You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

Tensor-and-Variable.ipynb 34 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963
  1. {
  2. "cells": [
  3. {
  4. "cell_type": "markdown",
  5. "metadata": {},
  6. "source": [
  7. "# Tensor and Variable\n",
  8. "这是 PyTorch 基础的第二课,通过本次课程,你能够学会如何像使用 NumPy 一样使用 PyTorch,了解到 PyTorch 中的基本元素 Tensor 和 Variable 及其操作方式。"
  9. ]
  10. },
  11. {
  12. "cell_type": "markdown",
  13. "metadata": {},
  14. "source": [
  15. "## 把 PyTorch 当做 NumPy 用\n",
  16. "PyTorch 的官方介绍是一个拥有强力GPU加速的张量和动态构建网络的库,其主要构件是张量,所以我们可以把 PyTorch 当做 NumPy 来用,PyTorch 的很多操作好 NumPy 都是类似的,但是因为其能够在 GPU 上运行,所以有着比 NumPy 快很多倍的速度。"
  17. ]
  18. },
  19. {
  20. "cell_type": "code",
  21. "execution_count": 1,
  22. "metadata": {
  23. "collapsed": true
  24. },
  25. "outputs": [],
  26. "source": [
  27. "import torch\n",
  28. "import numpy as np"
  29. ]
  30. },
  31. {
  32. "cell_type": "code",
  33. "execution_count": 2,
  34. "metadata": {},
  35. "outputs": [],
  36. "source": [
  37. "# 创建一个 numpy ndarray\n",
  38. "numpy_tensor = np.random.randn(10, 20)"
  39. ]
  40. },
  41. {
  42. "cell_type": "markdown",
  43. "metadata": {},
  44. "source": [
  45. "我们可以使用下面两种方式将numpy的ndarray转换到tensor上"
  46. ]
  47. },
  48. {
  49. "cell_type": "code",
  50. "execution_count": 3,
  51. "metadata": {
  52. "collapsed": true
  53. },
  54. "outputs": [],
  55. "source": [
  56. "pytorch_tensor1 = torch.Tensor(numpy_tensor)\n",
  57. "pytorch_tensor2 = torch.from_numpy(numpy_tensor)"
  58. ]
  59. },
  60. {
  61. "cell_type": "markdown",
  62. "metadata": {},
  63. "source": [
  64. "使用以上两种方法进行转换的时候,会直接将 NumPy ndarray 的数据类型转换为对应的 PyTorch Tensor 数据类型"
  65. ]
  66. },
  67. {
  68. "cell_type": "markdown",
  69. "metadata": {},
  70. "source": [
  71. "\n"
  72. ]
  73. },
  74. {
  75. "cell_type": "markdown",
  76. "metadata": {},
  77. "source": [
  78. "同时我们也可以使用下面的方法将 pytorch tensor 转换为 numpy ndarray"
  79. ]
  80. },
  81. {
  82. "cell_type": "code",
  83. "execution_count": 4,
  84. "metadata": {
  85. "collapsed": true
  86. },
  87. "outputs": [],
  88. "source": [
  89. "# 如果 pytorch tensor 在 cpu 上\n",
  90. "numpy_array = pytorch_tensor1.numpy()\n",
  91. "\n",
  92. "# 如果 pytorch tensor 在 gpu 上\n",
  93. "numpy_array = pytorch_tensor1.cpu().numpy()"
  94. ]
  95. },
  96. {
  97. "cell_type": "markdown",
  98. "metadata": {},
  99. "source": [
  100. "需要注意 GPU 上的 Tensor 不能直接转换为 NumPy ndarray,需要使用`.cpu()`先将 GPU 上的 Tensor 转到 CPU 上"
  101. ]
  102. },
  103. {
  104. "cell_type": "markdown",
  105. "metadata": {},
  106. "source": [
  107. "\n"
  108. ]
  109. },
  110. {
  111. "cell_type": "markdown",
  112. "metadata": {},
  113. "source": [
  114. "PyTorch Tensor 使用 GPU 加速\n",
  115. "\n",
  116. "我们可以使用以下两种方式将 Tensor 放到 GPU 上"
  117. ]
  118. },
  119. {
  120. "cell_type": "code",
  121. "execution_count": null,
  122. "metadata": {},
  123. "outputs": [],
  124. "source": [
  125. "# 第一种方式是定义 cuda 数据类型\n",
  126. "dtype = torch.cuda.FloatTensor # 定义默认 GPU 的 数据类型\n",
  127. "gpu_tensor = torch.randn(10, 20).type(dtype)\n",
  128. "\n",
  129. "# 第二种方式更简单,推荐使用\n",
  130. "gpu_tensor = torch.randn(10, 20).cuda(0) # 将 tensor 放到第一个 GPU 上\n",
  131. "gpu_tensor = torch.randn(10, 20).cuda(1) # 将 tensor 放到第二个 GPU 上"
  132. ]
  133. },
  134. {
  135. "cell_type": "markdown",
  136. "metadata": {},
  137. "source": [
  138. "使用第一种方式将 tensor 放到 GPU 上的时候会将数据类型转换成定义的类型,而是用第二种方式能够直接将 tensor 放到 GPU 上,类型跟之前保持一致\n",
  139. "\n",
  140. "推荐在定义 tensor 的时候就明确数据类型,然后直接使用第二种方法将 tensor 放到 GPU 上"
  141. ]
  142. },
  143. {
  144. "cell_type": "markdown",
  145. "metadata": {},
  146. "source": [
  147. "而将 tensor 放回 CPU 的操作非常简单"
  148. ]
  149. },
  150. {
  151. "cell_type": "code",
  152. "execution_count": null,
  153. "metadata": {
  154. "collapsed": true
  155. },
  156. "outputs": [],
  157. "source": [
  158. "cpu_tensor = gpu_tensor.cpu()"
  159. ]
  160. },
  161. {
  162. "cell_type": "markdown",
  163. "metadata": {},
  164. "source": [
  165. "我们也能够访问到 Tensor 的一些属性"
  166. ]
  167. },
  168. {
  169. "cell_type": "code",
  170. "execution_count": 5,
  171. "metadata": {},
  172. "outputs": [
  173. {
  174. "name": "stdout",
  175. "output_type": "stream",
  176. "text": [
  177. "torch.Size([10, 20])\n",
  178. "torch.Size([10, 20])\n"
  179. ]
  180. }
  181. ],
  182. "source": [
  183. "# 可以通过下面两种方式得到 tensor 的大小\n",
  184. "print(pytorch_tensor1.shape)\n",
  185. "print(pytorch_tensor1.size())"
  186. ]
  187. },
  188. {
  189. "cell_type": "code",
  190. "execution_count": 6,
  191. "metadata": {},
  192. "outputs": [
  193. {
  194. "name": "stdout",
  195. "output_type": "stream",
  196. "text": [
  197. "torch.FloatTensor\n"
  198. ]
  199. }
  200. ],
  201. "source": [
  202. "# 得到 tensor 的数据类型\n",
  203. "print(pytorch_tensor1.type())"
  204. ]
  205. },
  206. {
  207. "cell_type": "code",
  208. "execution_count": 7,
  209. "metadata": {},
  210. "outputs": [
  211. {
  212. "name": "stdout",
  213. "output_type": "stream",
  214. "text": [
  215. "2\n"
  216. ]
  217. }
  218. ],
  219. "source": [
  220. "# 得到 tensor 的维度\n",
  221. "print(pytorch_tensor1.dim())"
  222. ]
  223. },
  224. {
  225. "cell_type": "code",
  226. "execution_count": 8,
  227. "metadata": {},
  228. "outputs": [
  229. {
  230. "name": "stdout",
  231. "output_type": "stream",
  232. "text": [
  233. "200\n"
  234. ]
  235. }
  236. ],
  237. "source": [
  238. "# 得到 tensor 的所有元素个数\n",
  239. "print(pytorch_tensor1.numel())"
  240. ]
  241. },
  242. {
  243. "cell_type": "markdown",
  244. "metadata": {},
  245. "source": [
  246. "**小练习**\n",
  247. "\n",
  248. "查阅以下[文档](http://pytorch.org/docs/0.3.0/tensors.html)了解 tensor 的数据类型,创建一个 float64、大小是 3 x 2、随机初始化的 tensor,将其转化为 numpy 的 ndarray,输出其数据类型\n",
  249. "\n",
  250. "参考输出: float64"
  251. ]
  252. },
  253. {
  254. "cell_type": "code",
  255. "execution_count": 6,
  256. "metadata": {},
  257. "outputs": [
  258. {
  259. "name": "stdout",
  260. "output_type": "stream",
  261. "text": [
  262. "float64\n"
  263. ]
  264. }
  265. ],
  266. "source": [
  267. "# 答案\n",
  268. "x = torch.randn(3, 2)\n",
  269. "x = x.type(torch.DoubleTensor)\n",
  270. "x_array = x.numpy()\n",
  271. "print(x_array.dtype)"
  272. ]
  273. },
  274. {
  275. "cell_type": "markdown",
  276. "metadata": {},
  277. "source": [
  278. "\n"
  279. ]
  280. },
  281. {
  282. "cell_type": "markdown",
  283. "metadata": {},
  284. "source": [
  285. "## Tensor的操作\n",
  286. "Tensor 操作中的 api 和 NumPy 非常相似,如果你熟悉 NumPy 中的操作,那么 tensor 基本是一致的,下面我们来列举其中的一些操作"
  287. ]
  288. },
  289. {
  290. "cell_type": "code",
  291. "execution_count": 9,
  292. "metadata": {},
  293. "outputs": [
  294. {
  295. "name": "stdout",
  296. "output_type": "stream",
  297. "text": [
  298. "\n",
  299. " 1 1\n",
  300. " 1 1\n",
  301. "[torch.FloatTensor of size 2x2]\n",
  302. "\n"
  303. ]
  304. }
  305. ],
  306. "source": [
  307. "x = torch.ones(2, 2)\n",
  308. "print(x) # 这是一个float tensor"
  309. ]
  310. },
  311. {
  312. "cell_type": "code",
  313. "execution_count": 10,
  314. "metadata": {},
  315. "outputs": [
  316. {
  317. "name": "stdout",
  318. "output_type": "stream",
  319. "text": [
  320. "torch.FloatTensor\n"
  321. ]
  322. }
  323. ],
  324. "source": [
  325. "print(x.type())"
  326. ]
  327. },
  328. {
  329. "cell_type": "code",
  330. "execution_count": 11,
  331. "metadata": {},
  332. "outputs": [
  333. {
  334. "name": "stdout",
  335. "output_type": "stream",
  336. "text": [
  337. "\n",
  338. " 1 1\n",
  339. " 1 1\n",
  340. "[torch.LongTensor of size 2x2]\n",
  341. "\n"
  342. ]
  343. }
  344. ],
  345. "source": [
  346. "# 将其转化为整形\n",
  347. "x = x.long()\n",
  348. "# x = x.type(torch.LongTensor)\n",
  349. "print(x)"
  350. ]
  351. },
  352. {
  353. "cell_type": "code",
  354. "execution_count": 12,
  355. "metadata": {},
  356. "outputs": [
  357. {
  358. "name": "stdout",
  359. "output_type": "stream",
  360. "text": [
  361. "\n",
  362. " 1 1\n",
  363. " 1 1\n",
  364. "[torch.FloatTensor of size 2x2]\n",
  365. "\n"
  366. ]
  367. }
  368. ],
  369. "source": [
  370. "# 再将其转回 float\n",
  371. "x = x.float()\n",
  372. "# x = x.type(torch.FloatTensor)\n",
  373. "print(x)"
  374. ]
  375. },
  376. {
  377. "cell_type": "code",
  378. "execution_count": 13,
  379. "metadata": {},
  380. "outputs": [
  381. {
  382. "name": "stdout",
  383. "output_type": "stream",
  384. "text": [
  385. "\n",
  386. "-0.8203 -0.0328 1.8283\n",
  387. "-0.1734 -0.1873 0.9818\n",
  388. "-1.8368 -2.2450 -0.4410\n",
  389. "-0.8005 -2.1132 0.7140\n",
  390. "[torch.FloatTensor of size 4x3]\n",
  391. "\n"
  392. ]
  393. }
  394. ],
  395. "source": [
  396. "x = torch.randn(4, 3)\n",
  397. "print(x)"
  398. ]
  399. },
  400. {
  401. "cell_type": "code",
  402. "execution_count": 14,
  403. "metadata": {
  404. "collapsed": true
  405. },
  406. "outputs": [],
  407. "source": [
  408. "# 沿着行取最大值\n",
  409. "max_value, max_idx = torch.max(x, dim=1)"
  410. ]
  411. },
  412. {
  413. "cell_type": "code",
  414. "execution_count": 15,
  415. "metadata": {},
  416. "outputs": [
  417. {
  418. "data": {
  419. "text/plain": [
  420. "\n",
  421. " 1.8283\n",
  422. " 0.9818\n",
  423. "-0.4410\n",
  424. " 0.7140\n",
  425. "[torch.FloatTensor of size 4]"
  426. ]
  427. },
  428. "execution_count": 15,
  429. "metadata": {},
  430. "output_type": "execute_result"
  431. }
  432. ],
  433. "source": [
  434. "# 每一行的最大值\n",
  435. "max_value"
  436. ]
  437. },
  438. {
  439. "cell_type": "code",
  440. "execution_count": 16,
  441. "metadata": {},
  442. "outputs": [
  443. {
  444. "data": {
  445. "text/plain": [
  446. "\n",
  447. " 2\n",
  448. " 2\n",
  449. " 2\n",
  450. " 2\n",
  451. "[torch.LongTensor of size 4]"
  452. ]
  453. },
  454. "execution_count": 16,
  455. "metadata": {},
  456. "output_type": "execute_result"
  457. }
  458. ],
  459. "source": [
  460. "# 每一行最大值的下标\n",
  461. "max_idx"
  462. ]
  463. },
  464. {
  465. "cell_type": "code",
  466. "execution_count": 17,
  467. "metadata": {},
  468. "outputs": [
  469. {
  470. "name": "stdout",
  471. "output_type": "stream",
  472. "text": [
  473. "\n",
  474. " 0.9751\n",
  475. " 0.6212\n",
  476. "-4.5228\n",
  477. "-2.1997\n",
  478. "[torch.FloatTensor of size 4]\n",
  479. "\n"
  480. ]
  481. }
  482. ],
  483. "source": [
  484. "# 沿着行对 x 求和\n",
  485. "sum_x = torch.sum(x, dim=1)\n",
  486. "print(sum_x)"
  487. ]
  488. },
  489. {
  490. "cell_type": "code",
  491. "execution_count": 18,
  492. "metadata": {},
  493. "outputs": [
  494. {
  495. "name": "stdout",
  496. "output_type": "stream",
  497. "text": [
  498. "torch.Size([4, 3])\n",
  499. "torch.Size([1, 4, 3])\n"
  500. ]
  501. }
  502. ],
  503. "source": [
  504. "# 增加维度或者减少维度\n",
  505. "print(x.shape)\n",
  506. "x = x.unsqueeze(0) # 在第一维增加\n",
  507. "print(x.shape)"
  508. ]
  509. },
  510. {
  511. "cell_type": "code",
  512. "execution_count": 19,
  513. "metadata": {},
  514. "outputs": [
  515. {
  516. "name": "stdout",
  517. "output_type": "stream",
  518. "text": [
  519. "torch.Size([1, 1, 4, 3])\n"
  520. ]
  521. }
  522. ],
  523. "source": [
  524. "x = x.unsqueeze(1) # 在第二维增加\n",
  525. "print(x.shape)"
  526. ]
  527. },
  528. {
  529. "cell_type": "code",
  530. "execution_count": 20,
  531. "metadata": {},
  532. "outputs": [
  533. {
  534. "name": "stdout",
  535. "output_type": "stream",
  536. "text": [
  537. "torch.Size([1, 4, 3])\n"
  538. ]
  539. }
  540. ],
  541. "source": [
  542. "x = x.squeeze(0) # 减少第一维\n",
  543. "print(x.shape)"
  544. ]
  545. },
  546. {
  547. "cell_type": "code",
  548. "execution_count": 21,
  549. "metadata": {},
  550. "outputs": [
  551. {
  552. "name": "stdout",
  553. "output_type": "stream",
  554. "text": [
  555. "torch.Size([4, 3])\n"
  556. ]
  557. }
  558. ],
  559. "source": [
  560. "x = x.squeeze() # 将 tensor 中所有的一维全部都去掉\n",
  561. "print(x.shape)"
  562. ]
  563. },
  564. {
  565. "cell_type": "code",
  566. "execution_count": 22,
  567. "metadata": {},
  568. "outputs": [
  569. {
  570. "name": "stdout",
  571. "output_type": "stream",
  572. "text": [
  573. "torch.Size([3, 4, 5])\n",
  574. "torch.Size([4, 3, 5])\n",
  575. "torch.Size([5, 3, 4])\n"
  576. ]
  577. }
  578. ],
  579. "source": [
  580. "x = torch.randn(3, 4, 5)\n",
  581. "print(x.shape)\n",
  582. "\n",
  583. "# 使用permute和transpose进行维度交换\n",
  584. "x = x.permute(1, 0, 2) # permute 可以重新排列 tensor 的维度\n",
  585. "print(x.shape)\n",
  586. "\n",
  587. "x = x.transpose(0, 2) # transpose 交换 tensor 中的两个维度\n",
  588. "print(x.shape)"
  589. ]
  590. },
  591. {
  592. "cell_type": "code",
  593. "execution_count": 23,
  594. "metadata": {},
  595. "outputs": [
  596. {
  597. "name": "stdout",
  598. "output_type": "stream",
  599. "text": [
  600. "torch.Size([3, 4, 5])\n",
  601. "torch.Size([12, 5])\n",
  602. "torch.Size([3, 20])\n"
  603. ]
  604. }
  605. ],
  606. "source": [
  607. "# 使用 view 对 tensor 进行 reshape\n",
  608. "x = torch.randn(3, 4, 5)\n",
  609. "print(x.shape)\n",
  610. "\n",
  611. "x = x.view(-1, 5) # -1 表示任意的大小,5 表示第二维变成 5\n",
  612. "print(x.shape)\n",
  613. "\n",
  614. "x = x.view(3, 20) # 重新 reshape 成 (3, 20) 的大小\n",
  615. "print(x.shape)"
  616. ]
  617. },
  618. {
  619. "cell_type": "code",
  620. "execution_count": 24,
  621. "metadata": {
  622. "collapsed": true
  623. },
  624. "outputs": [],
  625. "source": [
  626. "x = torch.randn(3, 4)\n",
  627. "y = torch.randn(3, 4)\n",
  628. "\n",
  629. "# 两个 tensor 求和\n",
  630. "z = x + y\n",
  631. "# z = torch.add(x, y)"
  632. ]
  633. },
  634. {
  635. "cell_type": "markdown",
  636. "metadata": {},
  637. "source": [
  638. "另外,pytorch中大多数的操作都支持 inplace 操作,也就是可以直接对 tensor 进行操作而不需要另外开辟内存空间,方式非常简单,一般都是在操作的符号后面加`_`,比如"
  639. ]
  640. },
  641. {
  642. "cell_type": "code",
  643. "execution_count": 25,
  644. "metadata": {},
  645. "outputs": [
  646. {
  647. "name": "stdout",
  648. "output_type": "stream",
  649. "text": [
  650. "torch.Size([3, 3])\n",
  651. "torch.Size([1, 3, 3])\n",
  652. "torch.Size([3, 1, 3])\n"
  653. ]
  654. }
  655. ],
  656. "source": [
  657. "x = torch.ones(3, 3)\n",
  658. "print(x.shape)\n",
  659. "\n",
  660. "# unsqueeze 进行 inplace\n",
  661. "x.unsqueeze_(0)\n",
  662. "print(x.shape)\n",
  663. "\n",
  664. "# transpose 进行 inplace\n",
  665. "x.transpose_(1, 0)\n",
  666. "print(x.shape)"
  667. ]
  668. },
  669. {
  670. "cell_type": "code",
  671. "execution_count": null,
  672. "metadata": {
  673. "collapsed": true
  674. },
  675. "outputs": [],
  676. "source": [
  677. "x = torch.ones(3, 3)\n",
  678. "y = torch.ones(3, 3)\n",
  679. "print(x)\n",
  680. "\n",
  681. "# add 进行 inplace\n",
  682. "x.add_(y)\n",
  683. "print(x)"
  684. ]
  685. },
  686. {
  687. "cell_type": "markdown",
  688. "metadata": {},
  689. "source": [
  690. "**小练习**\n",
  691. "\n",
  692. "访问[文档](http://pytorch.org/docs/0.3.0/tensors.html)了解 tensor 更多的 api,实现下面的要求\n",
  693. "\n",
  694. "创建一个 float32、4 x 4 的全为1的矩阵,将矩阵正中间 2 x 2 的矩阵,全部修改成2\n",
  695. "\n",
  696. "参考输出\n",
  697. "$$\n",
  698. "\\left[\n",
  699. "\\begin{matrix}\n",
  700. "1 & 1 & 1 & 1 \\\\\n",
  701. "1 & 2 & 2 & 1 \\\\\n",
  702. "1 & 2 & 2 & 1 \\\\\n",
  703. "1 & 1 & 1 & 1\n",
  704. "\\end{matrix}\n",
  705. "\\right] \\\\\n",
  706. "[torch.FloatTensor\\ of\\ size\\ 4x4]\n",
  707. "$$"
  708. ]
  709. },
  710. {
  711. "cell_type": "code",
  712. "execution_count": 10,
  713. "metadata": {},
  714. "outputs": [
  715. {
  716. "name": "stdout",
  717. "output_type": "stream",
  718. "text": [
  719. "\n",
  720. " 1 1 1 1\n",
  721. " 1 2 2 1\n",
  722. " 1 2 2 1\n",
  723. " 1 1 1 1\n",
  724. "[torch.FloatTensor of size 4x4]\n",
  725. "\n"
  726. ]
  727. }
  728. ],
  729. "source": [
  730. "# 答案\n",
  731. "x = torch.ones(4, 4).float()\n",
  732. "x[1:3, 1:3] = 2\n",
  733. "print(x)"
  734. ]
  735. },
  736. {
  737. "cell_type": "markdown",
  738. "metadata": {},
  739. "source": [
  740. "## Variable\n",
  741. "tensor 是 PyTorch 中的完美组件,但是构建神经网络还远远不够,我们需要能够构建计算图的 tensor,这就是 Variable。Variable 是对 tensor 的封装,操作和 tensor 是一样的,但是每个 Variabel都有三个属性,Variable 中的 tensor本身`.data`,对应 tensor 的梯度`.grad`以及这个 Variable 是通过什么方式得到的`.grad_fn`"
  742. ]
  743. },
  744. {
  745. "cell_type": "code",
  746. "execution_count": 4,
  747. "metadata": {},
  748. "outputs": [],
  749. "source": [
  750. "# 通过下面这种方式导入 Variable\n",
  751. "from torch.autograd import Variable"
  752. ]
  753. },
  754. {
  755. "cell_type": "code",
  756. "execution_count": 28,
  757. "metadata": {},
  758. "outputs": [],
  759. "source": [
  760. "x_tensor = torch.randn(10, 5)\n",
  761. "y_tensor = torch.randn(10, 5)\n",
  762. "\n",
  763. "# 将 tensor 变成 Variable\n",
  764. "x = Variable(x_tensor, requires_grad=True) # 默认 Variable 是不需要求梯度的,所以我们用这个方式申明需要对其进行求梯度\n",
  765. "y = Variable(y_tensor, requires_grad=True)"
  766. ]
  767. },
  768. {
  769. "cell_type": "code",
  770. "execution_count": 29,
  771. "metadata": {
  772. "collapsed": true
  773. },
  774. "outputs": [],
  775. "source": [
  776. "z = torch.sum(x + y)"
  777. ]
  778. },
  779. {
  780. "cell_type": "code",
  781. "execution_count": 30,
  782. "metadata": {},
  783. "outputs": [
  784. {
  785. "name": "stdout",
  786. "output_type": "stream",
  787. "text": [
  788. "\n",
  789. "-2.1379\n",
  790. "[torch.FloatTensor of size 1]\n",
  791. "\n",
  792. "<SumBackward0 object at 0x10da636a0>\n"
  793. ]
  794. }
  795. ],
  796. "source": [
  797. "print(z.data)\n",
  798. "print(z.grad_fn)"
  799. ]
  800. },
  801. {
  802. "cell_type": "markdown",
  803. "metadata": {},
  804. "source": [
  805. "上面我们打出了 z 中的 tensor 数值,同时通过`grad_fn`知道了其是通过 Sum 这种方式得到的"
  806. ]
  807. },
  808. {
  809. "cell_type": "code",
  810. "execution_count": 31,
  811. "metadata": {},
  812. "outputs": [
  813. {
  814. "name": "stdout",
  815. "output_type": "stream",
  816. "text": [
  817. "Variable containing:\n",
  818. " 1 1 1 1 1\n",
  819. " 1 1 1 1 1\n",
  820. " 1 1 1 1 1\n",
  821. " 1 1 1 1 1\n",
  822. " 1 1 1 1 1\n",
  823. " 1 1 1 1 1\n",
  824. " 1 1 1 1 1\n",
  825. " 1 1 1 1 1\n",
  826. " 1 1 1 1 1\n",
  827. " 1 1 1 1 1\n",
  828. "[torch.FloatTensor of size 10x5]\n",
  829. "\n",
  830. "Variable containing:\n",
  831. " 1 1 1 1 1\n",
  832. " 1 1 1 1 1\n",
  833. " 1 1 1 1 1\n",
  834. " 1 1 1 1 1\n",
  835. " 1 1 1 1 1\n",
  836. " 1 1 1 1 1\n",
  837. " 1 1 1 1 1\n",
  838. " 1 1 1 1 1\n",
  839. " 1 1 1 1 1\n",
  840. " 1 1 1 1 1\n",
  841. "[torch.FloatTensor of size 10x5]\n",
  842. "\n"
  843. ]
  844. }
  845. ],
  846. "source": [
  847. "# 求 x 和 y 的梯度\n",
  848. "z.backward()\n",
  849. "\n",
  850. "print(x.grad)\n",
  851. "print(y.grad)"
  852. ]
  853. },
  854. {
  855. "cell_type": "markdown",
  856. "metadata": {},
  857. "source": [
  858. "通过`.grad`我们得到了 x 和 y 的梯度,这里我们使用了 PyTorch 提供的自动求导机制,非常方便,下一小节会具体讲自动求导。"
  859. ]
  860. },
  861. {
  862. "cell_type": "markdown",
  863. "metadata": {},
  864. "source": [
  865. "**小练习**\n",
  866. "\n",
  867. "尝试构建一个函数 $y = x^2 $,然后求 x=2 的导数。\n",
  868. "\n",
  869. "参考输出:4"
  870. ]
  871. },
  872. {
  873. "cell_type": "markdown",
  874. "metadata": {},
  875. "source": [
  876. "提示:\n",
  877. "\n",
  878. "$y = x^2$的图像如下"
  879. ]
  880. },
  881. {
  882. "cell_type": "code",
  883. "execution_count": 2,
  884. "metadata": {},
  885. "outputs": [
  886. {
  887. "data": {
  888. "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAD8CAYAAABXe05zAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzt3Xd4VFX+x/H3mcmkQwJJCIQkhBBaRHpHFAW76FpQwIZbWLuuW3TVVXddXcvaXQvWVSn2riguKIi0AJGWACEhDUghhCSkkMyc3x+J/hQpQ8jk3DvzfT1PniWzw8znMvjh5txzz1Faa4QQQtiHw3QAIYQQR0eKWwghbEaKWwghbEaKWwghbEaKWwghbEaKWwghbEaKWwghbEaKWwghbEaKWwghbCbIFy8aGxurU1JSfPHSQgjhl1avXl2utY7z5rk+Ke6UlBQyMjJ88dJCCOGXlFL53j5XhkqEEMJmpLiFEMJmpLiFEMJmpLiFEMJmpLiFEMJmpLiFEMJmpLiFEMJmLFPc9Y1uXlicy3fbyk1HEUKIo7You5RXluaxv8nj8/eyTHEHORQvLMnlpSV5pqMIIcRRe/abbfz3u+24nMrn72Wd4nY6uGhYIos2l7Jrb73pOEII4bXcshpW5lVw8YgklAqg4ga4eHgSHg3vrC40HUUIIbz2ZkYhTofioqGJ7fJ+lirulNgIxqTG8GZGIR6PNh1HCCGOqNHt4d3VRZzSrwtdOoa2y3taqrgBpo5MorCijmW5u01HEUKII/pfVinlNfuZOiKp3d7TcsV9+nFdiQpzMXdlgekoQghxRPNWFdC1Yygn9fFqRdY2YbniDnU5OX9Id77cWELFvv2m4wghxCHtqKzjmy1lTBmeSJCz/erUcsUNcMmIJPa7Pby/tth0FCGEOKS3M4rQunliRXuyZHH379aRQUnRvLmqAK3lIqUQwnrcHs1bGYWckBZLUufwdn1vSxY3wNQRSWwpqWFtYaXpKEII8QtLc8oprqzjkna8KPkDyxb35EEJhAc7mScXKYUQFjRvVQGdwl2cdlx8u7+3ZYs7MiSIyQMT+Pj7nVTXN5qOI4QQPyqvaWDBphIuGJpISJCz3d/fssUNcMnIJOoa3Xz8/U7TUYQQ4kfvrymm0a2NDJOAxYt7SFI0feM7MG+VDJcIIaxBa83clQUMTY6mT3wHIxksXdxKKaaPSmZd0V7WFclFSiGEectyd5Nbvo9LR/UwlsHSxQ1w/tDuhLmczFkhZ91CCPNmryggKszF2QO7Gctg+eLuGOri3EEJfJi5gyq5SCmEMKisuoEvNuziomGJhLra/6LkDyxf3ACXjk6mrtHNh3InpRDCoLdXF9Lk0UwflWw0hy2Ke2BiNAO6d2T2CrmTUghhhsejmbOigNGpnekVF2k0i1fFrZT6g1Jqo1Jqg1JqrlKqfRad/YlLR/Uge1c1awr2tPdbCyEEi7eWUbSnzuhFyR8csbiVUt2BG4HhWusBgBOY6utgBzp3UAKRIUHMXi4XKYUQ7W/2igJiIoI5/biupqN4PVQSBIQppYKAcGCH7yIdXERIEOcP6c4n63dSWSvLvQoh2s/OvXUszC7l4hFJBAeZH2E+YgKtdTHwb6AA2Ans1Vp/eeDzlFIzlVIZSqmMsrKytk8KTB+VzP4mD++sLvLJ6wshxMG8uaoQt0czbYTZi5I/8GaopBNwHtATSAAilFKXHfg8rfUsrfVwrfXwuDjf7ATRv1tHhiZHM0cuUgoh2kmT28O8lYWc2CeO5Jj2Xb71ULw5558E5Gmty7TWjcB7wFjfxjq0S0f1ILd8n+xJKYRoFwuzS9lVVc+lhqcA/pQ3xV0AjFZKhSulFDARyPJtrEM7e2A3osJccpFSCNEuZq8oIL5jCBP7dTEd5UfejHGvAN4B1gDrW37PLB/nOqRQl5MpwxL5YuMuSqrqTcUQQgSA7eX7+GZLGdNGJrfrnpJH4lUSrfXdWut+WusBWuvLtdYNvg52OJeN7oFba1m/RAjhU68vzyfIoZg+0jrDJGCTOycPlBIbwUl94pizsoD9TR7TcYQQfqh2fxNvZxRyxoCudOnY7vccHpYtixvgijE9mhd82bjLdBQhhB9qXtiuiSvGpJiO8gu2Le6T+nQhuXM4ry/LNx1FCOFntNa8tiyffl07MCKlk+k4v2Db4nY6FJeNTmbl9gqydlaZjiOE8COr8/eQtbOKK8ak0DyZzlpsW9wAFw9PIiTIwWty1i2EaEP/XZZPh9AgfjUkwXSUg7J1cUeHB3Pe4AQ+WFvM3jrZZEEIcexKq+r5fP1OpgxLIjw4yHScg7J1cQNcMSaFuka3rF8ihGgTc1c2b5Zw+Rjzy7ceiu2Le0D3KIYmR/PG8nw8Hlm/RAjReo1uD3NW5nNinzh6xkaYjnNIti9ugCvHppBXvo8lOeWmowghbOzLjSWUVDVwpYXPtsFPivuMAV2JjQzmte+2m44ihLCx15ZtJ7FTGBP6WmddkoPxi+IOCXIyfWQyCzeXsr18n+k4Qggb2rhjLyvyKrhiTA+cDutNAfwpvyhuaF6/JMiheFXOuoUQrfDK0u2EBzu5ZLi11iU5GL8p7i4dQzlnYAJvZxRSVS9TA4UQ3iurbuCjzB1cODSRqHCX6ThH5DfFDfDrcT3Zt9/N2xkyNVAI4b05KwrY7/YwY1yK6She8aviPj4xihEpnXj1uzzcMjVQCOGFhiY3ry/P5+S+cfSKizQdxyt+VdwAV43rSWFFHV9llZiOIoSwgU++30l5TQNXjetpOorX/K64T0uPp3t0GK8szTMdRQhhcVprXl6aR1qXSMb3jjUdx2t+V9xBTgdXjOnB8twKNu7YazqOEMLCVm3fw8YdVVw1zpqrAB6K3xU3wNQRyYS5nLy6dLvpKEIIC3tlaR5RYS4uGJJoOspR8cvijgp3cdGwRD7M3EF5jdHtMYUQFlVYUcsXG3cxfVQyYcFO03GOil8WN8CMcSnsd3uYvVw2FBZC/NJry7ajlOLy0dZel+Rg/La4e8VFMqFvHK8vz6e+0W06jhDCQmoampi3qnkj4IToMNNxjprfFjfA78anUl7TwIeZxaajCCEsZN7KAqrrm5g5PtV0lFbx6+Ie2yuG9G4deWFJnqzVLYQAoMnt4ZWl2xnZszODkqJNx2kVvy5upRQzT0wlp7SGb7aUmY4jhLCAzzbsoriyzrZn2+DnxQ1w9sBudIsKZdbiXNNRhBCGaa2ZtXgbqXERnNLP2mtuH47fF7fL6eDX43qyLHc364vkhhwhAtny3Ao2FFfxu/GpOCy+5vbh+H1xA0wdmUSHkCBeWCJn3UIEsheW5BIbGcz5Q7qbjnJMAqK4O4S6mDYqmU/X76RoT63pOEIIA7aWVLMwu5QrxqQQ6rLXDTcHCojiBpgxNgVF8y4XQojA8+KSPEJdDi6z4Q03BwqY4k6IDmPyoATmrSxgb53skCNEICmtruf9tcVMGZZE54hg03GOWcAUN8BvxzfvkDN3pdwGL0Qgee27fBo9Hn5zgn3W3D6cgCru4xKiGJcWwytL82hoktvghQgE+xqaeGNFPqelx5MSG2E6TpsIqOIGuPqkXpRUNfDBWrkNXohAMHdlAZW1jfz+pF6mo7QZr4pbKRWtlHpHKZWtlMpSSo3xdTBfOSEtlgHdO/LcN7myL6UQfq6hyc2LS/IYndqZocmdTMdpM96ecT8BzNda9wMGAVm+i+RbSimunZBGXvk+5m/YZTqOEMKHPlhbzK6qeq6dkGY6Sps6YnErpaKAE4GXALTW+7XWlb4O5kunH9eV1NgInv0mB63lrFsIf+T2aJ7/JpcB3Tvaaj9Jb3hzxt0TKANeUUqtVUq9qJSy9Qi/06H4/UmpbCiuYsnWctNxhBA+8MXGXeSW7+Oak9JstZ+kN7wp7iBgKPCs1noIsA+47cAnKaVmKqUylFIZZWXWX4nv/CGJdO0YyjNf55iOIoRoY1prnvk6h9TYCM4Y0NV0nDbnTXEXAUVa6xUt379Dc5H/jNZ6ltZ6uNZ6eFxcXFtm9IngIAe/Hd+T5bkVrCnYYzqOEKINfZtTzobiKn5/UipOGy8mdShHLG6t9S6gUCnVt+WhicAmn6ZqJ9NGJhMd7uLZr7eZjiKEaEPPLNpGfMcQfmXzxaQOxdtZJTcAs5VS64DBwP2+i9R+IkKCuHJMCgs2lbClpNp0HCFEG1hbsIdlubv53fhUQoLsvZjUoXhV3FrrzJZhkIFa619prf1mbGHG2BTCXE6ek7NuIfzCM19vIyrMxbSRyaaj+EzA3Tl5oE4RwUwbmcyH3++gYLcs+SqEnW3eVc2CTSVcOTaFiJAg03F8JuCLG/jxAsaz38gMEyHs7KmFW4kIdvLrcSmmo/iUFDcQ3zGUqSOSeGd1kWy0IIRN5ZRW8+n6nVw5NoXocPsv3Xo4Utwtrm5ZgOa5b2SsWwg7enphDmEuJ7+18e7t3pLibpEQHcZFw5J4a1URu/bWm44jhDgKeeX7+Oj7HVw2uodfbJRwJFLcP3HthF54tJazbiFs5j+LcnA5HfwuAM62QYr7Z5I6h3PB0O7MXVlAaZWcdQthBwW7a3l/bTGXjupBXIcQ03HahRT3Aa47OY0mj2bW4lzTUYQQXnjm65wfF44LFFLcB+gRE8F5gxN4Y0U+5TUNpuMIIQ6jaE8t76wuYtqIJOI7hpqO026kuA/iupPTaGjy8MISOesWwsqe/XobSuFX25J5Q4r7IHrFRTJ5YAKvL8tnt5x1C2FJOyrreDujiCnDk0iIDjMdp11JcR/CjRPTqG9087yMdQthSU8tzEGjuXZCYJ1tgxT3IaV16cCvBnfntWXbKa2WGSZCWEnB7lrezihk2shkEjuFm47T7qS4D+PGib1pdGueWSTzuoWwkicXbsXpUFx3sn9tAuwtKe7DSImN4KKhicxZUcCOyjrTcYQQwLayGt5bU8Rlo3sE1EySn5LiPoIbJqah0Ty9SFYOFMIKnvhqKyFBTq4JwLHtH0hxH0Fip3CmjkjmrVWFsl63EIZt3lXNx+t2MGNcCrGRgXGX5MFIcXvhupPTcDgUTy7cajqKEAHtsQVbiAgOYmaArElyKFLcXugaFcrlo3vw3poicstqTMcRIiBtKN7L/I27+M0JPekUACsAHo4Ut5eumdCLkCAnj38lZ91CmPDogi1Ehbn4zfiepqMYJ8XtpdjIEGaMS+HjdTvI2lllOo4QAWV1/h4WZpcy88RUOoa6TMcxTor7KPz+xFQ6hATx8BebTUcRImBorXnw82xiI0O4ys/3kvSWFPdRiA4P5poJaSzMLmVF7m7TcYQICIs2l7JyewU3TepNeLD/7tx+NKS4j9KMsSnEdwzhgfnZaK1NxxHCr7k9mgc/30xKTDhTRySZjmMZUtxHKSzYyR8m9WFtQSVfbioxHUcIv/bB2mI2l1Tzp9P74nJKXf1A/iRa4aJhifSKi+Ch+dk0uT2m4wjhl+ob3Ty6YAvHd4/irAHdTMexFCnuVghyOvjz6f3YVraPd9cUmY4jhF96Y3k+xZV13HZmPxwOZTqOpUhxt9Lpx8UzJDmaxxZspb7RbTqOEH6lqr6RpxflML53LOPSYk3HsRwp7lZSSnHrGf3YVVXPq99tNx1HCL8y65tcKmsbufWMfqajWJIU9zEYnRrDyX3jeGZRDpW1+03HEcIvlFbV89K3eUwelMCA7lGm41iSFPcxuvXMftQ0NPHk/2TZVyHawr+/3EyTx8OfTutjOoplSXEfo35dO3Lx8CReW7ZdFqAS4hht3LGXt1cXceWYFHrERJiOY1lS3G3gltP6EBLk4IHPs01HEcK2tNbc92kW0WEubpjY23QcS5PibgNdOoRy7clpfLmphGXb5FZ4IVrjf1mlfLdtNzdP6kNUmCwkdThS3G3kNyf0JCEqlH9+ugmPR26FF+JoNLo93P9ZFqlxEUwflWw6juV5XdxKKadSaq1S6hNfBrKrUJeTW8/sx8YdVby3tth0HCFsZfbyfHLL93HHWf3l1nYvHM2f0E1Alq+C+INzByUwOCmah7/IpnZ/k+k4Qljb7NmQkoJ2ODjt7NH8uTyDU/p1MZ3KFrwqbqVUInA28KJv49ibUoq/ndOfkqoGZi3ONR1HCOuaPRtmzoT8fJTWJOwt5Zo5D6LmzDGdzBa8PeN+HPgLICsqHcGwHp05e2A3nv8ml51760zHEcKa7rgDamt/9pCjrq75cXFERyxupdQ5QKnWevURnjdTKZWhlMooKytrs4B2dNsZ/fBozb8+k+mBQhxUQcHRPS5+xpsz7nHAuUqp7cA84BSl1BsHPklrPUtrPVxrPTwuLq6NY9pLUudwfn9SLz76fgfLZaccIX4p+RAzRw71uPiZIxa31vqvWutErXUKMBVYqLW+zOfJbO6ak3rRPTqMez7aKGt2C3GA/f+4l3pXyM8fDA+H++4zE8hmZN6Nj4QFO/nbOelk76rmjeX5puMIYSmzEkfzl9Ovpz4hEZSCHj1g1iy49FLT0WzhqIpba/211vocX4XxN6cfF8/43rE8smAL5TUNpuMIYQnFlXU8vSiHxkumEVpcCB4PbN8upX0U5Izbh5RS3D35OOr2u3l4/mbTcYSwhPs/bb4d5I6z+xtOYl9S3D6W1iWS35zQkzczCsksrDQdRwijluaU8+n6nVw3IY3ETuGm49iWFHc7uGFib7p0COHuDzfIOiYiYDW6Pdz90UaSO4fzuxNTTcexNSnudhAZEsTtZ/Xn+6K9zFtVaDqOEEa8sjSPnNIa7jonnVCX03QcW5PibifnDU5gdGpnHvg8i7JquVApAkvRnloeW7CVSf27MLG/rEdyrKS424lSivvOP576Rg///HST6ThCtButNXd9uBGl4O/nDUApZTqS7Ulxt6NecZFcM6EXH2buYPGWwF4WQASO+Rt2sTC7lFtO7UP36DDTcfyCFHc7u2ZCL1JjI7jzgw3UN7pNxxHCp6rrG7nn442kd+vIjLEppuP4DSnudhbqcvLP8wdQUFHL0wtlZ3jh3x75cgul1Q3864LjCZINEtqM/EkaMLZXLBcM7c7zi7expaTadBwhfOL7wkr+u2w7V4zuwaCkaNNx/IoUtyF3nNWfiJAg7nh/vcztFn6nye3hr++tp0uHEP54el/TcfyOFLchMZEh3H5Wf1Zt38PcVbIGsfAvLy/NY9POKu6ZfBwdQ2XH9rYmxW3QlGGJjO0Vw78+y6a4UnbLEf4ht6yGR77cwqT+8ZwxoKvpOH5JitsgpRQPXDAQt0fz1/fWo7UMmQh7c3s0f3lnHSFBDu4/X+Zs+4oUt2HJMeHcekZfFm8p453VRabjCHFMXlu2nYz8Pdw1+Ti6dAw1HcdvSXFbwBVjUhiZ0pl7P9lESVW96ThCtEr+7n08NH8zE/rGceHQ7qbj+DUpbgtwOBQPXjSQhiYPd7wvQybCfjweza3vriPIofjXBcfLEImPSXFbRM/YCP58el++yirlw8wdpuMIcVRmryxgeW4Fd5zdn25Rclu7r0lxW8hV43oyNDmaez7eSGm1DJkIeyjaU8sDn2Uxvncsl4xIMh0nIEhxW4jToXjookHU7ndzu8wyETbg8Wj+/PY6ABkiaUdS3BaT1iWSv7QMmcimC8LqXvo2j2W5u7lrcrpsRdaOpLgt6NfjejIuLYZ7P9nE9vJ9puMIcVBZO6t4+IvNnJYez8XDZYikPUlxW5DDofj3lEEEORQ3v5lJk9tjOpIQP1Pf6OYPb2bSMcwlQyQGSHFbVLeoMO47/3gyCyv5z6JtpuMI8TOPfLmZ7F3VPHzRQGIiQ0zHCThS3BY2eVACvxqcwJMLt7K2YI/pOEIA8F1OOS8syeOy0cmc3E/2jzRBitvi/n7eAOI7hHDLW99Tu7/JdBwR4PbWNvLHt78nNTaCO85KNx0nYElxW1xUmItHLh7M9t37+MfHssmwMEdrze0frKesuoHHLhlMWLDTdKSAJcVtA2N6xXDNSb2Yt6qQDzOLTccRAWrOygI+XbeTW07rIzvaGCbFbRO3nNqH4T06cft768ktqzEdRwSYTTuq+PvHmzixTxxXn9jLdJyAJ8VtE0FOB09OG4IryMF1c9bKDvGi3dQ0NHH9nDVEh7l49OJBOBwy9c80KW4bSYgO49GLB5G1s4p/firj3cL3tNbc+f56tu/ex5PThhArU/8sQYrbZk7pF8/ME1N5Y3nzeKMQvvR2RhEfZO7g5kl9GJ0aYzqOaCHFbUN/Pr0vg5Oiue3ddeTvllvihW9sKanmro82MLZXDNednGY6jvgJKW4bcjkdPD19CErBNW+soW6/jHeLtlVd38jVb6wmMiSIx6cOxinj2pYixW1TiZ3CeXzqYLJ2VfHX99bJErCizXg8mlve+p783bU8PX0oXTrI3pFWc8TiVkolKaUWKaU2KaU2KqVuao9g4shO6RfPLZP68EHmDl5Zut10HOEnnl6Uw4JNJdx5dn8Z17Yob864m4A/aq3TgdHAdUopudfVIq47OY3T0uO577Mslm3bbTqOsLn/ZZXw2FdbuGBId2aMTTEdRxzCEYtba71Ta72m5dfVQBYgWzhbhMOheOTiQaTEhHP9nDUUV9aZjiRsKreshpvnZZLerSP3y1KtlnZUY9xKqRRgCLDCF2FE63QIdTHriuE0NHm4+vXVcnOOOGo1DU38/vXVBDkVz18+jFCXrENiZV4Xt1IqEngXuFlrXXWQ/3+mUipDKZVRVlbWlhmFF3rFRfLYJYNZX7xX9qsUR8Xj0fzxrUy2ldXwn+lDZQsyG/CquJVSLppLe7bW+r2DPUdrPUtrPVxrPTwuLq4tMwovnZoezy2n9uG9tcU8vTDHdBxhEw/Oz+aLjSXceXY6Y9NiTccRXgg60hNU80DXS0CW1vpR30cSx+KGU9LYXr6PRxZsITkmnPMGy+UIcWhzVxbw/OJcLh/dg6vGpZiOI7zkzRn3OOBy4BSlVGbL11k+ziVaSSnFvy48npE9O/Pnd9axOr/CdCRhUUu2lnHnBxuY0DeOuyeny8VIG/FmVsm3WmultR6otR7c8vVZe4QTrRMS5OT5y4bRPTqM3722Wm6LF7+wpaSaa99YQ+8ukTw1bQhBTrkXz07k0/JTnSKCeXnGCDxac9Wrq9hb22g6krCIsuoGrnplFaHBTl6aMYIOoS7TkcRRkuL2Yz1jI3j+smEUVtQy8/UMmSYo2NfQxG9fy2D3vgZeunI43aPDTEcSrSDF7edGpcbw7ymDWJFXwY1z19Lk9piOJAxpaHJz9Rur2VC8l6emDWVgomw/ZldS3AHgvMHduWdyOl9uKuGvMsc7ILk9mlve/J4lW8t58MKBnJoebzqSOAZHnA4o/MOMcT3ZU9vIE//bSnS4i9vP6i+zCAKE1po7P9jAp+t3cufZ/bloWKLpSOIYSXEHkJsn9aaydj8vLMmjU0Qw106QxfEDwcNfbGbuygKuO7kXvx2fajqOaANS3AFEKcXdk4+jsq6Rh+ZvJjosmOmjkk3HEj70wuJcnvl6G9NHJfOn0/qajiPaiBR3gHE4FP+eMojq+ibu+GA9QQ7FxSOSTMcSPvDyt3nc91kWZw/sxr3nDZChMT8iFycDkMvp4JlLh3Ji7zj+8u463lxVYDqSaGMvfZvHPz7ZxJkDuvL4JbL1mL+R4g5QoS4nz18+jAl947j13fXMWynl7S9eXJLLvZ9s4qzju/LktCG45K5IvyOfaAALdTl57rJhnNw3jtveW8+cFVLedvfiklz++WkWZx/fjSemSmn7K/lUA1yoy8lzlzeX9+3vr2f2inzTkUQrvbD4/0v78amDpbT9mHyygpCg5vI+pV8X7nh/A898nSM36diI1pqHv8j+8ULkE1Lafk8+XQG0lPdlwzh3UAIPzd/MvZ9k4fFIeVtdk9vDbe+u5z+LtjFtZBJPTpWV/gKBTAcUPwoOcvD4JYOJiQzm5aV57N7XwMMXDSI4SIrAiuob3dwwdy0LNpVw4ylp/OHUPjLlL0BIcYufcTgUd52TTlyHEB6av5k9tY08e+lQIkLkr4qV7K1r5Hf/zWBVfgV/P/c4rhybYjqSaEdyKiV+QSnFtRPSeOjCgXy7tYzpLyyntKredCzRomhPLZc8v4y1hXt4atoQKe0AJMUtDuniEUnMunw4W0trOPfppawrqjQdKeCt2l7BeU8vpbiyjldmjOScgQmmIwkDpLjFYU1Kj+fda8bidCimPLeMDzOLTUcKWPNWFjD9heVEhbn44LpxnNBbdmQPVFLc4oj6d+vIR9ePY1BiNDfNy+ThL7Jlxkk7anJ7uOejjdz23npGp8bw/rXj6BUXaTqWMEiKW3glJjKEN347imkjk/jPom3MfH01e+tkH0tf213TwFWvruLV77bzmxN68sqMEUSFyx6RgU6KW3gtOMjB/ecfzz2T0/l6cylnPbGENQV7TMfyW99tK+fMJ5awIq+Chy4cyN/OSZc52gKQ4hZHSSnFjHE9efvqMSgFU55bxrNfb5OhkzbU5Pbw6IItXPriCiJDg3j/2rGy9K74GSlu0SpDkjvx6Y3jOeO4rjw4P5srX1lJWXWD6Vi2t3NvHdNfWMGT/9vKhUMT+fj6EzguIcp0LGExUtyi1aLCXDw9fQj3n388K/MqOPOJJczfsNN0LFvSWvNhZjFnPrGEDTv28tglg/j3lEFy45M4KClucUyUUkwflcxH159Alw4hXP3GGq6dvZrSarlhx1s7Kuv4zX8zuGleJikxEXxywwmcP0Q29BWHpnyxCtzw4cN1RkZGm7+usLZGt4dZi3N54n9bCXM5+ds56Vw4tLusn3EIHo9mzsoCHvg8G7dH86fT+zJjbIrsVhOglFKrtdbDvXquFLdoazmlNdz67jpW5+/hxD5x3DM5nVSZd/wzm3dVc9eHG1iRV8G4tBj+df5AkmPCTccSBklxC+M8Hs3ry/N5aH42DU0eLh/Tg5sm9iY6PNh0NKPKqht47KstzFtZQGRIEHec3Z+LhyfJTyVCiltYR1l1A48u2MKbqwroEOrixom9uXx0j4BbKra+0c3LS/N4ZtE26hvdXDa6+R+yThGB/Q+Z+H9S3MJysndVcd+nWSzZWk7P2AhuOCW449d3AAAHMklEQVSNyYMS/H6nloYmN++vKeaphTkUV9YxqX88fz2rn9yyLn5BiltYktaar7eU8eDn2WTvqiaxUxi/P6kXU4YlEupymo7Xpmr3NzF3ZSEvLM5lV1U9x3eP4rYz+zEuTRaGEgcnxS0sTWvNwuxSnl6Uw9qCSmIjQ/jt+J5MHZFk+zHw3TUNzFlRwMtL89hT28jo1M5cOyGN8b1jZRxbHJYUt7AFrTXLcyt45usclmwtJzjIwZkDunLJ8CRGp8bgsMm0OLdH821OOW+uKmDBphIa3ZqJ/bpw7cm9GNajs+l4wiaOprjltixhjFKKMb1iGNMrhk07qnhzVQHvry3mw8wdJHcO5+LhiUwelECPmAjTUQ9qW1kNH2Xu4J3VRRRX1tEp3MUVY1KYOiKJ3vEdTMcTfsyrM26l1BnAE4ATeFFr/cDhni9n3KK16hvdzN+wi3mrClieWwFA7y6RTOwfz6npXRic1MnYDSpNbg+r8/fwVVYJX2WVkle+D4DxvWO5ZEQSp6bHExLkX2P1ov206VCJUsoJbAFOBYqAVcA0rfWmQ/0eKW7RFgoralmwqYSvskpYmVdBk0cTExHMqNTODE6KZkhyJwYkRBEW7Juy3NfQxPrivawtqCSzcA8r8iqorG3E5VSMTo3h1PR4JvaPp3t0mE/eXwSWth4qGQnkaK1zW158HnAecMjiFqItJHUO59cn9OTXJ/Rkb10j32wpY2FWCasL9vDZ+l0AOB2Kfl070Ce+A0mdw0nqFEZS53CSO4fTOSKYkCDHIS8Kaq1paPJQXtNAYUUdhRW1FO6ppbCiluxd1WwpqeaH1Wp7xIRzSr8uTOofz/jesXQIlc0MhDneFHd3oPAn3xcBo3wTR4iDiwpzce6gBM4d1Lw5bnlNA5kFlWQWNn+tzKvgg8xiDvwB0qEgPDiIsGAn4cFOtIba/W7q9jdR1+jmwGXEHQq6RYWRGhfBaenxDEnuxKCkaDrLjTLCQtrs4qRSaiYwEyA5ObmtXlaIg4qNDGFSejyT0uN/fGx/k4cdlXUU7qmloKKWytpG6va7qd3vpnZ/E7X73SgF4cFOwlxBzf8b7KRzRDBJnZrP0rtFh/r9TUHC/rwp7mLgp9tvJLY89jNa61nALGge426TdEIcheAgBymxEaTEWnMWihBtxZtTi1VAb6VUT6VUMDAV+Mi3sYQQQhzKEc+4tdZNSqnrgS9ong74stZ6o8+TCSGEOCivxri11p8Bn/k4ixBCCC/IVRghhLAZKW4hhLAZKW4hhLAZKW4hhLAZKW4hhLAZn6zHrZQqA/Jb+dtjgfI2jGOSvxyLvxwHyLFYkb8cBxzbsfTQWsd580SfFPexUEpleLtCltX5y7H4y3GAHIsV+ctxQPsdiwyVCCGEzUhxCyGEzVixuGeZDtCG/OVY/OU4QI7FivzlOKCdjsVyY9xCCCEOz4pn3EIIIQ7DksWtlLpXKbVOKZWplPpSKZVgOlNrKKUeVkpltxzL+0qpaNOZWkspNUUptVEp5VFK2W4GgFLqDKXUZqVUjlLqNtN5joVS6mWlVKlSaoPpLMdCKZWklFqklNrU8nfrJtOZWkspFaqUWqmU+r7lWP7u0/ez4lCJUqqj1rqq5dc3Aula66sNxzpqSqnTgIUtS+M+CKC1vtVwrFZRSvUHPMDzwJ+01rbZDbo1G15bmVLqRKAGeE1rPcB0ntZSSnUDummt1yilOgCrgV/Z8XNRzRubRmita5RSLuBb4Cat9XJfvJ8lz7h/KO0WEYD1/nXxgtb6S611U8u3y2nePciWtNZZWuvNpnO00o8bXmut9wM/bHhtS1rrxUCF6RzHSmu9U2u9puXX1UAWzXvc2o5uVtPyravly2e9ZcniBlBK3aeUKgQuBe4ynacN/Br43HSIAHWwDa9tWRD+SimVAgwBVphN0npKKadSKhMoBRZorX12LMaKWyn1lVJqw0G+zgPQWt+htU4CZgPXm8p5JEc6jpbn3AE00XwsluXNsQjR1pRSkcC7wM0H/LRtK1prt9Z6MM0/WY9USvlsGKvNdnk/WlrrSV4+dTbNu+/c7cM4rXak41BKzQDOASZqK15Q+Imj+EzsxqsNr0X7axkPfheYrbV+z3SetqC1rlRKLQLOAHxyAdmSQyVKqd4/+fY8INtUlmOhlDoD+Atwrta61nSeACYbXltQywW9l4AsrfWjpvMcC6VU3A+zxpRSYTRfCPdZb1l1Vsm7QF+aZzHkA1drrW13hqSUygFCgN0tDy234+wYAKXU+cBTQBxQCWRqrU83m8p7SqmzgMf5/w2v7zMcqdWUUnOBCTSvRFcC3K21fsloqFZQSp0ALAHW0/zfOsDtLXvc2opSaiDwX5r/fjmAt7TW//DZ+1mxuIUQQhyaJYdKhBBCHJoUtxBC2IwUtxBC2IwUtxBC2IwUtxBC2IwUtxBC2IwUtxBC2IwUtxBC2Mz/AbHHGCe52T3ZAAAAAElFTkSuQmCC\n",
  889. "text/plain": [
  890. "<Figure size 432x288 with 1 Axes>"
  891. ]
  892. },
  893. "metadata": {
  894. "needs_background": "light"
  895. },
  896. "output_type": "display_data"
  897. }
  898. ],
  899. "source": [
  900. "import numpy as np\n",
  901. "import matplotlib.pyplot as plt\n",
  902. "\n",
  903. "x = np.arange(-3, 3.01, 0.1)\n",
  904. "y = x ** 2\n",
  905. "plt.plot(x, y)\n",
  906. "plt.plot(2, 4, 'ro')\n",
  907. "plt.show()"
  908. ]
  909. },
  910. {
  911. "cell_type": "code",
  912. "execution_count": 6,
  913. "metadata": {},
  914. "outputs": [
  915. {
  916. "name": "stdout",
  917. "output_type": "stream",
  918. "text": [
  919. "tensor([4.])\n"
  920. ]
  921. }
  922. ],
  923. "source": [
  924. "import torch\n",
  925. "from torch.autograd import Variable\n",
  926. "\n",
  927. "# 答案\n",
  928. "x = Variable(torch.FloatTensor([2]), requires_grad=True)\n",
  929. "y = x ** 2\n",
  930. "y.backward()\n",
  931. "print(x.grad)"
  932. ]
  933. },
  934. {
  935. "cell_type": "markdown",
  936. "metadata": {},
  937. "source": [
  938. "下一次课程我们将会从导数展开,了解 PyTorch 的自动求导机制"
  939. ]
  940. }
  941. ],
  942. "metadata": {
  943. "kernelspec": {
  944. "display_name": "Python 3",
  945. "language": "python",
  946. "name": "python3"
  947. },
  948. "language_info": {
  949. "codemirror_mode": {
  950. "name": "ipython",
  951. "version": 3
  952. },
  953. "file_extension": ".py",
  954. "mimetype": "text/x-python",
  955. "name": "python",
  956. "nbconvert_exporter": "python",
  957. "pygments_lexer": "ipython3",
  958. "version": "3.5.2"
  959. }
  960. },
  961. "nbformat": 4,
  962. "nbformat_minor": 2
  963. }

机器学习越来越多应用到飞行器、机器人等领域,其目的是利用计算机实现类似人类的智能,从而实现装备的智能化与无人化。本课程旨在引导学生掌握机器学习的基本知识、典型方法与技术,通过具体的应用案例激发学生对该学科的兴趣,鼓励学生能够从人工智能的角度来分析、解决飞行器、机器人所面临的问题和挑战。本课程主要内容包括Python编程基础,机器学习模型,无监督学习、监督学习、深度学习基础知识与实现,并学习如何利用机器学习解决实际问题,从而全面提升自我的《综合能力》。