wx + b
- # nn.Tanh(),
- # nn.Linear(4, 1)
- # )
-
- # # 序列模块可以通过索引访问每一层
- # seq_net[0] # 第一层
-
- # # 打印出第一层的权重
- # w0 = seq_net[0].weight
- # print(w0)
-
-
- # # 通过 parameters 可以取得模型的参数
- # param = seq_net.parameters()
- # # 定义优化器
- # optim = torch.optim.SGD(param, 1.)
-
- # # 训练 10000 次
- # for e in range(10000):
- # # 网络正向计算
- # out = seq_net(Variable(x))
- # # 计算误差
- # loss = criterion(out, Variable(y))
- # # 反向传播、 更新权重
- # optim.zero_grad()
- # loss.backward()
- # optim.step()
- # # 打印损失
- # if (e + 1) % 1000 == 0:
- # print('epoch: {}, loss: {}'.format(e+1, loss.item()))
-
-
- # def plot_seq(x):
- # out = F.sigmoid(seq_net(Variable(torch.from_numpy(x).float()))).data.numpy()
- # out = (out > 0.5) * 1
- # return out
-
- # plot_decision_boundary(lambda x: plot_seq(x), x.numpy(), y.numpy())
- # plt.title('sequential')
- # plt.savefig('fig-res-8.5.pdf')
-
- # torch.save(seq_net, 'save_seq_net.pth')
-
- # # 读取保存的模型
- # seq_net1 = torch.load('save_seq_net.pth')
- # # 打印加载的模型
- # seq_net1
-
- # print(seq_net1[0].weight)
-
- # # 保存模型参数
- # torch.save(seq_net.state_dict(), 'save_seq_net_params.pth')
-
- # # 定义网络架构
- # seq_net2 = nn.Sequential(
- # nn.Linear(2, 4),
- # nn.Tanh(),
- # nn.Linear(4, 1)
- # )
- # # 加载网络参数
- # seq_net2.load_state_dict(torch.load('save_seq_net_params.pth'))
-
- # # 打印网络结构
- # seq_net2
- # print(seq_net2[0].weight)
-
- # class Module_Net(nn.Module):
- # def __init__(self, num_input, num_hidden, num_output):
- # super(Module_Net, self).__init__()
- # self.layer1 = nn.Linear(num_input, num_hidden)
- # self.layer2 = nn.Tanh()
- # self.layer3 = nn.Linear(num_hidden, num_output)
-
- # def forward(self, x):
- # x = self.layer1(x)
- # x = self.layer2(x)
- # x = self.layer3(x)
- # return x
-
- # mo_net = Module_Net(2, 4, 1)
- # # 访问模型中的某层可以直接通过名字, 网络第一层
- # l1 = mo_net.layer1
- # print(l1)
-
-
- # optim = torch.optim.SGD(mo_net.parameters(), 1.)
- # # 训练 10000 次
- # for e in range(10000):
- # # 网络正向计算
- # out = mo_net(Variable(x))
- # # 计算误差
- # loss = criterion(out, Variable(y))
- # # 误差反传、 更新参数
- # optim.zero_grad()
- # loss.backward()
- # optim.step()
- # # 打印损失
- # if (e + 1) % 1000 == 0:
- # print('epoch: {}, loss: {}'.format(e+1, loss.item()))
-
- # torch.save(mo_net.state_dict(), 'module_net.pth')
-
-
-
-
|